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ABSTRACT: RNA technology is transforming life science re-
search and medicine, however, many applications are limited 
by the accessibility, cost, efficacy, and tolerability of delivery 
systems. Here we report the first members of a new class of dy-
namic RNA delivery vectors, oligo(serine ester)-based charge-
altering releasable transporters (Ser-CARTs). Composed of li-
pid-containing oligocarbonates and cationic oligo(serine es-
ters), Ser-CARTs are readily prepared (one flask) by a mild 
ring-opening polymerization using thiourea anions and, upon 
simple mixing with mRNA, readily form complexes which de-
grade to neutral serine-based products, efficiently releasing 
their mRNA cargo. mRNA/Ser-CART transfection efficiencies of 
>95% are achieved in vitro. Intramuscular or intravenous (IV) 
injections of mRNA/Ser-CARTs into living mice result in in vivo 
expression of a luciferase reporter protein with spleen locali-
zation observed after IV injection.  

Messenger RNA (mRNA) is advancing fundamental research 
and medicine due to its ability to induce the transient catalytic 
expression of target proteins in vitro, in vivo, and ex vivo. mRNA 
applications include protein replacement therapy, gene edit-
ing, vaccination, and cancer immunotherapy.1 However, the 
challenge of developing synthetically accessible, affordable, 
safe, and effective delivery vectors that extracellularly protect 
and intracellularly release mRNA have hampered applications, 
driving demand for improved delivery systems.2-3 Current de-
livery strategies focus on mechanical methods, and viral and 
nonviral vectors.4-6 Mechanical methods that temporarily ren-
der the cellular membrane permeable are limited to accessible 
tissues and ex vivo techniques, often suffer from poor cell via-
bility, and encounter scalability challenges.7 Viral vectors offer 
broader administration options but are coupled with cost and 
immunogenicity concerns and cargo size limitations.8-9 These 
restrictions have stimulated interest in nonviral vectors, typi-
cally lipid nanoparticles and cationic polymers that form elec-
trostatic complexes with polyanionic nucleic acids.7, 10-16 De-
spite advances in nonviral vectors, challenges with accessibil-
ity, formulation, efficacy, tolerability and targetability, have 

prompted the search for improved delivery systems with par-
ticular emphasis on degradable vectors. 17-22 

We recently reported a new class of synthetic biodegradable 
gene delivery materials, dubbed Charge-Altering Releasable 
Transporters (CARTs, e.g. 1).23 These first generation CARTs 1 
are amphipathic diblock co-oligomers, consisting of a lipophilic 
oligocarbonate sequence followed by a cationic morpholinone-
derived α-amino ester backbone. These transporters operate 
through an unprecedented mechanism, with the cationic ol-
igo(α-amino ester) block serving to electrostatically complex 
the anionic nucleic acid cargo and subsequently undergoing an 
irreversible rearrangement to neutral small molecules (e.g., 2), 
resulting in cargo release (Scheme 1A). While morpholinone-
based CARTs 1 are effective for mRNA and plasmid delivery in 
many cell lines, including T-lymphocytes, these first generation 
transporters represent only one subclass of a potentially broad 
and unexplored platform of charge-altering vectors for gene 
delivery.23-27  

Here, we report the synthesis and evaluation of a new class 
of charge-altering vectors, based on oligo(serine esters), Ser-
CARTs 3. Differing from CARTs with oligocationic backbones, 
Ser-CARTs incorporate a charge-altering side-chain amine to 
complex the mRNA cargo and produce neutral serine-based by-
products upon degradation, resulting in mRNA release 
(Scheme 1B). In addition to their biocompatibility and expected 
rearrangement into peptides 4,28-30 oligo(serine esters) were 
selected for study over other degradable amine-functionalized 
polyesters18, 31 due to their activating α-amino ester motif.   
Studies suggest that the rapid rearrangement of morpholinone-
derived oligo(α-amino esters) is partially due to the activation 
of a backbone ammonium group positioned alpha to the ester 
repeating unit.23 In this study, we synthesize and characterize 
the degradation of side-chain ammonium-containing oligo(ser-
ine esters), structural isomers of oligo(serine amides) 4.32 We 
further demonstrate that Ser-CARTs are readily formed (one 
flask) and efficiently deliver mRNA in cultured cells and live 
mice.   
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Scheme 1. mRNA release mechanism of (A) morpholinone-de-
rived CARTs 123 and (B) Ser-CARTs 3.  Both systems utilize ac-
tivated α-amino esters, with oligo(serine esters) rearranging to 
neutral serine-based products via O-N acyl shifts. 

 

To study Ser-CARTs, we developed a polymerization method 
that avoids the control issues and harsh conditions previously 
reported for oligo(serine ester) synthesis.30, 33-37 Our proce-
dure benefits from the commercial availability of the N-trityl-
L-serine lactone monomer (serine lactone) and an organocata-
lytic ring-opening polymerization (OROP)38-43 strategy, utiliz-
ing a thiourea anion catalyst recently developed for the OROP 
of lactones and cyclic carbonates (Fig. 1).44 Specifically, we 
found that the OROP of serine lactone with 1-(3,5-bis-trifluoro-
methyl-phenyl)-3-cyclohexyl-thiourea (TU) and potassium hy-
dride (KH) in the presence of an alcohol initiator proceeds at 
RT in hours to generate trityl-protected poly(serine esters) 5a-
9a with predictable molecular weights (Mn = 7 - 17 kDa) and 
narrow dispersities (Đ  = 1.11 - 1.24) avoiding multimodal dis-
tributions previously reported (Table 1, Supporting Infor-
mation Table S1).35-36 After polymer isolation, trityl groups are 
removed using 1% TFA to yield cationic poly(serine esters) 5b-
9b with no significant decrease in molecular weight, as deter-
mined by end-group analysis (Fig. S1). This facile controlled 
polymerization of serine lactone is noteworthy, as prior re-
ports suggested that β-lactone OROP was inefficient.45-47 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Poly(serine ester) synthesis. 

 

Table 1. Poly(serine ester) characterization.  

 ROH [M]
a 

[M]/ 
[ROH] 

Conv 
(%)b  

DPc,e Mn  

(kD
a)d 

Ð 

5a BnOH 1.0  50 >95% 62 16.7 1.17 

6a BnOH 0.5 50 89% 47 12.6 1.24 

7a BnOH 1.5  50 93% 61 15.6 1.20 

8a BnOH 1.0  20 >95% 20 7.7 1.21 

9a PyOH 1.0  50 >95% 49 15.8 1.21 

Polymerizations run for 4h at RT in toluene. [a]Serine lactone 
concentration (molar). Determined by [b]NMR, [c]NMR end-
group analysis after dialysis, and [d]gel permeation chromatog-
raphy. [e]Degree of polymerization. 

 

As studies indicate that the ring-opening of β-lactones can 
occur by two mechanisms,48 we performed the stoichiometric 
ring-opening of serine lactone with one equivalent of benzyl al-
cohol using the KH/TU catalyst. Analysis of the resulting prod-
uct by HMBC NMR indicates that ring-opening proceeded 
through acylation of benzyl alcohol by the lactone to generate 
the alkoxy-terminated benzyl serine ester, rather than by nu-
cleophilic attack at the β-carbon48 to generate the carboxylate 
(Fig. S2). 

Having developed an effective poly(serine ester) synthesis, 
we next investigated whether they would rearrange at biologi-
cally relevant pH regimes in the absence of an mRNA cargo. 
While uncomplexed poly(serine ester) 9b (DP 47) is stable un-
der its generation conditions, at pH 7.4 it begins degrading in 
minutes, producing in hours the known rearrangement prod-
uct, oligo(serine amide) 4,28-29 and also a previously unre-
ported product, dimerized serine diketopiperazine (DKP, 10) 
as confirmed by NMR and LC-MS (Fig. 2A, Supporting Infor-
mation). Analysis of 9b degradation at pH 7.4 reveals that the 
DKP yield increases over 24 hours resulting in a final yield of 
55% DKP and 45% oligo(serine amides) of various lengths (Fig. 
2B). While prior reports indicated that the   
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Figure 2. A) Proposed rearrangement of poly(serine esters) B) Time-dependent DKP 10 yield when 9b subjected to pH 7.4 buffered 
D2O at RT (■, ●, ▲). 

 

Figure 3. Ser-CART 13b-16b syntheses. 

aqueous degradation of poly(serine esters) generates poly(ser-
ine amides) by a series of O-to-N acyl shifts,28-29 our studies un-
covered DKP as a significant serine-based byproduct. 

We propose that the degradation of poly(serine esters) to 
generate DKP 10 follows a charge-altering mechanism (Fig. 2A) 
related to that proposed for the degradation of morpholinone-
based poly(α-amino esters) (Fig. S3) but now involving a pri-
mary side-chain amine.23, 28-29 For pH values at which some of 
the pendant ammonium groups are deprotonated, nucleophilic 
attack of the resultant primary amine on an adjacent H-bond 
activated ester carbonyl (5-membered O-N acyl shift) would 
generate an amide and contract the polymer backbone, posi-
tioning the proximal amine for a 6-membered O-N acyl shift to 
liberate DKP. Importantly, formation of the expected oligo(ser-
ine amide) 4 and the newly observed DKP 10 provide charge-
altering transformations from cationic α-amino esters to neu-
tral β-hydroxyamides critical for CART-mediated mRNA com-
plexation, delivery, and release.23 

Having shown that uncomplexed poly(serine esters) de-
grade to neutral products, we explored the use of Ser-CARTs 
for polyanion complexation and delivery,  focusing on mRNA. 
As lipid domains are vital in polyanion delivery vehicles,10, 24, 49-

53 we generated a series of amphiphilic diblock co-oligomers 
comprised of a dodecyl-(C12) or oleyl-(C18) modified oligocar-
bonate sequence and a cationic oligo(serine ester) sequence 
from carbonate monomer 11 or 12 and serine lactone, respec-
tively, using our thiourea anion catalyst system. Co-oligomers 
13a-16a (R’=dodecyl: n=10, m=15; n=10, m=17; n=19, m=17, 
R’=oleyl: n=15, m=38) were synthesized by a straightforward 
three-component, step economical (one-flask) procedure using 
alcohol initiators (Fig. 3, Table S2). Deprotection of 13a-16a 
with 1% TFA afforded cationic Ser-CARTs 13b-16b.  

To assess the efficacy of Ser-CARTs for mRNA delivery and 
expression, we investigated the transfection of cultured cells 
using Ser-CARTs complexed with mRNA encoding green 

fluorescent protein (EGFP) and analyzed by flow cytometry the 
total fluorescence and percentage of cells transfected. Notably, 
mRNA/Ser-CART polyplexes are produced by simple mixing of 
mRNA with Ser-CARTs. To optimize the in vitro formulation, we 
screened charge ratios of 5:1 to 100:1 (cation:anion (+/-)) us-
ing dodecyl-Ser-CART 13b formulated with EGFP mRNA for de-
livery into HeLa cells. The highest fluorescence was observed 
at a 50:1(+/-) charge ratio in serum-free conditions and the in-
tracellular EGFP expression was confirmed by confocal and flu-
orescence microscopy (Fig. S4-6). Using this charge ratio, we 
compared EGFP mRNA delivery using Ser-CART 13b to com-
mercial transfection reagent Lipofectamine 2000 (L2000), as a 
positive control, and to naked EGFP mRNA. Significantly, 13b-
mediated EGFP mRNA delivery resulted in highly efficient 
(>95%) transfection in multiple cell lines (HeLa, CHO-K1, Raw-
Blue), markedly outperforming L2000 (55-71% transfection) 
(Fig. 4A). The transfection efficiency of 13b is consistent with 
that of morpholinone-based CARTs 1, highlighting the im-
portance of the charge-altering block for mRNA delivery (Fig. 
S7). Additionally, greater fluorescence was observed with 13b-
mediated EGFP mRNA delivery than with L2000-mediated de-
livery in HeLa cells (Fig. 4B). Ser-CART 14b also exhibited 
>95% transfection for EGFP mRNA delivery in HeLa cells, sug-
gesting that the initiator does not significantly influence trans-
fection, as pyrene butanol was used for 13b and benzyl alcohol 
for 14b (Fig. 4C). In contrast to dodecyl-Ser-CARTs 13b and 
14b, lower transfection levels were observed with more lipid-
rich 15b. Oleyl-Ser-CART 16b also resulted in >95% transfec-
tion.  Ser-CARTs retain these high transfection efficiencies 
when stored (0oC) under nitrogen (Fig. S8). Notably, formula-
tion of EGFP mRNA with poly(serine ester)47 9b or DKP 10 re-
sulted in negligible fluorescence (Fig. S9). Importantly, DKP 10 
was non-toxic at concentrations up to 500 μM in HeLa cells (Fig. 
S10). 
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Figure 4. Delivery of mRNA/Ser-CARTs in vitro and in vivo. 
mRNA/Ser-CARTs formulated at a 50:1(+/-) ratio unless spec-
ified. A) Percent transfection of HeLa, CHO-K1, or Raw-Blue 
(RAW) cells using L2000 or EGFP mRNA/13b.a B) Histogram of 
HeLa cells treated with naked EGFP mRNA, L2000, or 
mRNA/13b. C) Percent transfection of HeLa cells treated with 
EGFP mRNA/13b-16b.a D) Cy5-labeled-mRNA/13b uptake 
into HeLa cells after 1h incubation at 4°C or 37°C.a  Representa-
tive bioluminescence images of mice 7h post E) IM injection 
with fLuc mRNA/13b at a 10:1(+/-) (left, n=4) or 50:1(+/-) 
(right, n=2) ratio, or F) IV injection with fLuc mRNA/14b (left, 
n=4), fLuc mRNA/16b (middle, n=3), both at a 10:1(+/-) ratio, 
or naked fLuc mRNA (right, n=1). aAverage of ≥3 experiments. 
Error bars represent ±SD. **p<0.0004, *p<0.05  

 

We next explored the temperature-dependent uptake of Ser-
CARTs. HeLa cells treated with Cy5-labeled-mRNA/13b at 4°C 
resulted in 70% reduction in Cy5-fluorescence relative to cells 
incubated at 37°C, indicating mainly endocytic uptake of the 
polyplexes as 4°C incubation inhibits endocytosis (Fig. 4D).54   

Analysis of the EGFP mRNA/Ser-CART polyplexes by dy-
namic light scattering indicated a hydrodynamic diameter of 
<190 nm (dodecyl-based 13b: ~154 nm; oleyl-based 16b: 
~174 nm), significantly smaller than morpholinone-based 
CARTs (~250 nm) (Table S3).23 Zeta potential measurements 

were used to study the time-dependent surface charge. When 
added to RNAse-free water, mRNA/Ser-CARTs were initially 
positive (mV, 13b: 37 ± 6; 16b: 52 ± 10) but over 1 hour be-
came negative (mV, 13b: -20 ± 7; 16b: -15 ± 5), consistent with 
rearrangement of the cationic oligo(serine ester) block to neu-
tral products (Fig. S11). 

Encouraged by these in vitro studies, we explored the in vivo 
utility of Ser-CARTs for mRNA delivery using two different 
modes of administration in female BALB/c mice. Luciferase 
(fLuc)-coding mRNA was chosen as a model reporter gene 
since luciferase expression can be quantitatively monitored in 
real-time in living mice.55-56 After confirming fLuc mRNA deliv-
ery in vitro (Fig. S12), fLuc mRNA/13b polyplexes were admin-
istered via intramuscular (IM) injection into mice at a 10:1 or 
50:1(+/-) ratio, and expression visualized after 7 hours by bio-
luminescence imaging (Fig. 4E).25 Both conditions resulted in 
protein expression, however, mice treated at the lower 
10:1(+/-) ratio resulted in enhanced luciferase expression (Fig. 
S13). Using the 10:1(+/-) ratio, fLuc mRNA/14b or 16b poly-
plexes administered to mice via intravenous (IV) tail vein injec-
tion resulted in luciferase expression localized in the spleen, a 
target organ for several therapeutic indications (Fig. 4F, S14). 
Importantly, mRNA/Ser-CARTs formulated at the 10:1(+/-) ra-
tio resulted in improved cell viability (78-87% relative to un-
treated HeLa cells) compared to 50:1(+/-) in vitro (Fig. S15).  

In conclusion, mRNA delivery with the readily synthesized 
(one flask) Ser-CARTs results in efficient transfection and high 
protein expression in vitro and in vivo. Further benefit of Ser-
CARTs over first-generation CARTs comes from the degrada-
tion of the oligo(serine ester) block at biological pH into serine 
peptides (oligo(serine amides) and DKP), commercial availa-
bility of the monomer, and smaller size of the polyplexes. The 
accessibility, tunability, effectiveness, and organ selectivity of 
mRNA/Ser-CART polyplexes bode well for their use in biomed-
ical research and therapeutic applications. Furthermore, this 
study establishes the generality of charge-altering architec-
tures for polyanion delivery. We are currently exploring Ser-
CARTs for targeting, co-transfections and clinical indications 
with an initial emphasis on vaccination and immunotherapy.  
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