pubs.acs.org/joc

Straightforward Stereoselective Synthesis of Seven-Membered Oxa-Bridged Rings through *In Situ* Generated Cycloheptenol Derivatives

Mengdan Wang,^{||} Liqiang Yin,^{||} Lu Cheng, Yajie Yang, and Yanzhong Li*

INTRODUCTION

key to the reaction.

Oxa-bridged heterocyclic scaffolds, especially the sevenmembered oxa-bridged rings (OBC), are widely found in many natural products and synthetic molecules with important biological activities (Figure 1).¹ Due to their special biological

importance, these seven-membered oxa-bridged carbocycles have attracted great attention from synthetic chemists. So far, a large number of methods have been developed to synthesize seven-membered oxa-bridged ring compounds. The reported methods predominantly rely on cycloaddition reaction, such as the [4 + 3] cycloaddition of allyl cations with furans,² [4 + 3]cycloaddition between 1,4-dicarbonyls and 1,3-bis(trimethylsilyl)oxy dienes, $\begin{bmatrix} 5 + 2 \end{bmatrix}$ annulations between oxidopyrylium and alkenes,⁴ etc.⁵ These transformations usually require noble metal catalysis. Intramolecular cyclization is also an efficient method, which typically involves multistep reactions in the elaboration of substrates.⁶ Another straightforward way to construct seven-membered oxa-bridged rings is the installing of a bridged oxygen atom on cycloheptane or cycloheptene derivatives.⁷ However, there are two challenges: (1) The diastereoselective functionalization of a cycloheptene derivative is difficult owing to the inherent conformational uncertainties. (2) The molecular structure of bridge-containing fragments is less flexible compared to their homologous counterparts, and this strategy is rarely reported.

Iwabuchi et al. developed a novel oxidative cyclo-etherification of 4-hydroxycyclohept-2-enone using PhI(OH)OTs (Scheme 1a).⁸ A tandem oxidative dearomatization/cyclization

Scheme 1. Synthesis of the Seven-Membered Oxa-Bridged Ring

Previous work

Iwabuchi et al.: Koser's reagent-mediated oxidative cyclo-etherification

in the presence of hypervalent iodine $PhI(OAc)_2$ was described by the Sarpong group (Scheme 1b).⁹ Nevertheless, these protocols usually relied on cycloheptenols as starting materials, and the range of commercially available cycloheptenol substrates greatly limited its application of this type of transformation. Consequently, there is still an urgent need to develop novel methodologies for the construction of cycloheptenols from simple and easily available reactants; if achieved, it may provide a platform for the direct assembling of seven-membered oxa-bridged rings.

As part of our ongoing interest in C–C σ -bond cleavage chemistry,¹⁰ we have developed efficient base-promoted

Received: July 12, 2021

The Journal of Organic Chemistry

approaches for the preparation of cycloheptenols. It could be nice precursors of oxa-bridged ring compounds via intramolecular C–O bond formation reactions. We envisaged that the construction of such seven-membered oxa-bridged ring compounds might be realized through the combination of C– C σ -bond cleavage and C–O bond-forming reactions in a onepot fashion by tuning the reaction parameters from simple and easily accessible raw materials. Herein, we report an iodinemediated stereoselective synthesis of seven-membered oxabridged rings (Scheme 1c).

RESULTS AND DISCUSSION

The reaction of 1-phenyl-3-(p-tolyl)prop-2-yn-1-one (1a) with 1*H*-indene-1,3(2*H*)-dione (2a) was chosen as a template reaction to test our hypothesis and optimize experimental conditions. First, the reaction of 1a with 2a was carried out using Cs₂CO₃ (3.0 equiv) as the base and DMSO as the solvent at 110 °C under N₂, as previously reported.¹¹ Next, we attempted to add iodine into the reaction system at 100 °C for 6 h. Regrettably, no desired C–O bond-forming product could be observed (Table 1, entry 1). Then HCl (6 M) was added to

Ph		1) Cs ₂ CO ₃ DMSO, N 2) acid, cata	(3.0 equiv) N ₂ , 110 °C, 1 h alyst, air, T, t		о он н
1a 2a				3	a
entry	acid (equiv)	catalyst (mol %)	$(^{\circ}C)^{d}$	<i>t</i> (h)	yield (%)
1		I ₂ (50)	100	6	с
2	6 M HCI (6.0)	$I_2(50)$	100	2	62
3	CH ₃ COOH (6.0)	$I_2(50)$	100	2	с
4	TfOH (6.0)	$I_2(50)$	100	6	trace
5	TsOH·H ₂ O (6.0)	$I_2(50)$	100	6	46
6 ^b	6 M HCI (6.0)	$I_2(50)$	100	2	63
7 ^b	6 M HCI (8.0)	$I_2(50)$	100	2	55
8 ^b	6 M HCI (4.0)	$I_2(50)$	100	2	43
9 ^b	$TsOH \cdot H_2O$ (8.0)	$I_2(50)$	100	6	70
10 ^b	TsOH·H ₂ O (10.0)	$I_2(50)$	100	6	69
11 ^b	$TsOH \cdot H_2O$ (8.0)	$I_2(25)$	100	6	63
12 ^b	$TsOH \cdot H_2O$ (8.0)	$I_2(50)$	80	6	61
13 ^b	TsOH·H ₂ O (8.0)	$I_2(50)$	120	6	60
^a Isola	ted vield 12 (0.2 mm	(0.28)	nmol) DM	150 (5	mL) b2

mL of DMSO. "No product." Heating mantle.

neutralize the reaction system, and it was interesting that the desired oxa-bridged product 3a was obtained in 62% yield (Table 1, entry 2). Considering the importance of acid, different acids were used to increase the yield, but there was no improvement (Table 1, entries 3-5). Reducing the volume of solvent to 2 mL resulted in a slightly higher yield (63%, entry 6). Increasing or decreasing the amount of HCl (6 M) both gave lower yields (entries 7 and 8). We were pleased to find that the yield of 3a could be increased to 70% by further increasing the amount of TsOH \cdot H₂O to 8.0 equiv (entry 9); 10.0 equiv of TsOH \cdot H₂O gave almost the same result as that of 8.0 equiv (entry 10 vs entry 9). When the amount of iodine was reduced to 25 mol %, the yield of 3a was decreased to 63% (entry 11). The strategy of raising or lowering the temperature to increase the yield was ineffective (entries 12 and 13). Therefore, the optimized reaction condition is 8.0 equiv of TsOH·H₂O and 50 mol % of I₂ at 100 $^{\circ}$ C for 6 h (Table 1, entry 9).

After obtaining the optimal reaction conditions, the substrate range was investigated (Scheme 2). Regarding the

Scheme 2. Substrate Scope for the Synthesis of 3^{a}

^{*a*}Reaction conditions: 0.3 mmol scale, 3 mL of DMSO, 1/2a = 1:1.4.

R¹ substituent, no matter it has an electron-donating group or an electron-withdrawing group at the para position, the target products were obtained in moderate to good yields (3a-3f). When the electron-withdrawing group (-Cl) was in the *meta*position, it provided a lower yield than in the para-position (49% vs 62%). For the R^2 substituent, it could tolerate various substituents such as 4-Me, 4-OMe, 3,4-(OMe)₂, 4-F, and 4-Cl, and the target products (3h-3m) were generated in 35-83% yields. It was worth noting that when the -F was in the para position, the yield of 31 was only 35%. Other aryl substituents were also suitable for this reaction (such as naphthalene ring, 2-furyl) to provide corresponding products with yields of 62% and 71%, respectively. When both R^1 and R^2 were other heteroaryls, such as thiophene-2-yl or N-Ts-pyrrole-2-yl, the corresponding products (3p-3q) were also well afforded. The structure of 3q was fully confirmed by X-ray crystallography.¹² Interestingly, alkyl-substituted alkynones could also react with 2a to give 3r-3t in moderate yields. Notably, alkynyl ester could also be employed in the reaction to afford 3u in a 44% vield.

Scheme 3. Control Experiments

was carried out under the optimized reaction conditions for the first step, providing a ring expansion product M-h in a yield of 86% (Scheme 3a). When M-h was subjected to the general reaction conditions of the second step, the desired product 3h was obtained 85% yield within 6 h (Scheme 3b). There was no Cs_2CO_3 in the conversion from M-h to 3h, so there was no need to add acid to neutralize the system. This result indicates that M-h is an intermediate for the formation of 3h in the onepot process. When M-h was treated with I₂ in the presence of Cs_2CO_{31} a complex reaction mixture was observed (Scheme 3c). Adding TsOH \cdot H₂O to the system under the standard conditions of the second step afforded 3h in 84% yield (Scheme 3d). These results suggested that the oxa-bridged product could not be formed under basic conditions. When 2,2,6,6-tetramethyl-1-piperinedinyloxy (TEMPO) was added, the radical trapping product 4h was obtained in 35% yield with a trace amount of 3h (Scheme 3e), which might suggest a radical process. The radical trapping product 4h was processed underthe general reaction conditions of the second step to obtain the desired product 3h in 60% yield (Scheme 3f). When 4h was treated in the absence of I_2 , 3h was isolated with a yield of 50%. This result indicates that iodine was not required for cyclization reactions.

In order to explore the source of oxygen, ¹⁸O isotopic labeling experiments were carried out under the standard reaction conditions. When the seven-membered ring **M-h** was treated with I_2 in the presence of $H_2^{18}O_1^{18}O_4^{-3}h$ was obtained with a yield of 87%. There are four labeled O atoms in ¹⁸O₄-3h (Scheme 4a). These results indicated that two additional oxygen atoms (one from the bridged "O" and the other from the OH group) might come from water. Treatment of 3h

Scheme 4. ¹⁸O-Labeled Experiments^{*a*}

^{*a*18}O determined by ESI-MS.

under the same reaction conditions, it was found that three ¹⁸O-labeled atoms were incorporated to give ¹⁸O₃-**3h** (Scheme 4b). This result suggested that O exchange could take place between $H_2^{18}O$ and the three O atoms of the bridged compound **3h** (see Scheme 4b, ¹O, ²O, and ³O) in the presence of I₂.

Based on the experimental results and previous reports,^{10,11,13} a plausible mechanism for the formation of **3h** was proposed in Scheme 5. First, **1h** and **2a** generated **M-h**

Scheme 5. Possible Reaction Mechanism

through C–C bond insertion reaction in the presence of bases. Tautomerization of M-h gave A. Free radical intermediate B was obtained under iodine. Intermediate B was oxidized to form C, which was hydrolyzed to produce D. Then, D was oxidized to form a triketone intermediate E. Subsequently, E was hydrolyzed to give F. Dehydration of F gave G. Finally, an intramolecular attack of OH to afford product 3h.

In conclusion, an iodine-mediated protocol for the stereoselective synthesis of seven-membered oxa-bridged rings via *in situ* generated cycloheptenols has been developed. Cascade reactions of Cs_2CO_3 -promoted C–C bond cleavage and I_2 mediated C–O bond formation were involved in this process. It is anticipated that the effective combination of C–O bond formation and C–C bond cleavage reactions may be an attractive choice for the construction of complex molecular skeletons from readily available starting materials.

EXPERIMENTAL SECTION

General Information. All reactions under N_2 were performed in flame-dried glassware under an atmosphere of

dry nitrogen, unless otherwise noted. Column chromatographic purification of products was carried out using silica gel (200-300 mesh). The reagents were used without further purification. ¹H NMR spectra were recorded at 400 or 500 MHz, and ¹³C NMR spectra were recorded at 100 or 125 MHz, in CDCl₃ (containing 0.03% TMS) or in DMSO- d_6 solutions. ¹H NMR spectra were recorded with tetramethylsilane (δ = 0.00 ppm) as an internal reference. ¹³C NMR spectra were recorded with CDCl₃ (δ = 77.00 ppm) as an internal reference, or ¹³C NMR spectra were recorded with DMSO- d_6 $(\delta = 39.50 \text{ ppm})$ as an internal reference. High-resolution mass spectra were performed on a mass spectrometer with a TOF (for EI or ESI) or FT-ICR (for MALDI) analyzer. The crystal preparation and measurement methods of 3q are as follows: 50 mg of 3q was placed in a 50 mL round-bottom flask, and 3q was dissolved in 2 mL of dichloromethane. Then, 6 mL of petroleum ether was added, and the solution was mixed well and left to stand still at room temperature until crystals precipitated out. Single-crystal X-ray diffraction data was collected in Bruker SMARTAPEX diffractiometers with molybdenum cathodes.

Synthesis of 1: Preparation of 1a–1s. To a solution of the alkyne (12 mmol) in anhydrous THF (30 mL), *n*-BuLi (2.5M, 10 mmol, 4 mL) was added at -78 °C. The resulting mixture was stirred at -78 °C for 1 h, then the aldehyde (10 mmol) was added, and the reaction temperature was raised to room temperature until the aldehyde disappeared by TLC analysis. The resulting mixture was quenched with a saturated solution of NH₄Cl and extracted with ethyl acetate (20 mL × 3). The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ethyl acetate = 10:1–5:1 as the eluent afforded the substituted alkynol.

To a solution of substituted alkynol (10 mmol) in DMSO (20 mL) in a round-bottom flask was added IBX (12 mmol, 3.36 g) at room temperature. The reaction was stirred in air until the full conversion of substituted alkynol was monitored by thin-layer chromatography. The resulting mixture was quenched with water (20 mL) and filtered. Then the filtrate was extracted with ethyl acetate (20 mL \times 3). The organic layers was combined, washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by column chromatography with petroleum ether/ ethyl acetate = 20:1–10:1 as the eluent afforded the acetyenic ketones.

Preparation of 1t–1u.^{18,23} Acetyenic ketones 1 are known compounds, and the spectroscopic data is in agreement with that previously reported: compounds 1a-1c,¹⁴ 1d,¹⁵ 1e,¹⁴ 1f,¹⁶ 1g,¹⁷ 1h-1k,¹⁴ 1l,¹⁷ 1m,¹⁴ 1n,¹⁸ 1o,¹⁹ 1p,²⁰ 1q,²¹ 1r,¹⁸ 1s,²² 1t,¹⁸ and 1u.²³

Compound 2a was purchased from MACKLIN.

Synthesis of 3. A mixture of 1,3-diphenylprop-2-yn-1-one **1b** (0.30 mmol, 61.9 mg), 1*H*-indene-1,3(2*H*)-dione **2a** (0.42 mmol, 61.4 mg), Cs_2CO_3 (0.9 mmol, 293.2 mg), and DMSO (3.0 mL) in a Schlenk tube was stirred at 110 °C under N₂. After the reaction was completed as monitored by thin-layer chromatography (1 h), the reaction system was cooled to room temperature. The reaction mixture was then quenched by TsOH·H₂O (2.4 mmol, 456.5 mg), then I₂ (0.15 mmol, 38.1 mg) was added, and the reaction temperature was increased to 100 °C for 5 h. The reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate

(10 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) afforded desired compound **3b** (light yellow solid, 84.8 mg, 74% yield).

1.0 mmol Scale Reaction for 1b with 2a. A mixture of 1,3-diphenylprop-2-yn-1-one 1b (1.0 mmol, 206.2 mg), 1Hindene-1,3(2H)-dione 2a (1.4 mmol, 204.6 mg), Cs₂CO₃ (3.0 mmol, 977.5 mg), and DMSO (10.0 mL) in a Schlenk tube was stirred at 110 $^{\circ}C$ under N₂. After the reaction was completed as monitored by thin-layer chromatography (1 h), the reaction system was cooled to room temperature. The reaction mixture was then quenched by TsOH·H2O (8.0 mmol, 1521.8 mg), then I_2 (0.5 mmol, 126.9 mg) was added, and the reaction temperature was increased to 100 °C for 5 h. The reaction mixture was then guenched by water, and the water layers were extracted with ethyl acetate (20 mL \times 3). The combined organic layers were washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 2:1) afforded desired compound **3b** (light yellow solid, 249.5 mg, 65% yield).

Radical Trapping Experiment. In a Schlenk tube, 9hydroxy-8-(4-methylbenzoyl)-7-phenyl-5*H*-benzo[7]annulen-5-one **M**-h (0.20 mmol, 73.2 mg), I₂ (0.1 mmol, 25.4 mg), and TEMPO (0.4 mmol, 62.5 mg) were dissolved in DMSO (2.0 mL), and the mixture was stirred at 100 °C for 5 h. The reaction mixture was then quenched by water, and the water layers were extracted with ethyl acetate (10 mL × 3). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) afforded the desired compound **4h** (light yellow solid, 47.1 mg, 45%).

(5R)-6-Benzoyl-5,8-dihydroxy-7-(p-tolyl)-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3a**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 83.3 mg, 70% yield; mp 160–161 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09–8.06 (m, 1H), 7.46–7.39 (m, 3H), 7.36–7.31 (m, 3H), 7.10–7.05 (m, 4H), 6.90–6.87 (m, 2H), 5.84 (s, 1H), 5.70 (s, 1H), 2.17 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 195.0, 191.1, 145.9, 145.1, 143.6, 140.1, 134.9, 134.5, 134.5, 129.7, 129.3, 128.7, 128.7, 126.7, 126.1, 123.1, 105.4, 104.0, 21.0; HRMS (ESI) *m*/ *z* [M + Na]⁺ calcd for C₂₅H₁₈NaO₅ 421.1046, found 421.1046.

(5*R*)-6-Benzoyl-5,8-dihydroxy-7-phenyl-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3b**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 84.8 mg, 74% yield; mp 142–143 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.59 (s, 1H), 8.51 (s, 1H), 7.90–7.88 (m, 1H), 7.60–7.56 (m, 3H), 7.52– 7.49 (m, 2H), 7.40–7.38 (m, 1H), 7.35–7.31 (m, 2H), 7.23– 7.16 (m, 5H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 194.3, 190.5, 145.5, 144.7, 144.5, 134.6, 134.3, 134.2, 129.5, 129.4, 129.4, 129.4, 128.5, 128.5, 128.4, 128.3, 125.8, 123.0, 105.3, 104.0; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₄H₁₆O₅Na 407.0890, found 407.0889.

(5*R*)-6-Benzoyl-5,8-dihydroxy-7-(4-methoxyphenyl)-5,8dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3c**): yellow solid, petroleum ether/ethyl acetate = 2:1, 52.3 mg, 63% yield; mp 163–164 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.56–8.55 (m, 1H), 8.42–8.41 (m, 1H), 7.87–7.85 (m, 1H), 7.62–7.58 (m, 2H), 7.58–7.55 (m, 1H), 7.54–7.46 (m, 2H), 7.40–7.37 (m, 1H), 7.36–7.32 (m, 2H), 7.21–7.18 (m, 2H), 6.76–6.73 (m, 2H), 3.64 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 194.3, 191.0, 160.5, 146.0, 144.9, 141.9, 134.9, 134.4, 134.1, 130.3, 129.4, 129.4, 128.5, 128.5, 125.8, 122.9, 121.9, 113.9, 105.1, 103.7, 55.2; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₅H₁₈O₆Na 437.0996, found 437.0996.

(5*R*)-6-Benzoyl-7-(4-fluorophenyl)-5,8-dihydroxy-5,8-dihydro-9*H*-5,8-epoxybenzo[7]annulen-9-one (**3d**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 50.8 mg, 63% yield; mp 144–145 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.65 (s, 1H), 8.54 (s, 1H), 7.90–7.87 (m, 1H), 7.62–7.56 (m, 3H), 7.54–7.49 (m, 2H), 7.43–7.40 (m, 1H), 7.36–7.32 (m, 2H), 7.28–7.23 (m, 2H), 7.07–7.01 (m, 2H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 193.0, 190.3, 163.3, 161.3, 147.0, 146.8, 142.8, 135.5, 134.0, 133.3, 130.7, 130.6, 129.1, 129.0, 128.6, 127.2, 126.8, 126.5, 126.5, 123.4, 115.5, 115.3, 106.2, 103.8; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₄H₁₅FO₅Na 425.0796, found 425.0796.

(5*R*)-6-Benzoyl-7-(4-chlorophenyl)-5,8-dihydroxy-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3e**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 77.5 mg, 62% yield; mp 166–167 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.10–8.07 (m, 1H), 7.51–7.48 (m, 2H), 7.48–7.44 (m, 1H), 7.41–7.37 (m, 1H), 7.36–7.33 (m, 2H), 7.16–7.07 (m, 6H), 5.52 (brs, 1H), 5.35 (brs, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 193.6, 190.8, 145.6, 144.7, 143.8, 135.7, 134.7, 134.6, 134.5, 129.8, 129.7, 129.3, 128.7, 128.7, 128.6, 128.0, 125.6, 123.1, 104.9, 103.8; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₄H₁₅ClO₅Na 441.0500, found 441.0500.

(5*R*)-6-Benzoyl-7-(4-bromophenyl)-5,8-dihydroxy-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3f**): light yellow solid, petroleum ether/ethyl acetate = 3:1, 54.7 mg, 59% yield; mp 166–167 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.10–8.07 (m, 1H), 7.52–7.48 (m, 2H), 7.48–7.44 (m, 1H), 7.42–7.38 (m, 1H), 7.36–7.33 (m, 2H), 7.27–7.23 (m, 2H), 7.16–7.12 (m, 2H), 7.05–7.01 (m, 2H), 5.51 (brs, 1H), 5.34 (brs, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 193.7, 190.8, 145.5, 144.8, 143.7, 134.6, 134.6, 134.5, 131.7, 130.0, 129.7, 129.3, 128.7, 128.6, 128.4, 125.6, 124.1, 123.1, 104.9, 103.8; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₄H₁₅BrO₅Na 484.9995, found 484.9995.

(5*R*)-6-Benzoyl-7-(3-chlorophenyl)-5,8-dihydroxy-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3g**): light yellow solid, petroleum ether/ethyl acetate = 3:1, 62.0 mg, 49% yield; mp 162–163 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.72 (s, 1H), 8.62 (s, 1H), 7.92–7.90 (m, 1H), 7.62–7.50 (m, SH), 7.42–7.33 (m, 4H), 7.30–7.27 (m, 1H), 7.21–7.17 (m, 1H), 7.06–7.03 (m, 1H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 192.8, 190.2, 148.3, 146.8, 142.1, 135.4, 134.1, 133.4, 132.9, 132.0, 130.3, 129.2, 129.0, 128.6, 127.7, 127.3, 126.9, 126.7, 123.4, 106.1, 103.9; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₄H₁₅ClO₅Na 441.0500, found 441.0500.

(5*R*)-5,8-Dihydroxy-6-(4-methylbenzoyl)-7-phenyl-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3h**): light yellow solid, petroleum ether/ethyl acetate = 3:1, 87.9 mg, 74% yield; mp 164–165 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.56 (s, 1H), 8.47 (s, 1H), 7.91–7.89 (m, 1H), 7.59–7.55 (m, 1H), 7.52–7.48 (m, 3H), 7.38–7.35 (m, 1H), 7.25–7.21 (m, 2H), 7.21–7.17 (m, 3H), 7.16–7.13 (m, 2H), 2.27 (s, 3H); ¹³C{¹H} NMR (125 MHz, DMSO- d_6) δ 192.7, 190.5, 147.1, 147.1, 144.7, 142.6, 133.3, 133.1, 130.2, 129.2, 129.1, 129.0, 128.3, 128.1, 127.2, 126.9, 123.3, 106.3, 103.8, 21.2; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₅H₁₈O₅Na 421.1046, found 421.1046. (5*R*)-5,8-Dihydroxy-6-(4-methoxybenzoyl)-7-phenyl-5,8dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3**i): light yellow solid, petroleum ether/ethyl acetate = 3:1, 74.2 mg, 60% yield; mp 162–163 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.10– 8.07 (m, 1H), 7.45–7.36 (m, 3H), 7.27–7.24 (m, 2H), 7.22– 7.19 (m, 2H), 7.16–7.07 (m, 3H), 6.53–6.50 (m, 2H), 6.26 (brs, 1H), 6.20 (brs, 1H), 3.67 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.7, 190.4, 164.6, 145.3, 144.8, 143.3, 134.1, 132.1, 129.5, 129.4, 129.3, 128.5, 128.4, 128.4, 127.4, 126.0, 122.9, 113.8, 105.4, 104.0, 55.4; HRMS (ESI) m/z [M + H]⁺ calcd for C₂₅H₁₉O₆ 415.1176, found 415.1176.

(5*R*)-6-(3,4-Dimethoxybenzoyl)-5,8-dihydroxy-7-phenyl-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3***j*): light yellow solid, petroleum ether/ethyl acetate = 3:1, 95.4 mg, 72% yield; mp 117–118 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09–8.06 (m, 1H), 7.45–7.40 (m, 3H), 7.24–7.21 (m, 2H), 7.17–7.08 (m, 3H), 6.98–6.97 (m, 1H), 6.83–6.80 (m, 1H), 6.42–6.40 (m, 1H), 6.31 (brs, 1H), 6.23 (brs, 1H), 3.74 (s, 3H), 3.57 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 192.7, 190.3, 154.4, 148.7, 145.4, 144.8, 143.3, 134.2, 129.5, 129.4, 129.3, 128.4, 128.3, 127.3, 126.0, 125.4, 123.0, 110.7, 110.0, 105.3, 104.0, 55.9, 55.5; HRMS (ESI) *m*/*z* [M + H]⁺ calcd for C₂₆H₂₁O₇ 445.1282, found 445.1282.

(5*R*)-5,8-Dihydroxy-7-phenyl-6-(3,4,5-trimethoxybenzoyl)-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3***k*): light yellow solid, petroleum ether/ethyl acetate = 2:1, 81.1 mg, 74% yield; mp 161–162 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.59 (s, 1H), 8.54 (s, 1H), 7.94–7.92 (m, 1H), 7.61–7.56 (m, 1H), 7.53–7.49 (m, 1H), 7.41–7.39 (m, 1H), 7.25–7.21 (m, 5H), 6.79 (s, 2H), 3.64 (s, 3H), 3.56 (s, 6H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 191.4, 190.6, 152.5, 147.1, 146.7, 143.4, 142.4, 133.5, 130.5, 130.4, 129.2, 129.1, 128.4, 128.2, 127.3, 126.9, 123.4, 106.5, 106.1, 103.8, 60.1, 55.7; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₇H₂₂O₈Na 497.1207, found 497.1207.

(5*R*)-6-(4-*Fluorobenzoyl*)-5,8-*dihydroxy*-7-*phenyl*-5,8-*dihydro*-9*H*-5,8-*epoxybenzo*[7]*annulen*-9-*one* (3*I*): light yellow solid, petroleum ether/ethyl acetate = 3:1, 28.4 mg, 35% yield; mp 121–122 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.63 (s, 1H), 8.56 (s, 1H), 7.89–7.86 (m, 1H), 7.67–7.63 (m, 2H), 7.63–7.58 (m, 1H), 7.53–7.49 (m, 1H), 7.43–7.40 (m, 1H), 7.23–7.17 (m, 7H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 191.6, 190.3, 166.3, 164.3, 146.9 (d, *J* = 47.3 Hz), 144.1, 133.4, 132.4 (d, *J* = 2.5 Hz), 132.1, (d, *J* = 9.8 Hz), 130.0, 129.2 (d, *J* = 9.7 Hz), 128.4 (d, *J* = 2.3 Hz), 127.2, 126.9, 123.4, 115.8 (d, *J* = 22.3 Hz), 106.3, 103.8, 54.9; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₄H₁₅FO₅Na 425.0797, found 425.0797.

(5*R*)-6-(4-Chlorobenzoyl)-5,8-dihydroxy-7-phenyl-5,8-dihydro-9*H*-5,8-epoxybenzo[7]annulen-9-one (**3m**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 104.0 mg, 83% yield; mp 156–157 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.61 (s, 1H), 8.55 (s, 1H), 7.89–7.86 (m, 1H), 7.63–7.56 (m, 3H), 7.53–7.48 (m, 1H), 7.45–7.40 (m, 3H), 7.24–7.16 (m, 5H); ¹³C{¹H} NMR (125 MHz, DMSO) δ 191.9, 190.2, 147.0, 146.5, 144.5, 138.8, 134.4, 133.4, 130.8, 129.9, 129.3, 129.1, 128.7, 128.4, 128.3, 127.2, 126.8, 123.4, 106.3, 103.7; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₄H₁₅ClO₅Na 441.0497, found 441.0499.

(5R)-6-(2-Naphthoyl)-5,8-dihydroxy-7-phenyl-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3**n): light yellow solid, petroleum ether/ethyl acetate = 2:1, 81.3 mg, 62% yield; mp 165–166 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.65 (s, 1H), 8.59 (s, 1H), 8.01–7.96 (m, 2H), 7.93–7.88 (m, 2H), 7.78–7.74 (m, 2H), 7.65–7.60 (m, 1H), 7.58–7.51 (m, 3H), 7.42–7.39 (m, 1H), 7.30–7.27 (m, 2H), 7.17–7.09 (m, 3H); ¹³C{¹H} NMR (125 MHz, DMSO- d_6) δ 192.9, 190.5, 147.3, 147.1, 143.6, 135.3, 133.4, 132.9, 132.3, 131.6, 130.3, 129.5, 129.2, 129.0, 128.4, 128.3, 128.2, 127.7, 127.3, 127.1, 127.0, 123.4, 123.4, 106.4, 103.9; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₈H₁₈O₅Na 457.1046, found 457.1046.

(5*R*)-6-(*Furan-2-carbonyl*)-5,8-*dihydroxy-7-phenyl-5,8-dihydro-9H-5,8-epoxybenzo*[7]*annulen-9-one* (**3o**): white solid, petroleum ether/ethyl acetate = 1:1, 79.5 mg, 71% yield; mp 159–160 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07–8.04 (m, 1H), 7.52–7.44 (m, 3H), 7.33–7.31 (m, 1H), 7.24–7.16 (m, 5H), 6.34–6.33 (m, 1H), 6.16–6.15 (m, 1H), 5.73 (brs, 1H), 5.57 (brs, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 190.6, 179.7, 150.9, 148.5, 145.9, 145.5, 143.8, 134.3, 129.7, 129.6, 129.5, 128.5, 128.4, 125.7, 123.0, 122.2, 112.7, 105.2, 103.8; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₂H₁₄O₆Na 397.0683, found 397.0683.

(5*R*)-5,8-Dihydroxy-6-(4-methylbenzoyl)-7-(thiophen-2yl)-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3p**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 75.4 mg, 62% yield; mp 117–118 °C; ¹H NMR (500 MHz, DMSOd₆) δ 8.79 (s, 1H), 8.45 (s, 1H), 7.85–7.83 (m, 1H), 7.72– 7.69 (m, 2H), 7.63–7.59 (m, 1H), 7.53–7.47 (m, 2H), 7.43– 7.40 (m, 1H), 7.29–7.27 (m, 2H), 7.24–7.22 (m, 1H), 6.94– 6.92 (m, 1H), 2.34 (s, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-d₆) δ 192.6, 189.7, 147.5, 145.0, 143.5, 136.8, 133.4, 133.2, 130.8, 130.2, 130.1, 129.4, 129.3, 129.0, 127.4, 127.0, 126.8, 123.5, 105.9, 104.2, 21.3; HRMS (ESI) m/z [M + H]⁺ calcd for C₂₃H₁₇O₅S 405.0792, found 405.0792.

(5*R*)-5,8-Dihydroxy-7-(p-tolyl)-6-(1-tosyl-1H-pyrrole-2-carbonyl)-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3q**): light yellow solid, petroleum ether/ethyl acetate = 2:1, 72.8 mg, 45% yield; mp 187–188 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.07–8.04 (m, 1H), 7.87–7.84 (m, 2H), 7.60–7.58 (m, 1H), 7.46–7.39 (m, 2H), 7.37–7.35 (m, 2H), 7.29–7.27 (m, 1H), 7.06–7.04 (m, 2H), 6.96–6.93 (m, 2H), 5.78–5.76 (m, 1H), 5.56–5.54 (m, 1H), 2.47 (s, 3H), 2.24 (s, 3H); $^{13}C{^{1}H}$ NMR (125 MHz, CDCl₃) δ 190.2, 180.0, 145.5, 145.4, 145.3, 143.1, 139.8, 135.0, 134.0, 131.8, 131.7, 129.5, 129.5, 129.1, 128.7, 128.7, 128.5, 127.6, 126.2, 125.9, 122.9, 110.8, 105.2, 103.8, 21.7, 21.3; HRMS (ESI) *m*/z [M + Na]⁺ calcd for C₃₀H₂₃NO₇SNa 497.1207, found 497.1207.

(5*R*)-6-Benzoyl-7-butyl-5,8-dihydroxy-5,8-dihydro-9*H*-5,8epoxybenzo[7]annulen-9-one (**3***r*): light yellow solid, petroleum ether/ethyl acetate = 4:1, 42.9 mg, 39% yield; mp 168– 169 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.25 (s, 1H), 8.21 (s, 1H), 7.83–7.81 (m, 1H), 7.74–7.72 (m, 2H), 7.69–7.65 (m, 1H), 7.63–7.59 (m, 1H), 7.57–7.52 (m, 3H), 7.49–7.44 (m, 1H), 2.16–2.10 (m, 1H), 1.88–1.81 (m, 1H), 1.12–1.03 (m, 1H), 0.99–0.89 (m, 1H), 0.75–0.65 (m, 2H), 0.46 (t, *J* = 7.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO- d_6) δ 193.1, 191.2, 150.4, 148.4, 145.8, 137.8, 134.2, 133.5, 129.4, 129.2, 129.1, 127.6, 127.0, 124.2, 106.5, 104.6, 29.0, 25.6, 21.9, 13.5; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₂₂H₂₀O₅Na 387.1203, found 387.1207.

(5*R*)-6-Benzoyl-7-hexyl-5,8-dihydroxy-5,8-dihydro-9H-5,8epoxybenzo[7]annulen-9-one (**3s**): brown solid, petroleum ether/ethyl acetate = 4:1, 37.6 mg, 32% yield; mp 88–89 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.25 (s, 1H), 8.21 (s, 1H), 7.83–7.81 (m, 1H), 7.75–7.72 (m, 2H), 7.69–7.64 (m, 1H), 7.63–7.59 (m, 1H), 7.56–7.52 (m, 3H), 7.48–7.44 (m, 1H), 2.18–2.11 (m, 1H), 1.88–1.81 (m, 1H), 1.13–1.03 (m, 2H), 0.99–0.88 (m, 3H), 0.84–0.79 (m, 2H), 0.69–0.64 (m, 1H), 0.62 (t, J = 7.5 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO d_6) δ 192.5, 190.7, 150.0, 147.9, 145.4, 137.4, 133.7, 133.0, 128.9, 128.7, 128.6, 127.2, 126.5, 123.8, 106.0, 104.1, 30.3, 27.8, 26.3, 25.3, 21.6, 13.6; HRMS (ESI) m/z [M + Na]⁺ calcd for C₂₄H₂₄O₅Na 415.1516, found 415.1520.

(5*R*)-5,8-Dihydroxy-7-phenyl-6-pivaloyl-5,8-dihydro-9H-5,8-epoxybenzo[7]annulen-9-one (**3t**): yellow liquid, petroleum ether/ethyl acetate = 4:1, 71.9 mg, 66%); ¹H NMR (500 MHz, DMSO- d_6) δ 8.44 (s, 1H), 7.40 (s, 1H), 7.86–7.84 (m, 1H), 7.66–7.62 (m, 1H), 7.53–7.49 (m, 1H), 7.42–7.40 (m, 1H), 7.37–7.33 (m, 3H), 7.22–7.18 (m, 2H), 0.80 (s, 9H); ¹³C{¹H} NMR (125 MHz, DMSO- d_6) 211.3, 191.1, 150.0, 147.5, 140.1, 133.7, 131.8, 129.6, 129.6, 128.9, 128.6, 127.6, 127.4, 123.7, 106.8, 104.2, 44.4, 26.7; HRMS (ESI) *m/z* [M + Na]⁺ calcd for C₂₂H₂₀O₅Na 387.1203, found 387.1209.

Methyl (5*R*)-5,8-Dihydroxy-9-oxo-7-phenyl-8,9-dihydro-5*H*-5,8-epoxybenzo[7]annulene-6-carboxylate (**3u**): light yellow solid, petroleum ether/ethyl acetate = 4:1, 44.5 mg, 44% yield; mp 165–166 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.52 (s, 1H), 8.40 (s, 1H), 7.87–7.84 (m, 1H), 7.67–7.62 (m, 1H), 7.59–7.57 (m, 1H), 7.52–7.47 (m, 1H), 7.45–7.41 (m, 2H), 7.39–7.35 (m, 3H), 3.59 (s, 3H); ¹³C{¹H} NMR (125 MHz, DMSO- d_6) 190.7, 163.6, 148.7, 146.9, 140.3, 133.4, 130.3, 129.4, 129.0, 128.7, 128.0, 127.0, 126.8, 123.7, 106.0, 102.9, 51.8; HRMS (ESI) *m*/*z* [M + Na]⁺ calcd for C₁₉H₁₄O₆Na 361.0683, found 361.0681.

8-(4-Methylbenzoyl)-7-phenyl-6-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-5H-benzo[7]annulene-5,9(6H)-dione (4h): light yellow solid, petroleum ether/ethyl acetate = 20:1, 47.1 mg, 45% yield; mp 108–109 °C; ¹H NMR (500 MHz, CDCl3) δ 8.03–8.00 (m, 1H), 7.93–7.91 (m, 1H), 7.74–7.42 (m, 2H), 7.60–7.58 (m, 2H), 7.42–7.40 (m, 2H), 7.24–7.22 (m, 3H), 7.07–7.05 (m, 2H), 5.22 (s, 1H), 2.30 (s, 3H), 1.52–1.49 (m, 1H), 1.39–1.35 (m, 2H), 1.34 (s, 3H), 1.07 (s, 3H), 0.85 (s, 3H), 0.56 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl3) δ 194.9, 193.1, 190.9, 146.0, 144.4, 143.8, 137.6, 135.2, 134.0, 133.3, 133.2, 132.5, 129.5, 129.4, 129.4, 129.3, 129.2, 128.6, 128.5, 96.9, 60.6, 60.2, 39.8, 39.7, 33.8, 33.2, 21.6, 21.1, 20.4, 16.8; HRMS (ESI) m/z [M + H]⁺ calcd for C₃₄H₃₆NO₄ 522.2639, found 522.2639.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c01648.

Experimental procedures, characterization data, and spectra of new compounds (PDF)

Accession Codes

CCDC 2080094 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Yanzhong Li – School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; Key Laboratory of Polar Materials and Devices, Ministry of Education, Shanghai 200241, China; orcid.org/0000-0002-2898-3075; Email: yzli@ chem.ecnu.edu.cn

Authors

- Mengdan Wang School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China; © orcid.org/0000-0002-9840-5924
- Liqiang Yin School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Lu Cheng School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Yajie Yang School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China;
 orcid.org/0000-0002-3782-1131

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.1c01648

Author Contributions

^{II}M.W. and L.Y. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (21871087) and the Open Research Fund of Key Laboratory of Polar Materials and Devices, Ministry of Education for financial support.

REFERENCES

(1) (a) Christy, M. E.; Boland, C. C.; Williams, J. G.; Engelhardt, E. L. Antidepressants. II. Bridged ring ether derivatives in the dibenzocycloheptene series. J. Med. Chem. 1970, 13, 191-195. (b) Jadulco, R. C.; Pond, C. D.; Van Wagoner, R. M.; Koch, M.; Gideon, O. G.; Matainaho, T. K.; Piskaut, P.; Barrows, L. R. 4-Quinolone Alkaloids from Melochia odorata. J. Nat. Prod. 2014, 77, 183-187. (c) Sarotti, A. M. Structural revision of two unusual rhamnofolane diterpenes, curcusones I and J, by means of DFT calculations of NMR shifts and coupling constants. Org. Biomol. Chem. 2018, 16, 944-950. (d) Li, Y.; Dai, M. Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angew. Chem., Int. Ed. 2017, 56, 11624-11627. (e) Morisaki, K.; Sasano, Y.; Koseki, T.; Shibuta, T.; Kanoh, N.; Chiou, W. H.; Iwabuchi, Y. Nazarov Cyclization Entry to Chiral Bicyclo [5.3.0] decanoid Building Blocks and Its Application to Formal Synthesis of (-)-Englerin A. Org. Lett. 2017, 19, 5142-5145. (f) Li, Y.; Liu, Y. B.; Liu, Y. L.; Wang, C.; Wu, L. Q.; Li, L.; Ma, S. G.; Qu, J.; Yu, S. S. Mollanol A, a diterpenoid with a new C-nor-Dhomograyanane skeleton from the fruits of Rhododendron molle. Org. Lett. 2014, 16, 4320-4323. (g) Wender, P. A.; D'Angelo, N.; Elitzin, V. I.; Ernst, M.; Jackson-Ugueto, E. E.; Kowalski, J. A.; McKendry, S.; Rehfeuter, M.; Sun, R.; Voigtlaender, D. Function-Oriented Synthesis: Studies Aimed at the Synthesis and Mode of Action of 1r-Alkyldaphnane Analogues. Org. Lett. 2007, 9, 1829-1832. (h) Aoki, S.; Watanabe, Y.; San-Agawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M. Cortistatins A, B, C, and D, Antiangiogenic Steroidal Alkaloids, from the Marine Sponge Corticium simplex. J. Am. Chem. Soc. 2006, 128, 3148-3149.

(2) (a) Kover, A.; Hoffmann, H. M. R. Synthesis and π -facially selective cycloadditions of pinofurans. *Tetrahedron* **1988**, 44, 6831–6840. (b) Huang, H.; Kende, A. S. Asymmetric [4 + 3] cycloadditions from chiral α -chloro imines. *Tetrahedron Lett.* **1997**, 38, 3353–3356. (c) Xiong, H.; Hsung, R. P.; Berry, C. R.; Rameshkumar, C. The First Epoxidations of 1-Amidoallenes. A General Entry to Nitrogen-Substituted Oxyallyl Cations in Highly Stereoselective [4 + 3] Cycloadditions. *J. Am. Chem. Soc.* **2001**, 123, 7174–7175.

(d) Harmata, M.; Ghosh, S. K.; Hong, X.; Wacharasindhu, S.; Kirchhoefer, P. Asymmetric Organocatalysis of 4 + 3 Cycloaddition Reactions. J. Am. Chem. Soc. 2003, 125, 2058–2059. (e) Lo, B.; Lam, S.; Wong, W. T.; Chiu, P. Asymmetric (4 + 3) cycloadditions of enantiomerically enriched epoxy enolsilanes. Angew. Chem., Int. Ed. 2012, 51, 12120–12123. (f) Hartung, I. V.; Hoffmann, H. M. R. 8-Oxabicyclo[3.2.1]oct-6-en-3-ones: Application to the Asymmetric Synthesis of Polyoxygenated Building Blocks. Angew. Chem., Int. Ed. 2004, 43, 1934–1949. (g) Di, X.; Wang, Y.; Wu, L.; Zhang, Z. M.; Dai, Q.; Li, W.; Zhang, J. Enantioselective Gold(I)-Catalyzed Heterocyclization-Intermolecular Exo [4 + 3]-Cycloaddition Reactions for the Synthesis of Chiral Oxa-Bridged Benzocycloheptanes. Org. Lett. 2019, 21, 3018–3022.

(3) (a) Molander, G. A.; Cameron, K. O. A novel concept for regiochemical and stereochemical control in Lewis acid promoted [3 + 4] annulation reactions. *J. Org. Chem.* 1991, 56, 2617–2619.
(b) Molander, G. A.; Cameron, K. O. Neighboring group participation in Lewis acid-promoted [3 + 4] and [3 + 5] annulations. The synthesis of oxabicyclo[3.n.1]alkan-3-ones. *J. Am. Chem. Soc.* 1993, 115, 830–846.

(4) (a) Iwasawa, N.; Shido, M.; Kusama, H. Generation and Reaction of Metal-Containing Carbonyl Ylides: Tandem [3 + 2]-Cycloaddition-Carbene Insertion Leading to Novel Polycyclic Compounds. J. Am. Chem. Soc. 2001, 123, 5814–5815. (b) Burns, N. Z.; Witten, M. R.; Jacobsen, E. N. Dual catalysis in enantioselective oxidopyrylium-based [5 + 2] cycloadditions. J. Am. Chem. Soc. 2011, 133, 14578–14581. (c) Witten, M. R.; Jacobsen, E. N. Catalytic asymmetric synthesis of 8-oxabicyclooctanes by intermolecular [5 + 2] pyrylium cycloadditions. Angew. Chem., Int. Ed. 2014, 53, 5912–5916.

(5) (a) Jimenez-Núñez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Prins Cyclizations in Au-Catalyzed Reactions of Enynes. Angew. Chem., Int. Ed. 2006, 45, 5452-5455. (b) Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Intramolecular Huisgen-Type Cyclization of Platinum-Bound Pyrylium Ions with Alkenes and Subsequent Insertion into a Benzylic C-H Bond. Angew. Chem., Int. Ed. 2008, 47, 7505-7507. (c) Oh, C. H.; Yi, H. J.; Lee, J. H.; Lim, D. H. Stereocontrolled synthesis of oxygen-bridged polycycles via intermolecular [3 + 2] cyclization of platinum-bound pyrylium with alkenes. Chem. Commun. 2010, 46, 3007-3009. (d) Li, B.; Zhao, Y. J.; Lai, Y. C.; Loh, T. P. Asymmetric syntheses of 8-oxabicyclo[3,2,1]octanes: a cationic cascade cyclization. Angew. Chem., Int. Ed. 2012, 51, 8041-8045. (e) Li, Y.; Dai, M. Total Syntheses of the Reported Structures of Curcusones I and J through Tandem Gold Catalysis. Angew. Chem., Int. Ed. 2017, 56, 11624-11627. (f) Loui, H. J.; Suneja, A.; Schneider, C. Cooperative Rh/Chiral Phosphoric Acid Catalysis toward the Highly Stereoselective (3 + 3)-Cycloannulation of Carbonyl Ylides and Indolyl-2-methides. Org. Lett. 2021, 23, 2578-2583.

(6) (a) Canham, S. M.; Overman, L. E.; Tanis, P. S. Identification of an unexpected 2-oxonia[3,3]sigmatropic rearrangement/aldol pathway in the formation of oxacyclic rings. Total synthesis of (+)-aspergillin PZ. Tetrahedron 2011, 67, 9837-9843. (b) Kang, H. J.; Kim, S. H.; Pae, A. N.; Koh, H. Y.; Chang, M. H.; Choi, K.; Han, S.-Y.; Cho, Y. S. Diastereoselective Synthesis of Seven- and Eight-Membered Oxabicycles via Prins-Type Cyclization. Synlett 2004, 2004, 2545-2548. (c) Overman, L. E.; Velthuisen, E. J. Stereocontrolled Construction of Either Stereoisomer of 12-Oxatricyclo-[6.3.1.02,7] dodecanes Using Prins-Pinacol Reactions. Org. Lett. 2004, 6, 3853-3856. (d) Sasmal, P. K.; Maier, M. E. Acetal-Vinyl Sulfide Cyclization on Sugar Substrates: Effect of Structure and Substituent. J. Org. Chem. 2003, 68, 824-831. (e) Lopez, F.; 'Castedo, L.; Mascareňas, J. L. Atom-Efficient Assembly of 1,5-Oxygen-Bridged Medium-Sized Carbocycles by Sequential Combination of a Ru-Catalyzed Alkyne-Alkene Coupling and a Prins-Type Cyclization. J. Am. Chem. Soc. 2002, 124, 4218-4219. (f) Wang, M.-S.; Wang, Z.; Chen, W.; Yang, X.; Zhang, H. Synthesis of Oxa-Bridged Medium-Sized Carbocyclic Rings via Prins Cyclization. Org. Lett. 2019, 21, 1881–1884. (g) Gu, Y.; Huang, J.; Gong, J.; Yang, Z. Total synthesis

The Journal of Organic Chemistry

of orientalol F via gold-catalyzed cycloisomerization of alkynediol. *Org. Chem. Front.* **2017**, *4*, 2296–2300.

(7) (a) Ito, H.; Abe, H.; Tezuka, A.; Kobayashi, T. Synthesis of Oxygen-Bridged Decahydroazulene Derivatives: Simplified Analogues of Biologically Active Natural Products. *Heterocycles* 2014, *88*, 651–662. (b) J. Danishefsky, S.; Dai, M. An Oxidative Dearomatization Cyclization Model for Cortistatin A. *Heterocycles* 2009, *77*, 157–161. (c) Lee, H. M.; Nieto-Oberhuber, C.; Shair, M. D. Enantioselective Synthesis of (+)-Cortistatin A, a Potent and Selective Inhibitor of Endothelial Cell Proliferation. *J. Am. Chem. Soc.* 2008, *130*, 16864–16866.

(8) Kawasumi, M.; Kanoh, N.; Iwabuchi, Y. Concise Entry to Both Enantiomers of 8-Oxabicyclo[3.2.1]oct-3-en-2-one Based on Novel Oxidative Etherification: Formal Synthesis of (+)-Sundiversifolide. *Org. Lett.* **2011**, *13*, 3620–3623.

(9) Simmons, E. M.; Hardin, A. R.; Guo, X.; Sarpong, R. Rapid construction of the cortistatin pentacyclic core. *Angew. Chem., Int. Ed.* **2008**, *47*, 6650–6653.

(10) (a) Cheng, X.; Zhou, Y.; Zhang, F.; Zhu, K.; Liu, Y.; Li, Y. Base-Promoted Tandem Reaction Involving Insertion into Carbon-Carbon σ -Bonds: Synthesis of Xanthone and Chromone Derivatives. Chem. -Eur. J. 2016, 22, 12655-12659. (b) Zhou, Y.; Tao, X.; Yao, Q.; Zhao, Y.; Li, Y. Insertion of Isolated Alkynes into Carbon-Carbon σ -Bonds of Unstrained Cyclic β -Ketoesters via Transition-Metal-Free Tandem Reactions: Synthesis of Medium-Sized Ring Compounds. Chem. - Eur. J. 2016, 22, 17936-17939. (c) Yao, Q.; Kong, L.; Zhang, F.; Tao, X.; Li, Y. Base-Promoted Tandem Reaction towards Conjugated Dienone or Chromone Derivatives with a Cyano Group: Insertion of Alkynes into C-C σ-Bonds of 3-Oxopropanenitriles. Adv. Synth. Catal. 2017, 359, 3079-3084. (d) Zhang, F.; Yao, Q.; Yuan, Y.; Xu, M.; Kong, L.; Li, Y. Base-mediated insertion reaction of alkynes into carbon-carbon σ -bonds of ethanones: synthesis of hydroxydienone and chromone derivatives. Org. Biomol. Chem. 2017, 15, 2497-2500. (e) Wang, M.; Yang, Y.; Song, B.; Yin, L.; Yan, S.; Li, Y. Selective Insertion of Alkynes into C-C σ-Bonds of Indolin-2-ones: Transition-Metal-Free Ring Expansion Reactions to Seven-Mebered-Ring Benzolactams or Chromone Derivatives. Org. Lett. 2020, 22, 155-159.

(11) Yao, Q.; Kong, L.; Wang, M.; Yuan, Y.; Sun, R.; Li, Y. Transition-Metal-Free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds. *Org. Lett.* **2018**, *20*, 1744–1747.

(12) CCDC 2080094 (3q).

(13) (a) Tang, S.; Liu, K.; Long, Y.; Gao, X.; Gao, M.; Lei, A. Iodinecatalyzed radical oxidative annulation for the construction of dihydrofurans and indolizines. *Org. Lett.* **2015**, *17*, 2404–2407. (b) Dao Thi, H.; Goossens, H.; Hertsen, D.; Otte, V.; Van Nguyen, T.; Van Speybroeck, V.; D'Hooghe, M. Formation of Fluorinated Amido Esters through Unexpected C3-C4 Bond Fission in 4-Trifluoromethyl-3-oxo- β -lactams. *Chem. - Asian J.* **2018**, *13*, 421–431. (14) Tan, H.; Li, H.; Ji, W.; Wang, L. Sunlight-Driven Decarboxylative Alkynylation of alpha-Keto Acids with Bromoacetylenes by Hypervalent Iodine Reagent Catalysis: A Facile Approach to Ynones. *Angew. Chem., Int. Ed.* **2015**, *54*, 8374–8377.

(15) Sun, G.; Lei, M.; Hu, L. A facile and efficient method for the synthesis of alkynone by carbonylative Sonogashira coupling using $CHCl_3$ as the CO source. *RSC Adv.* **2016**, *6*, 28442–28446.

(16) Liu, J.; Peng, X.; Sun, W.; Zhao, Y.; Xia, C. Magnetically Separable Pd Catalyst for Carbonylative Sonogashira Coupling Reactions for the Synthesis of α,β -Alkynyl Ketones. *Org. Lett.* **2008**, *10*, 3933–3936.

(17) Meng, M.; Wang, G.; Yang, L.; Cheng, K.; Qi, C. Silvercatalyzed Double Decarboxylative Radical Alkynylation/Annulation of Arylpropiolic Acids with α -keto Acids: Access to Ynones and Flavones under Mild Conditions. *Adv. Synth. Catal.* **2018**, *360*, 1218–1231.

(18) Zhang, L.; Chu, Y.; Ma, P.; Zhao, S.; Li, Q.; Chen, B.; Hong, X.; Sun, J. Visible-light-mediated photocatalytic cross-coupling of acetenyl ketones with benzyl trifluoroborate. *Org. Biomol. Chem.* **2020**, *18*, 1073–1077.

(19) Chen, J.-Y.; Lin, T.-C.; Chen, S.-C.; Chen, A.-J.; Mou, C.-Y.; Tsai, F.-Y. Highly-efficient and recyclable nanosized MCM-41 anchored palladium bipyridyl complex-catalyzed coupling of acyl chlorides and terminal alkynes for the formation of ynones. *Tetrahedron* **2009**, *65*, 10134–10141.

(20) Yuan, Y.; Tan, H.; Kong, L.; Zheng, Z.; Xu, M.; Huang, J.; Li, Y. Transition-metal-free C-C sigma-bond activation of alpha-aryl ketones and subsequent Zn-catalyzed intramolecular cyclization: synthesis of tetrasubstituted furans. *Org. Biomol. Chem.* **2019**, *17*, 2725–2733.

(21) Mu, Y.; Yao, Q.; Yin, L.; Fu, S.; Wang, M.; Yuan, Y.; Kong, L.; Li, Y. Atom-Economic Synthesis of Highly Functionalized Bridged Ring Systems Initiated by Ring Expansion of Indene-1,3-dione. *J. Org. Chem.* **2021**, *86*, 6755–6764.

(22) Atobe, S.; Masuno, H.; Sonoda, M.; Suzuki, Y.; Shinohara, H.; Shibata, S.; Ogawa, A. Pd-catalyzed coupling reaction of acid chlorides with terminal alkynes using 1-(2-pyridylethynyl)-2-(2-thienylethynyl)-benzene ligand. *Tetrahedron Lett.* **2012**, *53*, 1764–1767.

(23) Norcott, P. L.; Hammill, C. L.; Noble, B. B.; Robertson, J. C.; Olding, A.; Bissember, A. C.; Coote, M. L. TEMPO-Me: An Electrochemically Activated Methylating Agent. J. Am. Chem. Soc. 2019, 141, 15450–15455.