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Angular-pyridoquinolone and pyridocoumarin derivatives have been efficiently synthesized in 60–95%
yields by molecular iodine-mediated cyclization of easily available starting materials, 6-(N-propar-
gyl)amino quinolone and coumarin derivatives, in the presence of NaHCO3. The reaction was carried
out at room temperature.
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Coumarins fused with heterocycles have received increasing
attention due to their potential biological activities1 and are com-
mon structural motifs in many natural products.2 In particular,
those coumarins fused to pyridines have been reported to possess
antiallergic,3 antidiabetic,4 and analgesic5 properties. On the other
hand, quinolines and their derivatives occur in numerous natural
products and many of them display interesting biological activi-
ties.6 In particular, halogen-containing quinolines are of significant
interest because the halogen atom sometimes plays a determinant
role in the compound’s bioactivity, and such compounds provide
further scope for structural elaboration.7 Nicolaides and co-work-
ers8 reported the synthesis of some angular pyridocoumarins from
the reaction of 8- or 6-quinolinol with triphenylphosphine (PPh3)
and dimethylacetylenedicarboxylate (DMAD). Pyridocoumarin
was synthesized in 14% yield by means of a Skraup reaction, carried
out on 6-nitrocoumarin.9 Recently, radical cyclization10 has become
a useful tool to the synthetic organic chemists for the construction
of C–C bonds. The most useful mediator of radical cyclization is tri-
butyltin hydride. Despite its widespread applicability, the problem
of toxicity and the removal of even a trace of organotin residue from
the product are frequently highlighted as reasons to avoid the tin
reagents.11,12 In our laboratory pyridocoumarin derivatives were
synthesized by palladium-catalyzed intramolecular Heck reac-
tion13a,b as well as organotinhydride-mediated radical cyclization
reaction13c in excellent yields. On the other hand linear-pyrido-
quinoline derivatives have been synthesized by several
ll rights reserved.
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methods14–20 which are expensive as well as multistep reactions.
However, to our knowledge angular-pyridoquinoline derivatives
are not reported. In recent years, iodocyclization has emerged as
an effective protocol in the preparation of a variety of heterocyclic
and carbocyclic compounds.21–26 This chemistry employs iodine
that is cheap and easy to handle. The development of this method-
ology provides an efficient and mild reaction condition which al-
lows easy isolation of the products from the reaction mixture. In
continuation of our interest in the synthesis of nitrogen heterocy-
cles27 and electrophilic iodocyclization strategy28 we have
undertaken a study on the electrophilic cyclization of 6-(N-propar-
gyl)amino quinolone and coumarin derivatives.

The precursors for the iodocyclization reaction, 3a–g were ob-
tained by a two-step approach. The preparation of 2a,b was
achieved by the reaction of 1a,b with propargyl bromide in the
presence of anhydrous K2CO3 and a catalytic amount of NaI in
dry acetone under reflux condition, followed by standard Sono-
gashira coupling reaction29 using p-substituted iodobenzenes.
Other precursors 5a,b were synthesized by the reaction of 6-amino
quinolone 4a and 6-amino coumarin 4b with 1-bromo-2-butyne in
the presence of anhydrous K2CO3 in dry acetone under refluxing
condition and obtained as a 3:1 mixture of compounds 5a,b and
6a,b, respectively (Scheme 1).

When compound 3a30 was subjected to iodocyclization reaction in
the presence of 3 equiv of I2 and 3 equiv of NaHCO3 in CH3CN at room
temperature for 13 h, the 6-endo cyclized dihydropyridoquinolone
derivative 7a31 was formed exclusively in excellent yield. Similarly,
when the substrate 5a was condensed with molecular iodine under
the reaction condition stated above, the pyridoquinolone 9a was
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Scheme 1. Reagents and conditions: (i) propargyl bromide, anhydrous K2CO3, NaI,
dry acetone, reflux, 6 h; (ii) 3 mol % Pd(PPh3)2Cl2, 3 mol % CuI, Et3N, DMF, rt, 2 h; (iii)
anhydrous K2CO3, dry acetone, reflux 3 h.
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Scheme 2. Reagents and conditions: (i) I2, NaHCO3, CH3CN, rt.

Table 1
Optimization of Iodine-mediated reactions

Entry Solvent Base (equiv) I2 (equiv) Time (h) Yielda (%)

1 CH3CN NaHCO3 (3) 1 13 42
2 CH3CN NaHCO3 (3) 1.5 13 60
3 CH3CN NaHCO3 (3) 3 24 90
4b CH3CN NaHCO3 (3) 3 13 92
5 CH3CN NaHCO3 (3) 5 13 88
6 CH3CN NaHCO3 (1) 3 13 45
7 CH3CN — 3 13 NRc

8 CH3CN K2CO3 (3) 3 13 59
9 CH2Cl2 NaHCO3 (3) 3 13 38

10 CH3OH NaHCO3 (3) 3 13 42

a Isolated yield.
b Optimized reaction condition.
c NR indicates no reaction.
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obtained. The formation of the product 9a, supports the 6-endo mode
of cyclization (Scheme 2).

To standardize the reaction condition a series of experiments
were performed with or without the base (NaHCO3/K2CO3) and
varying amounts of molecular iodine in different solvents, such
as CH3CN, CH3OH, and CH2Cl2. The substrate 3a was used as a rep-
resentative for this standardization and the results are summarized
in Table 1.

When the substrate 3a was reacted with 3 equiv of I2 and
3 equiv of NaHCO3 in CH3CN (5 mL) at room temperature for
13 h, a 92% isolated yield of the product 7a was obtained. Solvents,
like CH2Cl2 and CH3OH resulted in lower yields of the products.
Reducing the amount of I2 from 3 equiv to 1.5 equiv and 1 equiv
afforded the compound 7a in 60% and 42% yields, respectively.
Increase in the amount of iodine from 3 equiv to 5 equiv did not
improve the yield. Increasing the reaction time from 13 h to 24 h
and longer also did not improve the yield of the cyclized product.
The presence of a base proved to be important for the reaction.
The reaction does not occur without a base. The effect of K2CO3

as a base was also investigated. However, it provided a drastically
lower yield of the cyclized product 7a than that when NaHCO3 was
used. Based on the above optimization efforts, the combination of
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3 equiv of I2, 3 equiv of NaHCO3, and the use of CH3CN as the
solvent at room temperature afford the best result.

To test the generality of the reaction, compounds 3a–g and 5a,b
were subjected to the molecular iodine-mediated cyclization at
optimized reaction condition to afford the cyclized products 7a–g
and 9a,b in 60–95% yields. An introduction of a substituent at
the terminal position of the alkyne part has a considerable effect
on the yield of the reaction. Substituents were first introduced onto
the aromatic ring attached to the alkyne. Electron-donating groups,
like Me and OMe in the para position, gave good yields while an
electron-withdrawing group, a Cl group, gave relatively poor yield
of 60%. The results are summarized in Table 2.

The reaction is believed to proceed28c via initial formation of an
iodonium intermediate by attack of the electrophile on the triple
bond, followed by nucleophilic attack of the aromatic p-electrons
on the activated triple bond. Loss of a proton from the intermediate
11 in the presence of NaHCO3 may give the 7,8-dihydropyridoqui-
nolone and pyridocoumarin derivatives 7 (Scheme 3). In case of the
substrates 5a,b, initially formed 7,8-dihydro derivatives 13a,b
might have got oxidized in the presence of I2 to afford the pyr-
idoquinolone 9a and pyridocoumarin 9b derivatives, respectively.

Linear-pyridoquinoline derivatives have been synthesized by
several methods14–20 which are expensive as well as multistep
reactions but angular-pyridoquinoline derivatives are not reported.
On the other hand, different methods including transition metal-
catalyzed reactions are available13 for the formation of the pyrido-
coumarin derivatives. However, organotin-mediated protocols
suffer from toxicity11 as well as separation problems12 and
palladium-mediated reactions need high temperature.13a,b In this
regard the iodine-mediated protocol seems to be superior to the
above methods as this involves very simple reaction conditions
and occurs at room temperature.

In conclusion we have developed an easy and efficient method
for the synthesis of angularly fused pyridoquinolone and pyrido-
coumarin derivatives with potential bioactivity. The reaction con-
dition is mild, and the products are easily isolable in good to
excellent yields. Moreover an iodine atom is introduced in the final
product which offers scope for further functionalization.
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