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Transformation of carbonyls to other classes of compounds has Scheme 1. Three-Component Reaction on Using Carbonyl and

been widely studied and utilized in organic synthéditwever, a Silicop bucleoplules

direct conversion of carbonyls to the corresponding alkyl halides SiZR RZ Osi [R'z® %)s/' FG-Si

(deoxygenative halogenation) still remains to be developed. In Path 1

general, a multistep reaction under severe conditions is required o A

on the basis of the reduction of carbonyls followed by chlorination. _ + sm o+ Fes LewisAcd - RZ FG

In the present communication, we report the first example of a direct

conversion of carbonyls into alkyl halides promoted by an indium Path 2 H 0Si H os:

catalyst with chlorodimethylsilane. o [ PN } ] oy
Because hydride and chloride sources both incorporate a carbonyl B

compound, three-component methodology could be appropriate to
accomplish the deoxygenative chlorination. Silicon nucleophiles Table 1. Deoxygenative Chlorination of p-Nitroacetophenone (1b)
would be good candidates for the hydride and chloride sources from Pj=HSiMe2Cl (2b) under Various Catalysts?

the selective synthetic point of view under mild conditions. i _ Catalyst _

Although a number of three-component reactions between a /@AMS‘”HSiMezC' cHOl, @ @
carbonyl compound and two silicon nucleophiles have been [JO=N " ” m2h ON 5 ON
reported, one of the two nucleophiles is limited to be a heteroatom-
substituted silane lik&FZR (SFOR, SESR, or SkNRy), because

the heteroatom substituent predominantly attacks the carbonyl
moiety to form acetal derivatives as shown in Scheme 1 (Path 1). entry catalyst

yield/%

w
o
S
o

The formation of onium cationic speci@sconsiderably contributes 1 none 0 0
to release of the siloxy group, in which representative Lewis acids 2 In(OH) 99 0
such as BFOEb and MeSil also accelerate the releasing. To i sg(((c)):rr% 68 8
achieve the hydrochlorination in which no acetal type of interme- 5 AICl s 0 0
diacy participates is not an extension of known methodology, and 6 BFs-OEb 0 0
so the choice of silicon nucleophiles and Lewis acids is significantly 7 TiCls 0 7

8 B(CsFs)3 0 81

important.
W'? have preylously reported_ that Ir};qﬂecullarly Catalyze.s the a All reactions were carried out in chloroform (4 mL) with catalyst (0.1

reaction, which includes formation of a carbocationic species such yma)y, 1b (2.0 mmol), ancb (2.4 mmol) at room temperature for 2 h.

asB from silyl ethers (FG: ally, H}.In this context, we began to

explore the “Path 2-type” deoxygenative halogenation using indium corresponding chlorid8b exclusively catalyzed by In(OHYentry

compounds as a catalyst. 2). The producBb was also obtained by Sc(OF®atalyst, although
Initially, we examined the reaction of aldehydla with HSIEt; the yield was lower (entry 3). Yb(OTfpr typical Lewis acids such

and MgSiCl (2a) for the direct conversion to organic chloride. The as AICk, BF;:OEb, or TiCl,s exhibited no catalytic effect, and the

desired producBawas obtained in the presence of In(Qldatalyst, starting ketond b was quantitatively recovered (entries4). When

although the yield was not satisfactory (eq 1). Amazingly, the yield B(CsFs)s, a well-known catalyst for hydrosilylatiohwas used, only
was dramatically improved to 83% by using HS#@&(2b), which the alcohoMb was obtained (entry 8). The combination of In(QH)

bears both hydrogen and chlorine moieties. and HSiMeCl in CHCI; solution is adjudged to be the best.
The deoxygenative chlorinations of various carbonyl compounds
o In(OH)5 [ are summarized in Table 2. Aromatic aldehydleand1d afforded
pc,_C6H4)LH +  Nucleophiles % pc|.CGH4/$H () benzylic chlorides3¢c and 3d, respectively, in high yields (entries
1a 2 noh 3a 1 and 3). Because Inglthe most effective catalyst for our previous
HSiEtéi;\./l gﬂe&SiCI gz)) ggz work,* had lower catalytic activity than In(Okl{entries 1 and 2),
a we chose In(OH) as a representative catalyst. Aromatic ketones

) ) ) . le—j were converted into the corresponding alkyl chlori@es|
The effec_t of the In(OI—lg)_cataIyst is essential for this reaction in which the cyano, ester, and carbohydroxy groups were not
as shown in Table 1p-Nitroacetophenonelp) afforded the affected (entries 49). The desired chloride was not afforded in

*To whom correspondence should be addressed. E-mail: baba@ the cases gf-methoxyacetophenongk) and an allphatlc aldehyde
chem.eng.osaka-u.ac.jp. (11). The former gave a Clemmensen-type reduction product in 38%
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Table 2. In(OH)s-Catalyzed Deoxygenative Chlorination of give the iodide8 (eq 3). Although details of the process are not
Various Carbonyls 1 by HSiMezCl (2b) clear, HSiMel generated in situ is expected to cause the iodindtion.
entry carbonyls T/°C t'h product yield/ %
[¢] Cl .
1 n 55 90 o HSiMe,ClI o |
2! Ay s Ky w 201 ] _InOHs (5 mote_
PhH P H o~ * . Hon Ph/\/\\HM e ©®
P A m1th 8, 74%
3 2-Nap” “H 1d t 25 2-Nap” "H 3 92 m 2c ) (470
4 (o] R=H(1e) n 0.5 Cl 3e 78
5 CI (1f) rt 2 3f 76
6 /©)\Me CN (1g) to6 O/LMe 3g 68 o cl
COOMe (1h rt 2 . In(OH)3 ( 5 mol%
2 R 000H71(i) " &% a5 R 3 70 R+ A~ SiMeLl O (o ma, R-OS@
9 Me (1j) 0o 3 3 94, CHCl,
10 o OMe (1k) 24 o 3k 0 OzNR (1) 2d 0°C.08h O2N b 720
= Me , 0. %
1 Ph\)J\H 1l 60 3 Ph\/]\H 3l 0¢ H (1s) 60°C, 1.5h 9s 55%
12 /\i m to 3 /\/(ﬂ am
B ey Me 60 3 pp Me 92 To expand this methodology, the simultaneous induction of allyl
14 BUIO:O n 0 2 BU'OC' an 76/ and chlorine moieties was attempted (eq 4), where allylsilylation
is required instead of hydrosilylation. The new-C and C-ClI
O O o dCl
15 I 10 o2 AL, % &4 bonds could be formed on the carbonyl carbon of the ketidme
EtO Ph EtO Ph -
o cl and the aldehydés with release of oxygen to afforflb and 9s
© /@)&Br 1 W a /@)\/Brsp % respectively. It is noted that even the ketone successfully gave the
ol ol product despite the difficulty in its catalytic allylation using
@] Cl . . . . .
17 weo I 1q o35 w0 L 3 46 allylsilane. The indium-catalyzed deoxygenation step might be a
Ph am driving force for this process.
18 /Me * 0o 03 /Me a 78 In summary, we have achieved novel deoxygenative halogenation
pn P catalyzed by In(OH)using functionalized halosilanes. This method

provides an unprecedented synthetic route to organic halides.
Further extensions of this work are now in progress.

a All reactions were carried out with carbonyll§2.0 mmol), chlorosilane . L
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