This article was downloaded by: [University of Tennessee, Knoxville] On: 14 March 2013, At: 01:53 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthesis of Glycerophospholipid Conjugates of Cantharidin and Its Analogues

Zheng-Hong Zhou ^a & Ru-Yu Chen ^a

^a Institute of Elemento-Oganic Chemistry, Nankai University, Tianjin, 300071, China Version of record first published: 04 Dec 2007.

To cite this article: Zheng-Hong Zhou & Ru-Yu Chen (2000): Synthesis of Glycerophospholipid Conjugates of Cantharidin and Its Analogues, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 30:19, 3527-3533

To link to this article: http://dx.doi.org/10.1080/00397910008087266

PLEASE SCROLL DOWN FOR ARTICLE

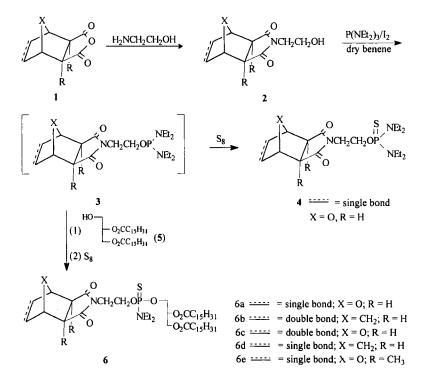
Full terms and conditions of use: <u>http://www.tandfonline.com/page/terms-and-conditions</u>

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF GLYCEROPHOSPHOLIPID CONJUGATES OF CANTHARIDIN AND ITS ANALOGUES

Zheng-hong Zhou* Ru-yu Chen

Institute of Elemento-Oganic Chemistry, Nankai University, Tianjin 300071, China


Abstract: A series of glycerophospholipid conjugates of cantharidin and its analogues were synthesized in a one-pot reaction, using hexaehtyl phosphorus triamide, activated by a catalytic amount of iodine, as the phosphorylating reagent. The structures of the title compounds were confirmed by ¹H NMR, ³¹P NMR, IR and elemental analysis.

Mylabris, the dried body of the Chinese blister beetle, has been used as Chinese medicine for over 2000 years. Its active constituent, cantharidin, has antitumor activities and causes leukocytosis¹. The synthesis of cyclic glycerophospholipid containing cantharidin analogues has so far not been reported in literature. The conjugates of this type are not only new prodrugs of cantharidin antitumor agents but also may generate two cytotoxic groups against different target sites inside a neoplastic cell². Such types of compounds may be of interest in chemistry, biochemistry and pharmacology. This paper deals with the synthesis of glycerophospholipid conjugate of cantharidin and its analogs as new models of phospholipids.

Compound 6a~e were obtained by a one-pot (two-step) reaction from N-hydroxyethyl compound 2 by means of phosphorus triamide, activated by iodine, as a phosphorylating reagent under mild

*To whom correspondence should be addressed

conditions (Scheme 1). Thus the activated phosphorus triamide was reacted with compound 2 in dry benzene on moderate heating $(60-70^{\circ}C)$ to form the intermediate bis(N,N-diethylamido)phosphite (3). This was proved by transformation of 3 to the corresponding thiophosphate derivative (4) by directly adding sulfur to the reaction mixture. The consecutive treatment of the intermediate 3 with an equivalent amount of dipalmitin (5) and sulfur at the same condition for 5h and 30min respectively afforded the title compounds $6a \sim e$, which were isolated by column chromatography. The spectroscopic data of the products were listed in Tables 1 and 2.

EXPERIMENTAL

All melting points were determined on a Yanaco apparatus and they are uncorrected. IR were recorded on a shimadazu-IR435 spectrometer. NMR spectra were measured on a Brucker AC-P200 NMR instrument in CDCl₃ and chemical shifts are expressed as δ units, TMS being used as an

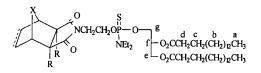


Table 1 ¹H NMR and ³¹P NMR Data of Compounds 6a~e

Compd.	¹ H NMR、 ³¹ P NMR data (δ, J/Hz, CDCl ₃)
6a	0.85(t, 6H, Ha, $J_{H+H}^{3}=5.82$), 1.00(t, 6H, NCH ₂ <u>CH₂</u> , $J_{H+H}^{3}=7.13$), 1.22(s, 48H, Hb), 1.58(m,
	4H, Hc), 1.83(m, 4H, CH ₂ CH ₂), 2.31(t, 4H, Hd, J^{3}_{H-H} =4.27), 2.90(s, 2H, COCH), 3.13(q, 4H, Hd, Hd, Hd, J^{3}_{H-H}=4.27), 2.90(s, 2H, COCH), 3.13(q, 4H, Hd, Hd, Hd, Hd, Hd, Hd, Hd, Hd, Hd, H
	NCH_2CH_3 , J^3_{H-H} =7.43), 3.70(t, 2H, NCH ₂ , J^3_{H-H} =5.81), 3.92(m, 2H, He), 4.09(m, 1H, Hg),
	$4.18(t, 2H, OCH_2, J^3_{H-H}=6.64), 4.30(m, 1H, Hg), 4.67(m, 1H, Hf), 4.83(s, 2H, OCH) $ ³¹ P
	NMR: 77.66
6b	0.85(t, 6H, Ha, $J_{H-H}^{3}=5.84$), 1.03(t, 6H, NCH ₂ <u>CH</u> ₃ , $J_{H-H}^{3}=7.06$), 1.22(s, 48H, Hb), 1.48(m,
	2H, CH ₂ bridge), 1.58(m, 4H, Hc), 2.28(t, 4H, Hd, J^{3}_{H+H} =3.56), 2.69(s, 2H, COCH), 3.14(q,
	4H, NCH_2CH_3 , J^3_{H-H} =7.05), 3.23(s, 2H, bridgehead CH), 3.73(t, 2H, NCH_2 , J^3_{H-H} =5.79),
	$4.00(m, 2H, He), 4.09(m, 1H, Hg), 4.19(t, 2H, OCH_2, J^3_{H-H}=5.30), 4.32(m, 1H, Hg), 4.71 (m, 1H, $
	1H, Hf), $6.25(s, 2H, =CH)$ ³¹ P NMR: 77.31
6c	$0.84(t, \ 6H, \ Ha, J^3_{H \cdot H} = 5.77), \ 1.03(t, \ 6H, \ NCH_2\underline{CH}_3, \ J^3_{H \cdot H} = 7.06), \ 1.22(s, \ 48H, \ Hb), \ 1.58(m,$
	4H, Hc), 2.28(t, 4H, Hd, $J_{H-H}^{3}=6.00$), 2.87(s, 2H, COCH), 3.13(q, 4H, N <u>CH</u> ₂ CH ₃ , J_{H-}^{3}
	$_{\rm H}$ =7.02), 3.70(t, 2H, NCH ₂ , J ³ _{H-H} =5.81), 3.96(m, 2H, He), 4.02(m, 1H, Hg), 4.12(t, 2H,
	OCH ₂ , J ³ _{H-H} =5.44), 4.37(m, 1H, Hg), 4.67(m, 1H, Hf), 5.22(s, 2H, OCH), 6.48(s, 2H, =CH)
	³¹ P NMR: 77.61
6d	$0.85(t, 6H, Ha, J^{3}_{H \cdot H}=5.72), 1.04(t, 6H, NCH_{2}CH_{2}, J^{3}_{H \cdot H}=7.08), 1.22(s, 48H, Hb), 1.65(m, Ha, Ha, Ha, Ha, Ha, Ha, Ha, Ha, Ha, Ha$
	10H, CH ₂ bridge, CH ₂ CH ₂ and Hc), 2.29(t, 4H, Hd, J_{H-H}^{3} =7.01), 2.61(s, 2H, COCH), 2.68(s,
	2H,bridgehead CH), $3.13(q, 4H, NCH_2CH_3, J^3_{H:H}=6.98)$, $3.70(t, 2H, NCH_2, 5.76)$, $3.98(m, 2H, 2H, 2H)$
	2H, He), 4.05(m, 1H, Hg), 4.14(t, 2H, OCH ₂ , J ³ _{H-H} =5.32), 4.31(m, 1H, Hg), 5.21 (m, 1H,
	Hf), 6.25(s, 2H, =CH) ³¹ P NMR: 77.45
6e	0.85(t, 6H, Ha, $J_{H,H}^3$ = 5.87), 1.04(t, 6H, NCH ₂ CH ₂ , $J_{H,H}^3$ = 7.07), 1.15(s, 6H, CH ₂), 1.22(s

6e 0.85(t, 6H, Ha, $J_{H-H}^{3}=5.87$), 1.04(t, 6H, NCH₂CH₂, $J_{H-H}^{3}=7.07$), 1.15(s, 6H, CH₃), 1.22(s, 48H, Hb), 1.60(m, 4H, Hc), 1.71(m, 4H, CH₂CH₂), 2.29(t, 4H, Hd, $J_{H-H}^{3}=7.23$), 3.15(q, 4H, NCH₂CH₃, 7.03), 3.73(t, 2H, NCH₂CH₃, 5.89), 4.00(m, 2H, He), 4.07(m, 1H, Hg), 4.12(t, 2H, OCH₂, $J_{H-H}^{3}=5.45$), 4.33(m, 1H, Hg), 4.52(s, 2H, OCH), 5.22(m, 1H, Hf) ³¹P NMR: 77.28

Compd.	IR (thin film, cm ⁻¹)
6a	2910, 2901, 1772, 1738, 1702, 1463, 1422, 1395, 1330, 1238, 1204, 1160, 946, 884,
	821, 790, 737
6b	2906, 2907, 1770, 1739, 1701, 1462,1 418, 1380, 1324, 1166, 1112, 1023, 995, 949,
	787, 715
6c	2931, 2906, 1737, 1702, 1461, 1453, 1384, 1166, 1102, 1022, 999, 945
6d	3420, 2913, 1774, 1739, 1706, 1464, 1396, 1359, 1332, 1205, 1160, 1107, 1021, 948,
	922, 875, 850, 821, 785, 718
6e	2925, 2904, 1737, 1702, 1463, 1419, 1377, 1335, 1227, 1198, 1163, 1080, 1050, 1022,
	994, 956

Table 2 IR Data of Compound 6a~e

internal standard for ¹H NMR and 85% H₃PO₄ as an external standard for ³¹P NMR spectroscopy. Elemental analysis was carried out with a Yanaco CHNCORDER MT-3 Analyzer. Benzene was distilled from sodium before being used. Petroleum ether refers to a fraction of b.p. 60~90°C. Column chromatography was carried out with silica gel H(10~40 μ m). Hexaethylphosphorus triamide was prepared according to the literature³ and freshly distilled. Compounds 1, except cantharidin, and compound 5 were prepared according to the procedures reported in the literature⁴⁻⁸.

General procedure for the preparation of compound 2

To a solution of compound I in absolute ethanol was added aminoethanol with stirring. The reaction mixture was stirred at room temperature for 0.5 hour and then heated to reflux for 2 hours, cooled to room temperature and placed overnight, the crystal precipitated was gathered by filtering and washed by ethanol to afford compound 2 as white crystal.

N-hydroxyethyl exo-7-oxabycyclo[2.2.1]heptane-2,3-dicarboximide

Yield 78.1%; m.p. 158~159°C; ¹H NMR(δ, DMSO-d₆): 1.61(s, 4H, CH₂CH₂), 3.00(s, 2H, COCH),
3.30(s, 4H, NCH₂CH₂), 4.65(s, 2H, OCH); *N-hydroxyethyl exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboximide*Yield 74.8%; m.p. 145~146°C; ¹H NMR(δ, DMSO-d₆): 1.27(q, 2H, CH₂ bridge), 2.65(s, 2H,
bridgehead CH), 3.07(s, 2H, COCH), 3.43(m, 4H, NCH₂CH₂), 6.29(s, 2H, =CH); *N-hydroxyethyl exo-7-oxabycyclo[2.2.1]hept-5-ene-2,3-dicarboximide*Yield 71.7%; m.p. 135~136°C(dec.); ¹H NMR(δ, DMSO-d₆):2.91(s, 2H, COCH), 3.40(s, 4H,
NCH₂CH₂), 5.11(s, 2H, OCH), 6.54(s, 2H, =CH); *N-hydroxyethyl exo-bicyclo[2.2.1]heptane-2,3-dicarboximide*Yield 83.2%; m.p. 110~111°C; ¹H NMR(δ, DMSO-d₆):1.09(s, CH₂ bridge), 1.27-1.52(m, 4H,
CH₂CH₂), 2.61(s, 2H, bridghead CH), 3.07(s, 2H, COCH), 3.33(s, 4H, NCHCH); *N-hydroxyethyl exo-2,3-dimethyl-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximide*Yield 80.1%; m.p. 62–63°C; ¹H NMR(δ, CDCl₃): 1.11(s, 6H, CH3), 1.74(m, 4H, CH₂CH₂), 2.50(s, 2H, OCH), 4.52(s, 4H, NCH₂CH₂).

Procedure for compound 4

A mixture of iodine (0.1 mmol) and hexaethylphosphorus triamide (2.1 mmol) in anhydrous benzene was stirred at 60~70°C for about 15 min until the reaction mixture became clear. Powdery N-hydroxyethyl exo-7-oxabicyclo[2.2.1]heptane-2,3-dicarboximide (2 mmol) was added and the reaction mixture was continuously stirred at 60~70°C for about 1 hr. Then sulfur (2.1 mmol) was added and the reaction mixture was kept under the same condition for 30 min. The solvent was removed *in vacuo* and the residue was chromatographed on silica gel column eluted with petroleum ether-ethyl acetate (1:1) to afford oily product 0.62g (isolated yield: 74.3%). Rf value: $0.645(V_{petroleum ether}:V_{ethyl acetate}=1:2)$. Anal. Calcd. for C₁₈H₃₂N₃O₄PS: C, 51.78; H, 7.73; N, 10.06. Found: C, 51.92; H, 7.67; N, 9.75. ¹H NMR(δ , CDCl₃): 1.04(t, 12H, CH₂CH₃), 1.58(m, 2H, CH₂CH₂), 1.83(m, 2H, CH₂CH₂), 2.88(s, 2H, COCH), 3.02(q, 8H, <u>CH</u>₂CH₃), 3.71(t, 2H, NCH₂), 3.99(t, 2H, OCH₂), 4.83(s, 2H, OCH).

General procedure for the preparation of compound 6a~e

A mixture of iodine (0.1 mmol) and hexaethylphosphorus triamide (2.1 mmol) in anhydrous benzene was stirred at $60~70^{\circ}$ C for about 15 min until the reaction mixture became clear. Powdery **2** (2 mmol) was added and the reaction mixture was continuously stirred at $60~70^{\circ}$ C for about 1 hr. Then dipalmitin (2 mmol) was added , and the mixture was heated at $60~70^{\circ}$ C for 5 hr. The resultant cyclic phosphite was transformed to thiophosphate (6) by adding sulfur (2.1 mmol) and keeping the reaction mixture at $60~70^{\circ}$ C for 30 min. The solvent was removed *in vacuo* and the residue was chromatographed on silica gel column eluted with petroleum ether-ethyl acetate to afford oily products in pure form.

6a oil, 53.2% isolated yield, Rf value 0.574($V_{petroleum ether}$: $V_{ethyl acetate}$ =2:1). Anal. Calcd. for C₄₉H₈₉N₂O₉PS: C, 64.44; H, 9.82; N, 3.07. Found: C, 63.99; H, 9.96; N, 3.14. **6b** oil, 55.6% isolated yield, Rf value 0.457($V_{petroleum ether}$: $V_{ethyl acetate}$ =4:1). Anal. Calcd. for C₅₀H₈₉N₂O₈PS: C, 66.04; H, 9.87; N, 3.08. Found: C, 66.14; H, 10.08; N, 3.24. **6c** oil, 49.8% isolated yield, Rf value 0.597($V_{petroleum ether}$: $V_{ethyl acetate}$ =2:1). Anal. Calcd. for C₄₉H₈₇N₂O₉PS: C, 64.58; H, 9.62; N, 3.07. Found: C, 64.62; H, 9.65; N, 3.06. **6d** oil, 57.1% isolated yield, Rf value 0.429($V_{petroleum ether}$: $V_{ethyl acetate}$ =4:1). Anal. Calcd. For C₅₀H₉₁N₂O₈PS: C, 65.90; H, 10.07; N, 3.07. Found: C, 66.11; H, 9.81; N, 3.28. **6e** oil, 52.5% isolated yield, Rf value 0.508($V_{petroleum ether}$: $V_{ethyl acetate}$ =3:1). Anal. Calcd. for C₅₁H₉₃N₂O₉PS: C, 65.07; H, 9.96; N, 2.98. Found: C, 65.24; H, 10.10; N, 2.99.

Acknowledgment

We are grateful for the financial support of the National Natural Science Foundation of China (Project 29772018).

References

- 1. Liu G. Y., Zhang B. X., and Li R. X., Acta Pharmaceutical Sinica, 1980, 15(5): 271.
- 2. Matsushita T., Ryu E. K., C. I. Hong et al., Cancer Res., 1981, 41: 2707.
- 3. Burg A. B. and Slota P. J., J. Am. Chem. Soc., 1958, 80: 1107.
- 4. Tian S. L., Li K. Q., Wang Z. Y. et al., Chin. J. Pharm., 1992, 23: 33.
- 5. Liu Y. and Ling Y. Z., Chin. J. Pharm., 1991, 22: 8.
- 6. Diels O. and Alder K., Chem. Ber., 1929, 62: 554.
- 7. Craig D., J. Am. Chem. Soc., 1951, 73: 4889.
- 8. Howe R. J. and Malkin T., J. Chem. Soc., 1951, 2663

Accepted 12/9/99