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Abstract: Human neutrophil elastase (HNE) is a serine protease that degrades matrix proteins. An 

excess of HNE may trigger several pathological conditions, such as psoriasis. In this work, we aimed 

to synthesize, characterize and formulate new HNE inhibitors with a 4-oxo-β-lactam scaffold with 

less toxicity, as well as therapeutic index in a psoriasis context. HNE inhibitors with 4-oxo-β-lactam 

scaffolds were synthesized and characterized by NMR, FTIR, melting point, mass spectrometry and 

elemental analysis. In vitro cytotoxicity and serine protease assays were performed. The compound 

with the highest cell viability (AAN-16) was selected to be incorporated in an emulsion (AAN-16 E) 

and in a microemulsion (AAN-16 ME). Formulations were characterized in terms of organoleptic 

properties, pH, rheology, droplet size distribution, in vitro drug release and in vivo psoriatic 

activity. All compounds were successfully synthesized according to analytical methodology, with 

good yields. Both formulations presented suitable physicochemical properties. AAN-16 E presented 

the most promising therapeutic effects in a murine model of psoriasis. Overall, new HNE inhibitors 

were synthesized with high and selective activity and incorporated into topical emulsions with 

potential to treat psoriasis. 

Keywords: human neutrophil elastase inhibitors; emulsions; microemulsions; psoriasis; topical 

application 

 

1. Introduction 

Psoriasis is a chronic inflammatory skin disease that affects at least 100 million individuals 

worldwide. It is characterized by red, scaly and erythematous plaques that can be scattered over the 

entire surface of the body or on a specific area, including the scalp, nails and joints. Psoriasis is 

considered a non-communicable disease with no cure, and it may progressively worsen with age, 

depending on the degree of severity [1–3]. The causes of psoriasis are not totally understood, but its 

pathogenesis is associated with genetic and epigenetic modifications that can be triggered by 

environmental factors [2,4]. Neutrophil chemokines, such as CXCL1, CXCL2 and CXCL8/IL-8, are 

usually present in psoriatic skin [5,6]. 

Despite the effort to find biologic drugs for the treatment of moderate to severe plaque type 

psoriasis based on the imunopathogenesis of the disease, the current treatment of psoriasis is mostly 

based on control of symptoms. Currently, phototherapy (ultraviolet light), systemic and topical 

therapies using corticosteroids, vitamin D analogous, retinoids and dithranol are commonly used 

[3,4,7]. Nevertheless, these therapies have numerous disadvantages. Therefore, it is extremely 
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important to keep searching for new alternatives and discover new active compounds that may be 

able to manage this disease. 

Human neutrophil elastase (HNE) is a serine protease with a single polypeptide chain that 

belongs to the elastase-like serine proteases subfamily, being stored and secreted from 

polymorphonuclear neutrophils [8–11]. Its activity depends on a catalytic triad consisting of Ser195, 

His57 and Asp102, which are all at the active site of the enzyme [10,12,13]. 

In terms of biological function, HNE has bactericidal, tissue preservative and restorative 

properties. Moreover, HNE is also involved in inflammation. In a normal inflammatory process, 

neutrophils release a high concentration of HNE to the extracellular medium, where this enzyme can 

modulate the immune response through degradation of pro-inflammatory cytokines, reducing the 

intensity of the inflammation [13–15]. However, if an imbalance between HNE and its endogenous 

inhibitors occurs during this process, the extracellular HNE in excess can degrade structural proteins 

of the extracellular matrix, like elastin, proteoglycan, collagen and fibronectin. Hereupon, the excess 

of HNE may trigger several pathological conditions and tissue injuries inducing chronic 

inflammatory diseases, such as psoriasis and cystic fibrosis, among others. 

Accordingly, HNE is a valuable therapeutic target, and the design of new HNE inhibitors able 

to modulate the proteolytic activity of HNE represents a promising approach for psoriasis, where 

there is an excess in the production of this serine protease [12]. 

Under physiological conditions, endogenous HNE inhibitors tightly regulate their activity, 

avoiding degradation of connective tissue proteins [12,14]. These inhibitors can belong to two 

different families depending on their tissue location—the serpins and the chelonianins [14,16]—and 

can be categorized into non-covalent and covalent inhibitors, as well as reversible or irreversible 

inhibitors [10,17,18]. It is worthy pointing out that elafin, one of the HNE inhibitors, was the first to 

be isolated from the skin of psoriatic patients. This inhibitor has a second-order constant association 

of 5 × 106 M−1.s−1 and is considered a potent reversible inhibitor of this enzyme [14,19]. Over the years, 

numerous HNE inhibitors such as 4-oxo-β-lactams, benzoxazinones, diazo compounds or 

haloketones have been developed [9,20,21]. In this context, it is necessary to consider not only the size 

and chemical nature of the structure, to decide the route of administration, but also the enzyme 

selectivity and appropriate pharmacokinetic and pharmacodynamic properties [14,18]. Synthetic 

HNE inhibitors need to have some peptide character to act as effective drugs, since binding of an 

aliphatic amino acid side chain in the S1 pocket is more favored. Notwithstanding, peptides usually 

present chemical instability, poor pharmacological profile and low bioavailability. These properties 

could be improved when low molecular weight drugs are synthesized (≤500 Da) and physicochemical 

properties (log P = 2–3, ionization, etc.), drug concentration and diffusion through the skin are 

optimized [18,22]. 

Recent studies showed that the structure of β-lactam inhibitors allows a great improvement on 

the rate of serine acylation since they increase the intrinsic chemical reactivity, when compared to 

other compounds [10,15,23]. The synthesis of new compounds with a β-lactam structure, such as 

azetidine-2,4-diones, also known as 4-oxo-β-lactams, were demonstrated to be a very potent and 

selective class of HNE acylating agents (Scheme 1). The structure-activity relationship (SAR) studies 

performed by Mulchande, J. et al. [24] showed that substituents at C-3 of the four-membered ring are 

very important for the potency of this inhibitor. Furthermore, these studies indicated that a diethyl 

substitution in the 4-oxo-β-lactam scaffold, along with N-phenyl derivatization of this structure, 

selectively improved the activity against HNE [24]. Accordingly, previous studies reported by our 

group [24–26] also showed that these compounds could be quite promising regarding the inhibition 

of serine proteases. In particular, ER143 (1) [21] showed high potency and selectivity for HNE but it 

presented poor solubility and cell viability when tested in immortalized human keratinocyte (HaCaT) 

cells [21]. Thus, these new HNE inhibitors were synthesized as an elaboration of ER143 (1) (3,3-

diethyl-1-(4-(((2-oxo-2H-chromen-7-yl)oxy)methyl)phenyl)-azetidine-2,4-dione), as reported in 

Scheme 1, previously synthesized by our research group [21], and was used as a control [10,15,23]. 
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Scheme 1. Reaction between HNE and ER143 (1). 

Topical delivery systems are used to vehiculate active substances across the skin barrier, 

affecting not only the drug potency, but also the acceptability by the patient [27]. There are several 

types of topical pharmaceutical forms, including creams, gels, ointments, pastes, etc. Emulsions are 

thermodynamically unstable systems composed of two immiscible liquids (water and oil) stabilized 

by surfactants that reduce the interfacial tension between those phases. The nature of the emulsion is 

influenced by the water and oil ratio, the type and geometry of the surfactant used in the formulation 

and the manufacturing process. Emulsions require a certain amount of energy, thus, rotor stators are 

commonly used in the production of emulsions allowing the dispersion of the droplets [28–30]. 

Over time, the droplets, through Brownian movement, tend to collide with each other to reduce 

the interfacial area. Consequently, coalescence will occur and continue until full phase separation 

and the minimum free energy (equilibrium) are reached. For this reason, emulsions are one of the 

most difficult and complex systems in the pharmaceutical field to develop and stabilize, requiring 

expertise knowledge and experience [29,30]. To prepare emulsions with the shelf life stability 

required for a pharmaceutical product (1–3 + years), the correct choice of surfactants, co-surfactants, 

fatty alcohols, polymers (steric stabilization) or solid particles (Pickering emulsions), among other 

excipients, must be made [29,31]. 

Microemulsions are considered to be dispersed colloidal systems consisting of two liquid phases 

and with a clear and translucid macroscopic aspect mainly due to their reduced droplet size. These 

formulations differ from emulsions in many aspects, such as macroscopic appearance, particle size, 

stability, formation and composition [32,33]. In addition to the components mentioned above, 

microemulsions further require a higher content of surfactant and a co-surfactant, usually a low 

molecular weight alcohol, which may compromise their safety [33–35]. The formation process of 

microemulsions is significantly easier since they form spontaneously (almost zero interfacial tension) 

without the need for high energy input. In practice, only gentle agitation is required [29,33,34], which 

makes these systems quite attractive for the industrial field. 

In this work, the synthesis and full characterization of new HNE inhibitors with 4-oxo-β-lactam 

scaffolds and less toxicity are reported. After compound selection, two different topical forms are 

developed as O/W emulsions and microemulsions further characterized in terms of physicochemical 

properties, in vitro drug release and in vivo antipsoriatic activity. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Synthesis of HNE Inhibitors 

All reagents and solvents were purchased from Sigma-Aldrich (Munich, Germany), Alfa Aesar 

(Heysham, Lancashire, UK) and TCI (Zwijndrecht, Belgium) and used without further purification. 

Dichloromethane (DCM) and acetone were dried by distillation from calcium hydride and potassium 

carbonate, respectively. 
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2.1.2. Formulation of HNE Inhibitor Loaded Emulsion and HNE Inhibitor Loaded Microemulsion 

In this study, the AAN-16 (compound 16) was incorporated in an O/W emulsion and in a 

microemulsion named “AAN-16 E” and “AAN-16 ME”, respectively. 

In AAN-16 E, glycerin (Quimidroga, Portugal) was used as a humectant and methylparaben and 

propylparaben (Nipagin™ M Sodium and Nipasol M Sodium™, Clariant, Muttenz, Switzerland) as 

preservatives. In addition, hydrogenated lecithin (and) C12-16 alcohols (and) palmitic acid 

(Biophilic™ H MB, IFF Lucas Meyer Cosmetics, Quebec City, QC, Canada), caprylic/capric 

triglycerides (Tegosoft® CT, Evonik, Essen, Germany), C10-18 triglycerides (Lipocire™ A SG, 

Gattefossé, Saint-Priest, France), isopropyl myristate (Tegosoft® M, Evonik, Essen, Germany), oleic 

acid (Sigma-Aldrich, Munich, Germany), alpha bisabolol (Esperis, Milan, Italy), cetyl alcohol (DS 

produtos químicos, Cascais, Portugal) were also added to AAN-16 E. On the other hand, C21-C28 

alkane (Emosmart ™ C28, Seppic ™, La Garenne-Colombes, France), a plant-based and renewable 

C15-19 alkane oil (Emogreen ™ L15, Seppic ™, La Garenne-Colombes, France) and caprylic/capric 

triglycerides (Tegosoft® CT, Evonik, Essen, Germany) were added to AAN-16 ME. In addition, PEG-

20 glyceryl triisostearate (Cithrol™ 10GTIS, Croda Inc, Snaith, UK) was used as surfactant and 

propylene glycol (Mosselman, Ghlin, Belgium) as humectant and co-surfactant, and finally, 

methylparaben and propylparaben (Clariant, Muttenz, Switzerland) were used as preservatives. 

Purified water was obtained by inverse osmosis (Millipore, Elix® 3, Merck, Darmstadt, Germany). 

2.2. Methods 

2.2.1. Synthesis and Characterization of HNE Inhibitors 

The HNE inhibitors were synthesized according to the literature [21,24,26]. The synthesized 

compounds were characterized by NMR techniques, FTIR and mass spectrometry, elemental analysis 

and melting point as described in the Supplementary Materials. 

Chemical reactions were followed by thin layer chromatography (TLC) using Merck aluminium 

backed sheets coated with 60 F254 silica gel and visualized under a UV lamp or revealed using iodine, 

potassium permanganate and vanillin. Compound purification was obtained by flash 

chromatography using silica gel (0.040–0.063 mm) from Merck (Darmstadt, Germany). 

NMR experiments were performed on a Bruker 300 ultra-Shield (Bruker, Massachusetts, NE, 

USA) (1H 300 MHz; 13C 75 MHz) in chloroform-d or acetone-d6. All chemical shifts (δ) were quoted 

in ppm scale and coupling constants (J) in Hz, and multiplicity was described with the following 

abbreviations: s = singlet, d = doublet, t = triplet, m = multiplet. 

FTIR spectra were obtained using a IRAffinity-1 (Shimadzu, Kyoto, Japan). Each compound was 

previously blended with potassium bromide and pressed with a hydraulic press until a pellet was 

formed. 

Melting points (m.p.) were determined using a Bock-Monoscop (Kofler, Berlin, Germany). 

The Log P was predicted using the ALOGPS 2.1 program [36]. 

2.2.2. Biological Assays of Synthesized HNE Inhibitors 

Enzymatic Inhibition Assays and In Vitro Cytotoxicity 

Fluorometric assays for HNE inhibition activity were conducted as previously described [37]. 

Briefly, the assays were carried out in 200 µL assay buffer (0.1 M HEPES pH 7.5 at 25 °C) containing 

20 µL of 0.17 µM HNE in assay buffer, 155 µL of assay buffer and 5 µL of each concentration of the 

tested inhibitors. The reaction was initiated by the addition of 20 µL of fluorogenic substrate at 200 

µM (MeO-Suc-Ala-Ala-Pro-Val-AMC), and the inhibition activity was monitored for 30 min at 25 °C 

on a microplate reader (FLUOstar Omega; BMG Labtech, Baden-Württemberg, Germany) (excitation 

wavelength 380 nm and emission 460 nm). Inhibitor stock solutions were prepared in DMSO. 

Controls were performed as follows: (1) enzyme; (2) substrate; (3) enzyme with DMSO and (4) 

positive control with Sivelestat sodium salt hydrate. Assays were performed in triplicate and 
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presented as log of inhibitor concentrations versus the percentage of activity. IC50 values were 

determined by non-linear regression analysis in GraphPad PRISM® 5 software. 

Compounds 1, 16 and 17 were evaluated for their ability to inhibit other human serine proteases, 

namely trypsin, chymotrypsin, urokinase and kallikrein in 200 µL reaction volumes at 25 °C, as 

follows: 0.05 M Tris-HCl and 0.138 M NaCl at pH 8.0, 30 or 2 nM human pancreas of each protease 

and kallikrein respectively, and 50 or 100 µM substrate (Z-Gly-Gly-Arg-AMC.HCl for trypsine; Suc-

Ala-Ala-Pro-Phe-7-amino-4-methylcoumarin for chymotrypsin; Z-Gly-Gly-Arg-AMC.HCl for 

urokinase; H-Pro-Phe-Arg-AMC acetate salt for kallikrein, from Bachem, Switzerland). 

For all serine proteases, the activity was measured at excitation and emission wavelengths of 

360 nm and 460 nm, respectively, in a microplate reader (FLUOstar Omega, BMG Labtech, Germany). 

The IC50 was determined by non-linear regression as previously published [37]. 

The cell viability was evaluated with the endpoint MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl- 2H-tetrazolium bromide, Sigma Aldrich) assay performed on a human keratinocyte cell 

line, HaCaT (Cell line Service GmbH, Eppelheim, Germany) [38]. These cells were seeded in sterile 

flat bottom 96 well tissue culture plates in RPMI culture medium, supplemented with 10% FBS, 100 

units of penicillin G (sodium salt), 100 µg of streptomycin sulfate and 2 mM L-glutamine and 

incubated at 37 °C and 5% CO2. 

Cell viability was assessed after 24 h of incubation of HaCaT cells with 50 µM concentration of 

each sample. DMSO diluted in culture medium was the negative control, whereas sodium dodecyl 

sulfate at 1.0 mg/mL was the positive one. After exposure, the culture medium was replaced by 

medium containing 0.5 mg/mL MTT. The cells were further incubated for 3 h. After removing the 

media, the intracellular formazan crystals were solubilized and extracted with DMSO. After 15 min 

at room temperature, the absorbance was measured at 570 nm in a microplate reader (FLUOstar 

Omega). The cell viability (%) compared to control cells was calculated by [Absorbance] 

sample/[Absorbance]control × 100, culture medium with the same amount of DMSO as the samples 

used as control. 

2.2.3. HNE Inhibitor Topical Formulations and Characterization Studies 

Solubility Studies 

According to biological studies of synthesized HNE inhibitors, the selected compound to 

incorporate in final pharmaceutical formulations was compound 16 (2-((4-(3,3-diethyl-2,4-

dioxoazetidin-1-yl)benzyl)thio)-N-(3-((7nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino)propyl)benzo[d]oxazole-5-

carboxamide). To perform the solubility studies, the oily phases of AAN-16 ME and AANN-16 E were 

both saturated with 1 mg of compound 16 under stirring at room temperature. The solubility was 

measured by a fluorescence method (excitation 380 nm; emission 460 nm) at 25 °C on a microplate 

reader (FLUOstar Omega, BMG Labtech GmbH, Germany). 

Preparation of HNE Inhibitor Loaded Emulsion and HNE Inhibitor Loaded Emulsion 

Microemulsion 

The AAN-16 E was prepared by a hot method (80 °C), adding the oily phase previously melted, 

where the compound 16 was dissolved, to the aqueous phase under stirring using an Ultra Turrax® 

(IKA® T25 Digital, Staufen, Germany) at 7000 rpm for 1 min. On the other hand, the AAN-16 ME was 

prepared by dissolving the compound 16 in the oily phase with subsequent addition of the aqueous 

phase under stirring with a glass rod at room temperature. All formulations were carried out using 

a digital scale (VWR, Portugal) and their composition is shown in Table 1. 
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Table 1. Qualitative and quantitative composition of formulations. 

Disperse Phase Ingredients (INCI) 
Formulations (%, w/w) 

AAN-16 EAAN-16 ME 

Aqueous phase 

Water 72.79 5.97 

Hydrogenated lecithin (and) C12-16 

alcohols (and) palmitic acid 
6.00 - 

Glycerin 5.00 - 

PEG-20 glyceryl triisostearate - 40.27 

Propylene glycol - 5.97 

Methylparaben 0.18 0.11 

Propylparaben 0.02 0.01 

Oily Phase 

Caprylic/capric triglycerides 2.50 15.90 

C15-19 alkane - 15.90 

C21-C28 alkane - 15.90 

C10–18 triglycerides 4.00 - 

Isopropyl myristate 5.00 - 

Oleic acid 1.00 - 

Alpha bisabolol 1.00 - 

Cetyl alcohol 2.50 - 

Compound 16 0.01 0.01 

The composition of both emulsions and microemulsions was selected by taking previous studies 

performed by our group into account (data not shown). In those studies, several topical delivery 

systems (emulsions and microemulsions) were developed, optimized and characterized. Different 

humectants and preservatives were studied as well as the influence of different concentrations of 

cetyl alcohol on the final properties of the O/W emulsions. Oils containing different carbon chains 

were incorporated into microemulsions to mimic the skin lipid layer. At the end, the formulations 

with the most suitable physicochemical and sensorial properties and higher stability were chosen. 

Characterization Studies of HNE Inhibitor Loaded Emulsion and HNE Inhibitor Loaded 

Microemulsion 

The pH values were determined at room temperature using a potentiometer (Mettler Toledo, 

Columbus, OH, USA) 24 h after the production of each formulation. 

To test the physical stability of AAN-16 E, an accelerated stability test based on centrifugation 

(Heraeus Sepatech, Hanau, Germany) for 10 min at 3000 rpm was used. 

The AAN-16 ME physical stability was evaluated by observing the macroscopic appearance 

(translucent or opaque) of each formulation immediately after preparation. 

The rheological characteristics of the formulations were examined at high shear rates using a 

continuous shear technique and oscillation technique in the viscoelastic region. These experiments 

were performed with a controlled stress Kinexus Lab+ Rheometer (Malvern, UK) using cone 

geometry (truncated cone angle 4° and radius 40 mm). All measurements were performed at room 

temperature. The shear rate method was carried out using a destructive measurement, where the 

shear stress of each formulation was obtained by increasing the shear rate from 0.1 s−1 to 100 s−1 and 

using 8 samples per decade. First, in the oscillatory method, an amplitude sweep test was performed 

where the shear strain ranged between 0.01 and 100 Hz, and the frequency was set at 1 Hz. Then, a 

frequency sweep test was performed with a shear strain of 0.1 and 5% for AAN-16 E and AAN-16 

ME respectively, and a frequency range between 0.01 and 10 Hz. Ten samples per decade were 

evaluated in each method. 

The mean droplet sizes of emulsions and microemulsions were determined using Malvern 

Mastersizer (with Hydro 2000S module) and Malvern Zetasizer Nano (Kassel, Germany), 

respectively. 
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To visualize the internal structure of AAN-16 E, an optical fluorescence microscope with video 

camera (Bresser, Rhede, Germany) was used. 

In Vitro Release Studies 

In vitro release studies were performed using vertical Franz diffusion cells (receptor volume: 4 

mL, release area: 1 cm2) with synthetic membranes (Tuffryn® 0.45 µm, hydrophilic polysulfone 

membrane filter; Pall Corporation (East Hills, NY, USA)) and silicone membranes (Sil-Tec, reff 500-2, 

0.002”; Technical Products Inc. of Georgia (Lawrenceville, GA, USA). The samples were evenly 

applied (0.2 to 0.4 g of formulation correspondent to 0.02 to 0.04 mg of compound (16) on the surface 

of the membrane in the donor compartment, and sealed with Parafilm® (Bemis Company, Inc, 

Neenah, WI, USA) to prevent water evaporation. Water:ethanol (50:50 w/w) with 2.5% of PEG-40 

Hydrogenated Castor Oil was used as a receptor phase (approx. solubility: 0.39 mg/mL). The study 

was performed for 6 h at 32–37 °C under stirring, and each sample was collected (200 µL) with an 

interval of one hour. The amount of compound 16 released was analyzed as previously described on 

a Fluorescence Microplate Reader FLUOstar Omega (BMG Labtech GmbH, Germany), and the data 

was expressed as the cumulative released drug amount as a function of time. The data obtained was 

computed using DDSolver [39] (Excel-plugin module) and fitted to different kinetic models, such as: 

zero order, first order, the Higuchi model and the Korsmeyer–Peppas model [40,41]. 

In Vivo Antipsoriatic Activity 

The experiments were conducted using female BALB/c mice at 6 weeks of age provided by 

Charles River Laboratories (Écully, France). Animals were housed in polypropylene cages at ambient 

temperature (20–24 °C), relative humidity (55 ± 5%), 12 h’ light/dark cycle and given standard diet 

and water ad libitum. All animal experiments were performed according to the animal welfare organ 

of the Faculty of Pharmacy, University Lisbon, approved by the competent national authority 

(Direção-Geral de Alimentação e Veterinária—DGAV) and in accordance with the EU Directive 

(2010/63/EU), the Portuguese laws (DL 113/2013, 2880/2015, 260/2016 and 1/2019) and all relevant 

legislation. 

The in vivo studies regarding the imiquimod (IMQ)-induced psoriasis-like inflammation model 

were performed according to Pivetta et al. [42]. The psoriasis-inflammation evaluation criteria were 

assessed, based on the clinical Psoriasis Area and Severity Index (PASI), as previously described [42]. 

Erythema, scaling and thickening were scored from 0 to 4 (0: none; 1: slight; 2: moderate; 3: marked; 

4: very marked). In the first day, all mice were shaved in the dorsum and kept in individual cages 

throughout the experiment. Animals were randomly selected, and five groups of animals were tested: 

 Group 1 (n = 5) was treated with 60 mg of Dermovate® (GSK, Algés, Portugal) (containing 0.05% 

clobetasol propionate) as a positive control of inflammation inhibition; 

 Group 2 (n = 4) was treated with 60 mg of emulsion placebo; 

 Group 3 (n = 4) was treated with 60 mg of microemulsion placebo; 

 Group 4 (n = 5) was treated with 60 mg of AAN-16 E; 

 Group 5 (n = 5) was treated with 60 mg of AAN-16 ME; 

 Group 6 (n = 2) was used for control of non-induced and non-treated skin. 

All tested formulations were spread over the mice back skin with a spatula in an average amount 

of 26.7 mg/cm2. The two placebo formulations were used as control, since they present the same 

composition of AAN-16 E and AAN-16 ME, without any active compound. Five hours after the 

treatment, 60 mg of Aldara® cream (Meda AB, Solna, Sweden) containing 5% of imiquimod was 

applied on the back skin. This treatment lasted for 5 consecutive days. Apart from the 1st day, the 

animals were always subjected to daily visual inspection and measurement of body weight and skin 

thickness, which was measured in the application zone using a digital calliper (Fisherbrand, 

Leicestershire, UK). On the 6th day, the mice were sacrificed, and their dorsal skin exposed to the test 

compounds was preserved in a 10% formalin solution and sent for histopathological analysis. The 

psoriasis-inflammation evaluation criteria were assessed according to the clinical Psoriasis Area and 
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Severity Index (PASI) as previously described [42]. Erythema, scaling and thickening were scored 

from 0 to 4 (0: none; 1: slight; 2: moderate; 3: marked; 4: very marked). 

Formalin-fixed tissues were trimmed into longitudinal sections. Samples were then paraffin-

embedded, sectioned at 4 µm and stained with heamtoxylin and eosin. Lesions were evaluated by a 

pathologist blinded to experimental groups. Measurements were performed in slides digitally 

scanned in the NanoZoomerSQ with NDP.view2 software (Hamamatsu, Japan) corresponding to the 

mean value obtained from 7 to 12 different points for epidermis and dermis layers. 

2.2.4. Statistical Analysis 

One-way analysis of variance (ANOVA) and the Tukey–Kramer post-hoc multiple comparison 

test was used to identify the significant differences between the groups, and were performed using 

GraphPad PRISM® 5 software. An alpha error of 5% was chosen to set the significance level. Results 

were expressed as mean ± standard deviation. 

3. Results and Discussion 

3.1. Synthesis of 4-oxo-β-Lactams 

4-oxo-β-lactams, and in particular ER143 (1), showed high potency and selectivity for HNE. 

However, they presented some toxicity when tested in HaCaT cells. To improve efficacy and decrease 

cytotoxicity, we synthesized additional analogues of ER143 (1) with varied physicochemical 

properties. As depicted in Scheme 2, the 4-oxo-β-lactam core was synthesized by reaction of 

diethylmalonyl dichloride with an appropriate aniline. The target compound 6 was prepared through 

radical bromination of intermediate 5 using NBS and benzoyl peroxide. Compound 8 was 

synthesized by a cyclization reaction between aniline 7 and diethylmalonyl dichloride, and 

subsequently, debenzylated using a palladium and hydrogen atmosphere to yield the carboxylic acid 

derivative compound 9. 

 

Scheme 2. Synthesis of compound 6, 8 and 9. Reagents and conditions: (i) p-toluidine, NEt3, DCM, r.t; 

(ii) NBS, benzoyl peroxide, ACN, reflux; (iii) Intermediate 7, NEt3, DCM, r.t; (iv) H2, Pd/C, MeOH. 

To improve solubility of compound 6, derivative 12 was synthesized as follows (Scheme 3). The 

carboxylic acid derivative 12 was prepared as depicted in Scheme 3, starting with the cyclization 

reaction between 3-amino-4-hydroxybenzoic acid 10 and potassium ethyl xanthate to form the 

benzoxazole 11, which then reacted with compound 6 in the presence of potassium carbonate to 

obtain the target compound 12. 
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Scheme 3. Synthesis of compound 12. Reagent and conditions: (i) KS2COEt, EtOH:H2O (6:1), reflux; 

(ii) K2CO3, acetone, 20min.; (iii) Intermediate 6, acetone, reflux. 

To allow identification and quantification of 4-oxo-β-lactams in biological assays, a synthetic 

scheme was devised to incorporate a fluorophore in inhibitors 9 and 12 (Scheme 4). First, intermediate 

14 was synthesized by reacting amine 13 with NBD-Cl. Removal of the Boc protecting group with 

trifluoroacetic acid in dry dichloromethane yielded intermediate 15, which was then converted to 

compounds 16 and 17, by an amide coupling reaction with 12 and 9, respectively, in the presence of 

TBTU and DIPEA. Compounds 6, 8, 9, 12, 16 and 17 were fully characterized by 1H and 13C-NMR and 

mass spectrometry. 

 

Scheme 4. Synthesis of compound 16 and 17. Reagents and conditions: (i) NBD-Cl, MeOH, r.t; (ii) 

TFA; (iii) Compound 12, TBTU, DIPEA, DCM, 0 °C; (iv) Compound 9, TBTU, DIPEA, DCM, 0 °C 

ER143 (1) was also synthesized as described elsewhere [21] to be used as a control. 

3.2. Biological Assays of Synthesized HNE Inhibitors 

Enzymatic Inhibition Assays and In Vitro Cytotoxicity 

To understand the activity of synthesized compounds against HNE, enzymatic inhibition assays 

were assessed as shown in Table 2. 
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Table 2. Enzymatic inhibition assays. 

Compounds Structure IC50 ± SD (nM) 

6 

 

0.64 ± 0.03 

ER 143 (1) 

 

0.42 ± 0.09 

8 

 

0.96 ± 0.13 

9 

 

14.71 ± 5.55 

12 

 

0.38 ± 0.05 

By analyzing these data, 4-oxo-β-lactam was revealed to be essential for this activity, as IC50 

values were obtained at a sub-nanomolar range, except for compound 9. Thus, it was possible to 

confirm the importance of the β-lactam ring in the structure of these molecules, allowing a great 

improvement on the rate of serine acylation, as confirmed in [26]. 

From these results, none of the synthesized compounds with the oxo-β-lactam moiety could be 

excluded, and thus a cell viability assay was carried out with HaCat cells to choose the compounds. 

All compounds presented lower cell viability than the negative control (DMSO), except 

compounds 9 and 12 (>50%) (Figure 1). The lower cell viability of compound 6 might be due to the 

presence of a bromine atom that is described as potentially cytotoxic, causing a decrease in cell 

viability [43]. Compound 8 showed the lowest cell viability among all compounds. The only 

difference with compound 9 was the presence of an ester group which improved the cytotoxicity. 

 

Figure 1. Cell viability assay at 50 µM concentration of compounds ER143 (1), 6, 8, 9 and 12 in HaCaT 

cells for 24 h of exposition time. 

Due to optimal inhibition activity against HNE and good cell viability of compounds 9 and 12, 

fluorescent derivatives were also synthesized (compounds 17 and 16, respectively) for the posterior 
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These new compounds also showed enzymatic activity against HNE at the sub-nanomolar range 

(Table 3). It is also important to notice that compound 17 showed a higher activity than the parent 

compound 9. 

Since these new derivatives presented very similar activities, further studies of specificity were 

performed to select the best compound. In this study (Table 3), different enzymes were used, such as: 

trypsin, chymotrypsin, urokinase and kallikrein. 

All the enzymes tested belong to the serine protease group, thus allowing evaluation if the 

compounds act only on HNE or other enzymes of the same group. The results showed that the tested 

compounds were specific for enzyme inhibition at a higher range like the control ER143 (1). In other 

words, due to the high potency of these compounds, only a small amount was required to reveal 

activity against HNE (Table 3) which was not sufficient to act on other enzymes of the same class. 

Table 3. Results of enzymatic inhibition and specificity assays for compounds 16 and 17. Compound 

ER143 (1) was used as reference. 

Compounds Structure 

IC50 ± SD 

(nM) 
IC

50 ± SD (µM) 

HNE Trypsin Chymotrypsin Urokinase Kallikrein 

ER143 (1) 

 

0.42 ± 0.09 >1 >8 >50 >8 

16 

 

0.85 ± 0.10 >1 >1 >2 >5 

17 

 

0.64 ± 0.03 >1 >0.5 >2 >3 

Compound 17 was more cytotoxic (38% of cell viability) than compound 9 (80% of cell viability), 

and both had higher cell viability than compound ER143 (1) (15% of cell viability) (Figure 2). 

Nevertheless, compound 16 showed a cell viability (%) comparable to the negative control. Thus, this 

compound was selected to be incorporated into the topical formulations. 

 

Figure 2. Cell viability assay at 50 µM concentration of fluorescent compounds ER143 (1), 16 and 17 

in HaCaT cells for 24 h of exposition time. 
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3.3. HNE Inhibitor Loaded Emulsion and HNE Inhibitor Loaded Microemulsion 

3.3.1. Solubility Studies 

According to previous results, compound 16 (AAN-16) was selected to be incorporated in an 

O/W emulsion (AAN-16 E) and in a microemulsion (AAN-16 ME). 

The results showed that 0.1 mg/g of compound 16 was the maximum drug concentration 

solubilized in both oil blends, composed by caprylic/capric triglycerides, C15-19 alkane and C21-C28 

alkane oils for AAN-16 ME and caprylic/capric triglycerides and isopropyl myristate for AANN-16 

E. Therefore, these formulations were prepared at the same concentration of active compound (0.1 

mg/g of formulation). 

These final formulations were fully characterized as described below. 

3.3.2. Characterization Studies of AAN-16 Loaded Emulsion and AAN-16 Loaded Microemulsion 

AAN-16 E revealed a yellow and opaque appearance with some consistency unlike the AAN-16 

ME corresponding to a clear and homogenous formulation with liquid appearance. 

AAN-16 E and AAN-16 ME presented a pH of 6.7 and 7.5, respectively. These values were 

appropriate for topical application, respecting the physiological pH according to the literature [44,45]. 

Comparing with the pH obtained in placebos, there were no significant changes. 

The rheological characterization was performed by continuous shear and oscillation 

experiments. AAN-16 E had a much higher viscosity (182.5 Pa.s) than AAN-16 ME (0.05 Pa.s) at the 

same shear rate (at 0.1 s−1), as supposed for these systems. These values remained constant without 

any significant differences, when compared with placebos for both formulations. 

In addition, AAN-16 ME was a Newtonian fluid in which viscosity does not change when a 

shear rate is applied, whereas AAN-16 E was a shear-thinning fluid characterized by a viscosity 

decrease with increasing shear rate owing to the orientation of the molecules in the structure [46,47]. 

These results were in agreement with placebo studies that others had reported [29,34,48–51]. 

Figure 3 represents the oscillatory frequency study, in which the system response is measured 

as a function of frequency with constant shear strain. From these results, it is possible to obtain the 

storage modulus (G’) (elastic component) and the loss modulus (G’’) (viscous component) in which 

the energy lost is reflected [52]. 

 

Figure 3. Oscillatory results of (a) AAN-16 E and (b) AAN-16 ME. 

In this case, the values of the elastic modulus of AAN-16 E overcame the values of the viscosity 

modulus (G’ > G’’) and the loss tangent values were lower than 1 [52], indicating a solid-like behavior 

with a strong network. In this structure type, the molecules are more bound (e.g., by Van der Walls 

interactions) and organized than in liquids, but less than in solids. On the contrary, the elastic 

modulus of AAN-16 ME was lower than the viscous modulus (G’ < G’’) and the loss tangent values 

were lower than 1, thus presenting a liquid-like structure with a weak and easily disturbed network. 

As a consequence, these formulations presented a suitable spreadability. 

The d(50) for AAN-16 E was 23.52 µm with a span of 5.028, while AAN-16 ME presented a d(50) 

of 9.92 nm with a Pdi of 0.834. The droplet size obtained here was also concordant with the literature 
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related to these pharmaceutical forms [29,34,51]. Although AAN-16 ME had droplets in the nano 

range, the Pdi value was high, indicating heterogeneity of droplet size within AAN-16 ME, or, 

probably a bicontinuous system. Microemulsions typically exist in the form of micellar and 

bicontinuous structures. However, it is very complex and difficult to characterize these systems at 

the molecular level. 

Fluorescence microscopy was used to visualize the internal structure of these formulations with 

compound 16 (Figure 4). 

 

Figure 4. The inside structure of AAN-16 E (a) and emulsions’ placebo (b) using a fluorescence 

microscope. 

It was only possible to observe the emulsion (E) droplets due to the respective size. In the AAN-

16 E, it was possible to observe the drug both dispersed and dissolved in the formulation, as shown 

in Figure 4. Thus, the formulation droplets were fluorescent owing to this labeled compound. 

3.3.3. In Vitro Release Studies 

In vitro AAN-16 release studies were performed in both final formulations using Franz Cells 

with a synthetic membrane (Tuffryn®) (Figure 5). 

 

Figure 5. Drug release studies of AAN-16 E and AAN-16 ME using a synthetic membrane (Tuffryn®). 

Results expressed as average ± SD, n = 6. 

After 6 h, the amount of the compound 16 released was different, i.e., 7.2 ± 2.1 µg/cm2 and 3.3 ± 

1.2 µg/cm2 for AAN-16 E and AAN-16 ME, respectively. The emulsion released a higher amount of 

drug than the microemulsion, despite the higher bulk viscosity of the AAN-16 E. In fact, the structure 

of vehicles plays an important role in the release of the active compound [53]. 
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Regarding drug properties, compound 16 is mainly lipophilic (log P (predicted) = 4.68), 

uncharged and with a high molecular weight (M = 643.68 g.mol−1), thus its diffusion into the receptor 

aqueous phase could be compromised. 

AAN-16 E and AAN-16 ME present a structure type with aqueous and occlusive lipidic phases. 

It was further noted that AAN-16 was dissolved in the oily phase of the microemulsion, while it was 

both dispersed and dissolved in the emulsion. 

AAN-16 E is an O/W emulsion, where the drug is incorporated in the internal phase of the 

formulation. To reach the membrane and the receptor phase, the compound needs to pass through 

the structure of the external aqueous phase. 

The diffusivity of compound 16 in the formulations was an inverse function of the surfactant 

concentration. In addition, several studies [54–56] indicate that drug flow is inversely proportional 

to the amount of surfactant. 

Diffusion was the drug release mechanism for both formulations, where the Higuchi (R2ajusted = 

0.934 ± 0.029) and First order models (R2ajusted = 0.784 ± 0.069) could be applied for AAN-16 E and 

AAN-16 ME, respectively. Finally, no drug was detected in the receptor phase when a silicone 

membrane was used. 

The use of synthetic membranes is useful in quality assurance, but it does not represent how a 

formulation will behave once applied on skin. Many drugs developed for the topical treatment of 

skin disease are poorly water-soluble and difficult to formulate. Thus, certain strategies can be used. 

For example, AAN 16 was composed by permeation enhancers (isopropyl myristate, propylene 

glycol and oleic acid) and 6% emulsifiers (hydrogenated lecithin (and) C12-16 alcohols (and) palmitic 

acid), which may affect the solubility and/or interact with the membrane used [34,53,57]. 

Consequently, AAN-16 E exhibited higher drug release over time when compared to AAN-16 ME 

formulated with 40% of a non-ionic surfactant (PEG-20 glyceryl triisostearate). 

3.3.4. In Vivo Antipsoriatic Activity 

The imiquimod (IMQ)-induced psoriasis-like inflammation model was used in this study to 

evaluate the antipsoriatic activity of AAN-16 E and AAN-16 ME topically applied. In this model, 

stratum corneum disturbance by imiquimod dramatically promotes the cutaneous drug absorption 

[58]. After treatment with test compounds and commercial corticosteroid control, several parameters 

were assessed as erythema, scaling, and skin thickness (Figure 6). 

 

Figure 6. Results of the in vivo antipsoriatic activity: erythema, scaling and skin thickness of mice 

challenged with imiquimod (IMQ) and treated with each formulation (Dermovate®, AAN-16 E and 

emulsion placebo). Score 0–4 (none to marked). Results expressed as average ± SD. 
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Mice treated with AAN-16 E and placebo obtained similar and higher scores, for all parameters 

in opposition to the results of the positive control group (treated with Dermovate® containing 

clobetasol propionate). Unexpectedly, mice exposed to AAN-16 ME had to be sacrificed within 5 days 

of application due to the presence of physiological and behavioral signs of distress (humane 

endpoints). In addition, it was not possible to verify any significant difference between 

microemulsions’ placebo and AAN-16 ME. 

IMQ-induced psoriasis-like model is a commonly used model to test antipsoriatic drugs. In 

BALB/c mice, IMQ topical application induces psoriasis-like dermatitis mediated via the IL-23/IL-17 

axis [59]. However, in mice, this model causes not only plaque psoriasis, but also systemic disease 

comprising more severe symptoms, like anorexia, malaise, and pain [60]. These severe systemic 

features are usually only observed in non-treated animals in contrast to animals treated with 

antipsoriatic drugs, like clobetasol propionate cream (Dermovate®—Figure 6), which show 

amelioration in the development of IMQ-induced psoriasis-like signs. In this study, we treated mice 

with ME-based formulations containing approximately 40% (w/w) of PEG-20 glyceryl triisostearate. 

This compound is considered safe for cosmetic use, being favorably used as a penetration enhancer 

[61]. Surfactants have effects on the permeability of several biological membranes including skin 

mainly due to their potential to solubilize lipids within the stratum corneum. Some authors tested 

the cytotoxicity and inflammation potency of several surfactants on reconstructed human epidermis 

tissues, and concluded that PEG ethers appeared to be more toxic than PEG esters. The results also 

revealed the mildness of polyoxyethylene sorbitan esters independently of their alkyl chain length 

[62]. Frequently, the cleansing and leave-on products contain up to 20% and 5% PEG-20 glyceryl 

triisostearate, respectively [61]. Considering the results obtained in this work, we are convinced that 

the exacerbated systemic effects observed in mice treated with ME-based formulations are related to 

the enhanced IMQ transdermal absorption and not to the in vivo toxicity of ME-based formulation 

per se. 

Figure 7 shows the histopathology results of mice skin previously exposed to imiquimod, and 

thereafter, to Dermovate®, emulsion placebo and AAN-16 E. 

 

Figure 7. Representative microphotographs of skin (dorsum) of mice previously (a) treated with 

Dermovate®; (b) emulsion placebo; (c) AAN-16 E. Changes were characterized by epidermal 

hyperplasia (black arrowhead), and focally extensive inflammation expanding the dermis (white 

arrowhead). Hematoxylin and eosin stain. Original magnification, 10× (bar, 250 µm). 

Histopathological changes were evaluated by means of epidermal and dermal thickness. 

Through the present study, it could be observed (Figure 7b,c) that the skin changes were 

characterized by diffuse epidermal hyperplasia resulting in increased thickness (73.91 µm and 63.48 

µm for AAN-16 E and emulsion placebo, respectively) of the Malpighian layer (highlighted with a 

black arrow, Figure 7c,d), which is composed of stratum basale and stratum spinosum. A focally 

extensive minimal to mild inflammation expanding the dermis (237.13 µm and 204.79 µm for AAN-

16 E and emulsion placebo, respectively) was observed promoting a diffuse thickening (highlighted 

with a white arrow, Figure 7). In this inflammation model, the infiltrates corresponded to a mixed 
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cell population with a marked mononuclear-cell component. It is important to notice that the edema 

was minimal, and no changes were found in the untreated animals (data not show). 

Therefore, the results are in accordance with the literature [42,59,63,64], where the application 

of IMQ causes epidermal hyperplasia resulting in increased thickness. Comparing the visual score of 

the emulsion placebo and AAN-16 E it is not possible to find a significant difference between these 

two groups. In other studies, using the same animal model, higher scores were obtained for the 

different parameters evaluated when placebo formulations were tested (negative control groups) 

[42,59,64,65]. In this study, even if it is not possible to distinguish between the AAN-16 E and the 

placebo results, both by visual score or by histology analysis, the results do not show high severity 

on skin lesions if compared to the data presented in the literature. Further studies are required to 

clarify the role of the placebo emulsion and its components on the inflammation control. 

4. Conclusions 

From the results presented in this work, we can conclude that these new synthesized inhibitors 

showed high in vitro activity and selectivity against HNE, constituting promising scaffolds. 

According to biological assays, only two compounds were selected (9 and 12), to synthesize new ones 

(16 and 17) with fluorescence labeling. As compound 16 presented higher cell viability, it was chosen 

to be further incorporated into topical emulsion and microemulsion formulations (AAN-16 E and 

AAN-16 ME, respectively). The in vitro AAN-16 release studies showed a great dependence on the 

formulation type. In particular, a higher release rate was obtained for emulsion compared to 

microemulsion. 

Finally, according to in vivo antipsoriatic activity data, no significant differences between the 

placebo and AAN-16 E were observed. Moreover, results obtained for the tested formulations were 

not equivalent or superior to those of the reference formulation (Dermovate®), indicating that the 

therapeutic effect was not detected in this model. Consequently, future in vivo studies will provide 

a clarification of the mechanism of action of this compound among others within this scaffold. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, the characterization of 

all compounds is presented in the Supplementary Materials. 
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