Iodine-Catalyzed Selective Synthesis of 2-Sulfanylphenols *via* Oxidative Aromatization of Cyclohexanones and Disulfides

Wenlei Ge,^a Xun Zhu,^{b,*} and Yunyang Wei^{a,*}

^a School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China

Fax: (+86)-25-8431-7078; e-mail: ywei@mail.njust.edu.cn

^b Department of Chemical Engineering, Yancheng Textile Vocational Technology College, Yancheng, People's Republic of China

E-mail: xunzhu246@126.com

Received: June 5, 2013; Revised: July 27, 2013; Published online: ■ ■ 1,0000

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201300493.

Abstract: Iodine-catalyzed intermolecular dehydrogenative aromatizations of six-membered cyclohexanones for the selective synthesis of 2-sulfanylphenols have been developed. Both aryl and alkyl disulfides can be used as sulfanylation reagents to give the desired products in good yields under the optimized reaction conditions. The catalytic reaction uses dimethyl sulfoxide or oxygen as the terminal ox-

idant and avoids the use of transition metal catalysts. In addition, α -sulfanyl enones could also be obtained *via* an iodine-catalyzed oxidative system from simple cyclic ketones using dimethyl sulfoxide as the oxidant.

Keywords: cyclic ketones; dehydrogenation; iodine; phenols; sulfanylation

Introduction

Aromatic thioethers exists in a variety of natural products and synthetic drugs. Among thioether derivatives, 2-sulfanylphenols play a significant role in biologically and pharmaceutically active molecules and drugs.^[1] Within these molecules, the thioether functionality confers particular properties to the phenol ring. Phenols are also key intermediates of attractive reactive substances in organic synthesis.

Over the past decades, a large number of methods has been developed for the synthesis of aromatic thioethers from a wide range of aromatic moieties and sulfur-containing reagents.^[2] Nevertheless, procedures for the formation of a C-S bond at the ortho position of phenols are still rare,^[3] among which the most direct and applicable procedures are the transition metal-catalyzed cross-coupling reactions [Eq. (1), Scheme 1].^[4] An alternative method was reported by Takaki and co-workers, who found that 2-sulfanylphenols could be synthesized by sulfanylation of phenols using a stoichiometric amount of FeCl₃ under an oxygen atmosphere [Eq. (2), Scheme 1].^[5] Mixtures of ortho- and para-substituted thioethers of phenols can be obtained under these Friedel-Crafts conditions. A third interesting approach involves an Ullmann-type C-S bond cross-coupling step between aryl halides

and aryl thiols and selective hydroxylation of aryl thioethers to form 2-sulfanylphenols [Eq. (3), Scheme 1].^[6] All these approaches require aromatic substrates in the presence of metal catalysts.

In recent years, the preparation of phenols, anilines and aryl ethers from non-aromatic substrates was described *via* dehydrogenation pathways.^[7] In 2011, Stahl and co-workers reported a palladium(II)-catalyzed conversion of substituted cyclohexanones to the corresponding enones and phenols *via* successive dehydrogenation of two saturated carbon-carbon bonds of the six-membered ring with using molecular oxygen as hydrogen acceptor.^[7c,d] In 2012, a coppercatalyzed methodology for the synthesis of aromatic ethers through oxidative condensation of alcohols and 2-cyclohexenones was reported by Li and co-workers.^[7e] With the development of green chemistry, molecular iodine has played a valuable role in modern organic synthesis especially for *sp*³ C–H bond functionalization.^[8]

The development of efficient and convenient synthetic approaches toward known molecules is highly desirable. In our continuous work on the C–S, C–N, and C–O bond forming reactions,^[9] an iodine-catalyzed aerobic dehydrogenative aromatization was developed for the synthesis of 2-sulfanylphenols with non-aromatic ketones and disulfides [Eq. (4),

```
Adv. Synth. Catal. 0000, 000, 0-0
```

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

WILEY CONLINE LIBRARY

Scheme 1. Strategies for the synthesis of 2-sulfanylphenols.

Scheme 1]. Aryl disulfides can be easily transformed to 2-arylthiophenols with the additive of 0.5 equiv. of PTSA using DMSO as oxidant. 2-Alkylthiophenols can be obtained in the presence of 2 equiv. of NBS and the reaction may proceed *via* the formation of an activated sulfur-containing intermediate, *N*-sulfanyl-succinimide, followed by α -sulfanylation of cyclic ketones and oxidative aromatization.

Results and Discussion

At first, we started our studies by reacting cyclohexanone with diphenyl disulfide in the presence of 10 mol% of iodine and 0.5 equiv. of PTSA in the solvent CH₃CN at 80°C under air or oxygen atmosphere. However, the product 2-(phenylthio)phenol (3a) was detected only in 16% yield under oxygen atmosphere after 12 h reaction (Table 1, entries 1 and 2). Several kinds of solvents were tested and it was found that the yield of the product could not be improved under catalysisby iodine with O₂ as oxidant (Table 1, entries 3–7). When 5 equiv. of DMSO were added as oxidant, we were delighted to find that product 3a was obtained in 64% yield after column chromatography (Table 1, entry 8). Subsequently, several oxidants such as H₂O₂, TBHP and Oxone were tested for the reaction and it was found that the reaction could only proceed well using DMSO as oxidant (Table 1, entries 9–11). DMSO was further tested as both solvent and oxidant to optimize the reaction conditions, which gave a slightly higher yield in **3a** of 76% (Table 1, entry 12). Reducing the dosage of iodine catalyst to 5 mol% could improve the yield of **3a** to 89% while reducing the amount of PTSA could improve the yield of **4a** to 25% (Table 1, entries 13 and 14). To our delight, the by-product **4a** could be obtained in 86% without using PTSA as the additive (Table 1, entry 15). Based on this result, other additives such as HCl, NH₄Cl and TfOH, were screened for the reaction (Table 1, entries 16–18). However, they showed slightly lower activity compared to PTSA.

Using the optimized reaction conditions mentioned above, a variety of cyclic ketones and aryl disulfides was tested to determine the scope and limitations of the method. The results listed in Table 2 demonstrated that most of the aryl disulfides 2 tested underwent smooth transformation to afford the corresponding 2sulfanylphenols 3 in good to excellent yields (Table 2, **3a-c**). To our surprise, cyclic ketones bearing a phenyl group gave 2-sulfanylphenols in high yield due to the fact that the phenyl group could increase the electron density of the cyclic ketone (Table 2, **3d-f**), wherein, cyclic ketones bearing alkyl groups may give moderate yields under optimized reaction conditions

 Table 1. Optimization of reaction conditions for the sulfanylation of enones.^[a]

Entry	Solvent	[O] (equiv.)	Additive	Yield [%] ^[b]	
5				3a -	4a
1	CH ₃ CN	air	PTSA	<5	< 5
2	CH ₃ CN	O_2	PTSA	16	0
3	DMC	O_2	PTSA	< 5	0
4	DCE	O_2	PTSA	< 5	0
5	<i>i</i> -PrOH	O_2	PTSA	11	0
6	toluene	O_2	PTSA	< 5	< 5
7	EtOAc	O_2	PTSA	9	0
8	CH ₃ CN	DMSO (5)	PTSA	64	< 5
9	CH ₃ CN	$H_2O_2(3)$	PTSA	12	0
10	CH ₃ CN	TBHP (3)	PTSA	15	0
11	CH ₃ CN	Oxone (3)	_	23	0
12	DMSO	-	PTSA	76	15
13 ^[d]	DMSO	_	PTSA	89 (88 ^[c])	trace
14 ^[d,e]	DMSO	_	PTSA	61	25
15 ^[d]	DMSO	_	-	< 5	86
16 ^[d]	DMSO	_	HCl	63	0
17 ^[d]	DMSO	_	NH ₄ Cl	32	45
18 ^[d]	DMSO	-	TfOH	69	0

[a] *Reaction conditions:* 1a (1.2 mmol), 2a (0.5 mmol), catalyst (10 mol%), additive (0.5 mmol), solvent (2 mL), 12 h, 80 °C, in a 25-mL sealed tube.

^[b] Yield of isolated product after column chromatography.

^[c] Under an N₂ atmosphere.

- ^[d] 0.05 mmol iodine were used.
- ^[e] 0.2 mmol PTSA were used.

(Table 2, **3g-h**). Dibenzyl disulfide was converted to 2-(benzylthio)phenol in low yield while no product was detected from the reaction between dialkyl disulfides and cyclic ketones (Table 2, **3i**, **3k**). Under the optimized conditions, diphenyl diselenide was well tolerated and the product 2-(phenylselanyl)phenol was obtained in 75% yield (Table 2, **3j**).

In order to gain further understanding of our present work and research how the possible product can be formed under the optimized conditions, a number of cyclic ketone substrates was screened to test the yield of α -sulfanyl enones.^[10] The results are listed in Table 3 and α -sulfanyl enones 4 could be obtained in good yields from most of the aryl disulfides (Table 3, entries 4a–e). However, 2-(4-nitrophenylsulfanyl)-cyclohexanone (4f) was obtained in relatively low yield when 4-nitrophenyl disulfide (2f) was used as sulfanylation reagent under normal conditions. Further dehy-

[a] Reaction conditions: 1 (1.2 mmol), 2 (0.5 mmol), catalyst (0.05 mmol, 5 mol%), PTSA (0.5 mmol), DMSO (2 mL), 80°C, 12 h, in a 25-mL sealed tube.

^[b] Yield of isolated product after column chromatography.

^[c] 0.1 mmol (10 mol%) iodine was used.

drogenation of **4f** cannot proceed under the present reaction conditions because the deactivated sulfur is not sufficiently reactive to react with iodine (Table 3, **4f**). The reactions of cyclic ketones with a variety of aryl disulfides coupling partners proceeded in high yields (Table 3, **4g–1**). To our delight, a diselenide can also be converted to the desired product **4m** under normal conditions in high yield (Table 3, **4m**). Based on these results, we proposed that an electrophilic species RS⁺ may be formed. An electron-withdrawing group attached to R would be unfavorable for the formation of these species.

Under the optimized reaction conditions mentioned above, dialkyl disulfides could not be transformed to 2-sulfanylphenols *via* this iodine-catalyzed oxidative system with DMSO as oxidant and PTSA as additive due to the fact that an electrophilic species AlkylS⁺ could not be formed with the aid of iodine catalyst. Thus, a further exploration was performed using *N*sulfanylsuccinimide reagent formed *in situ* as sulfurcontaining reagent.

Adv. Synth. Catal. 0000, 000, 0-0

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

3

Table 3. Sulfanylation of enones with aryl disulfides.^[a]

[a] Reaction conditions: 1 (1.2 mmol), 2 (0.5 mmol), catalyst (5 mol%), DMSO (2 mL), 12 h, in a 25 mL sealed tube.
 [b] Yield of isolated product after column chromatography

^[b] Yield of isolated product after column chromatography.

To begin our study, the reaction of cyclohexanone and dipropyl disulfide in the presence of 2 equiv. of NBS was explored in the CH₃CN at 80°C under an oxygen atmosphere. We were delighted to find that the product, 2-(propylthio)phenol (3k), was obtained in 15% yield after column chromatography. Encouraged by this result, the reaction was optimized and the results are summarized in Table 4. The yield of **3k** could be increased to 37% by addition of 0.5 equiv. of Et₃N (Table 4, entries 1 and 2). The yield of 3k was further increased to 61% in the presence of 0.1 equiv. of I₂. Based on these results, several kinds of solvents were then tested and the highest yield of 79% was obtained when the reaction was carried out in DMF (Table 4, entry 7). Increasing the dosage of NBS to 3 equiv. or of Et₃N to 1 equiv. led to decreases of the yield of 3k to 53% or 59%, respectively (Table 4, entries 8 and 9). Reducing the dosage of iodine to **Table 4.** Optimization of reaction conditions for transitionmetal-free sulfanylation of phenols.^[a]

[a] Reaction conditions: 1a (1.2 mmol), 2h (0.5 mmol), catalyst (0.05 mmol, 5 mol%), NBS (2 mmol), solvent (2 mL), 80°C, 12 h, in a 25-mL sealed tube under O₂ atmosphere.

- ^[b] Yield of isolated product after column chromatography.
- ^[c] Under an N_2 atmosphere.
- ^[d] 3 mmol NBS were used.
- ^[e] 2 mmol NIS were used instead of NBS.
- ^[f] 2 mmol NCS were used instead of NBS.

5 mol% led to an increase of the yield of $3\mathbf{k}$ to 87% (Table 4, entry 10). Under an N₂ atmosphere only 23% of $3\mathbf{a}$ was isolated (Table 4, entry 10). Bases such as K₂CO₃, KF and pyridine were screened to optimize the reaction conditions, which showed that Et₃N was the more efficient (Table 4, entries 11–13). When using other reagents, for instance, NIS or NCS, instead of NBS, or other iodine-containing non-metal catalysts, such as I₂O₅, TBAI or NaI, instead of I₂, no product $3\mathbf{k}$ was detected (Table 4, entries 14–18).

Having optimized the reaction conditions, a variety of non-aromatic ketones and disulfides was tested to determine the scope and limitations of the method. The results listed in Table 5 demonstrated that the alkyl and benzyl disulfides 2 tested underwent smooth transformation to afford the corresponding 2-sulfanylphenols 3 in high yields (Table 5, 3i, 3k-m). Cyclohexanones bearing aryl groups were easily transformed to the desired products under optimized conditions (Table 5, 3n). To our delight, diaryl disulfides also reacted well under the optimized reaction conditions

asc.wiley-vch.de

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Table 5. Iodine-catalyzed aerobic oxidative synthesis of 2-sulfanylphenols under the optimum conditions.^[a,b]

^[a] Reaction conditions: 1 (1.2 mmol), 2 (0.5 mmol), catalyst (0.05 mmol, 5 mol%), NBS (2 mmol), solvent (2 mL), 80 °C, 12 h, in a 25-mL sealed tube under an O₂ atmosphere.

(Table 5, **3a–d**, **g**, **h**). Diphenyl diselenide reacted well under the optimized conditions and the product 2-(phenylselanyl)phenol was obtained in 73% yield (Table 5, **3n**).

To explore the catalytic mechanism, some blank and parallel experiments were carried out and the results are listed in Scheme 2. No product was detected when cyclohex-2-enone was used as the ketone partner under normal conditions [Eq. (5), Scheme 2]. α -(Phenylthio)cyclohex-2-enone cannot be converted to 2-(phenylthio)phenol in the presence of PTSA alone [Eq. (6), Scheme 2] while α -(phenylthio)cyclohexanone can be easily transformed to 2-(phenylthio)phenol in 88% yield catalyzed by iodine with PTSA as additive [Eq. (7), Scheme 2]. These results illustrated that the sulfanylation of cyclic ketones occurred as the first step in this reaction followed by dehydrogenation to the final product. With the aid of NBS in DMF, dipropyl disulfide could be easily transformed intermediate 1-(propylthio)pyrrolidine-2,5-dione to

(5a) in high yield [Eq. (8), Scheme 2]. The dehydrogenative product could be obtained in good yield from non-aromatic ketones *via* one-pot two-step procedure [Eq. (9), Scheme 2].

Based on the results obtained above, an iodine-catalyzed oxidative system was proposed to explain the reaction mechanism (Scheme 3). Aryl disulfide reacts with I_2 to form an electrophic species ArylSI (M2).^[11] which reacts with intermediate M1 obtained from protonation of cyclohexanone to give an intermediate α -sulfanyl ketone via an S_N2 process [Eq. (10), Scheme 3]. Oxidation of α -sulfanyl ketone with iodine gives an intermediate M3. Deprotonation of M3 gives the intermediate M4. The by product α -sulfanyl enone is obtained via deprotonation of intermediate M4. Continuous oxidation of α -sulfanyl enone with iodine gives the intermediate M5. The final product is formed then by deprotonation of the intermediate M6. In the oxidative system, iodine can be regenerated from the oxidation of HI by DMSO conveniently and the acidic conditions provided by PTSA were favorable for the regeneration of iodine catalyst^[7i,8g] [Eq. (2), Scheme 3]. Alkyl disulfide reacts with NBS to form an electrophlic species 1-(alkylthio)pyrrolidine-2,5-dione (N2), which reacts intermediate N1 obtained from activation of cyclic ketone by Et₃N to give an intermediate α -sulfenyl ketone. In these reaction conditions, iodine can be regenerated from the oxidation of HI by O_2 conveniently [Eq. (11), Scheme 3]. And the final product is formed by the same reaction mechanism [Eq. (12), Scheme 3].

Conclusions

A transition metal-free iodine-catalyzed oxidative aromatization based on sequential processes in one-pot has been developed for the selective synthesis of 2sulfanylphenols from non-aromatic ketones. 2-Arylthiophenols were synthesized with DMSO as oxidant and 0.5 equiv. of PTSA as additive. 2-Alkylthiophenols were obtained from NBS-promoted intermolecular aerobic dehydrogenative aromatization. In addition, α -sulfanyl enones could also be formed *via* an iodinecatalyzed oxidative system from simple cyclic ketones through a dehydrogenation strategy using DMSO as oxidant. A detailed reaction mechanism was proposed for this reaction and the regeneration of iodine catalyst.

Experimental Section

All chemicals (AR grade) were obtained from commercial sources and were used without further purification. Petroleum ether (PE) refers to the fraction boiling in the 60–90 °C range. The progress of the reactions was monitored by TLC

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

5

^[b] Yield of isolated product after column chromatography.

[[]c] 0.1 mmol (10 mol%) iodine was used.

Scheme 2. Parallel and blank experiments tested to explore the reaction mechanism.

(silica gel, Polygram SILG/UV 254 plates). Column chromatography was performed on Silicycle silica gel (200–300 mesh). Melting points were obtained using a Yamato melting point apparatus Model MP-21 and are uncorrected. IR spectra were recorded on a Shimadzu spectrophotometer using KBr discs. ¹H and ¹³C NMR spectra were obtained using a Bruker DRX 500 (500 MHz) spectrometer in CDCl₃ or DMSO- d_6 with TMS as the internal standard. All the products were identified by comparison of their physical and spectral data with those reported in the literature.

General Procedure for Iodine-Catalyzed Synthesis of 2-Arylthiophenols with Aryl Disulfides

A mixture of cyclic ketone (1.2 mmol), aryl disulfide (0.5 mmol) and PTSA (0.5 mmol) was dissolved in DMSO (2 mL) at 80 °C in a flask, then iodine (0.05 mmol, 5 mol%) was added. The reaction proceeded under an air atmosphere for the indicated time until complete consumption of starting material as monitored by TLC. The solution was diluted with EtOAc (10 mL), washed with H₂O (3×10 mL), and then the organic layer was separated and concentrated under vacuum and the crude product was purified by column chromatography (PE:EtOAc, 20:1) to provide the analytically pure product **3**.

General Procedure for Iodine-Catalyzed α-Sulfanylation of Enones with Aryl Disulfides

A mixture of cyclic ketone (1.2 mmol) and aryl disulfide (0.5 mmol) was dissolved in DMSO (2 mL) at 80 °C in a flask, then iodine (0.05 mmol, 5 mol%) was added. The reaction proceeded under an air atmosphere for the indicated time until complete consumption of starting material as monitored by TLC. The solution was diluted with EtOAc (10 mL), washed with H₂O (3×10 mL), and then the organic layer was separated and concentrated under vacuum and the crude product was purified by column chromatography (PE:EtOAc, 20:1) to provide the analytically pure product **4**.

General Procedure for Iodine-Catalyzed 2-Sulfanylation of Phenols with Alkyl Disulfides

A mixture of cyclic ketone (1.2 mmol), disulfide (0.5 mmol) and Et_3N (0.5 mmol) was added in DMF (2 mL) at 80 °C in a sealed tube, then NBS (2 mmol) and iodine (0.05 mmol, 5 mol%) were added. The reaction proceeded under an O_2 atmosphere for the indicated time until complete consumption of starting material as monitored by TLC. The solution was diluted with EtOAc (10 mL), washed with H_2O (3× 10 mL), and then the organic layer was separated and concentrated under vacuum and the crude product was purified by column chromatography (PE:EtOAc, 30:1) to provide the analytically pure product **3**.

asc.wiley-vch.de

 $\ensuremath{\mathbb C}$ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Scheme 3. Proposed mechanism for the formation of 2-sulfanylphenols and α -sulfanyl enones.

Acknowledgements

This project was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

- a) G. Liu, J. T. Link, Z. Pei, E. B. Reilly, S. Leitza, B. Nguyen, K. C. Marsh, G. F. Okasinski, T. W. von Geldern, M. Ormes, K. Fowler, M. Gallatin, J. Med. Chem. 2000, 43, 4025–4040; b) J. Dumas, D. Brittelli, J. Chen, B. Dixon, H. Hatoum-Mokdad, G. König, R. Sibley, J. Witowsky, S. Wong, Bioorg. Med. Chem. Lett. 1999, 9, 2531–2536; c) A. Marcincal-Lefebvre, J. C. Gesquiere, C. Lemer, B. Dupuis, J. Med. Chem. 1981, 24, 889–893.
- [2] a) P. Bichler, J. A. Love, Top. Organomet. Chem. 2010, 31, 39–64; b) M. S. Eisen, Top. Organomet. Chem. 2010, 31, 157–184; c) F.-L. Yang, S.-K. Tian, Angew. Chem. 2013, 125, 5029–5032; Angew. Chem. Int. Ed. 2013, 52,

4929-4932; d) K. M. Wager, M. H. Daniels, *Org. Lett.* **2011**, *13*, 4052-4055; e) N. Park, K. Park, M. Jang, S. Lee, *J. Org. Chem.* **2011**, *76*, 4371-4378; f) Q. Ding, B. Cao, J. Yuan, X. Liu, Y. Peng, *Org. Biomol. Chem.* **2011**, *9*, 748-751.

- [3] a) B. S. Farah, E. E. Gilbert, J. Org. Chem. 1963, 28, 2807–2809; b) L. Henriksen, Tetrahedron Lett. 1994, 35, 7057–7060; c) Y. Morita, A. Kashiwagi, K. Nakasuji, J. Org. Chem. 1997, 62, 7464–7468; d) I. Sylvestre, J. Wolowska, C. A. Kilner, E. J. L. McInnes, M. A. Halcrow, Dalton Trans. 2005, 3241–3249; e) Y. Kita, T. Takada, S. Mihara, B. A. Whelan, H. Tohma, J. Org. Chem. 1995, 60, 7144–7148; f) V. V. Samoshin, K. V. Kudryavtsev, Tetrahedron Lett. 1994, 35, 7413–7414; g) B. M. Trost, J. H. Rigby, Tetrahedron Lett. 1978, 1667–1670.
- [4] a) K. Swapna, S. N. Murthy, M. T. Jyothi, Y. V. D. Nageswar, Org. Biomol. Chem. 2011, 9, 5989–5996; b) M.-T. Lan, W.-Y. Wu, S.-H. Huang, K.-L. Luo, F.-Y. Tsai, RSC Adv. 2011, 1, 1751–1755; c) Y. Feng, H. Wang, F. Sun, Y. Li, X. Fu, K. Jin, Tetrahedron 2009, 65, 9737–9741; d) N. Taniguchi, J. Org. Chem. 2004, 69, 6904–6906.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

7

- [5] K. Komeyama, K. Aihara, T. Kashihara, K. Takaki, *Chem. Lett.* **2011**, 40, 1254–1256.
- [6] R. Xu, J.-P. Wan, H. Mao, Y. Pan, J. Am. Chem. Soc. 2010, 132, 15531–15533.
- [7] a) M. Sutter, N. Sotto, Y. Raoul, E. Métay, M. Lemaire, Green Chem. 2013, 15, 347–352; b) M. T. Barros, S. S. Dey, C. D. Maycock, P. Rodrigues, Chem. Commun. 2012, 48, 10901–10903; c) Y. Izawa, D. Pun, S. S. Stahl, Science 2011, 333, 209–213; d) T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14566–14569; e) M.-O. Simon, S. A. Girard, C.-J. Li, Angew. Chem. 2012, 124, 9655–9658; Angew. Chem. Int. Ed. 2012, 51, 9537–9540; f) S. A. Girard, X. Hu, T. Knauber, F. Zhou, M.-O. Simon, G.-J. Deng, C.-J. Li, Org. Lett. 2012, 14, 5606– 5609; g) A. Hajra, Y. Wei, N. Yoshikai, Org. Lett. 2012, 14, 5488–5491; h) T. Moriuchi, K. Kikushima, T. Kajikawa, T. Hirao, Tetrahedron Lett. 2009, 50, 7385–7388; i) J. Zhao, H. Huang, W. Wu, H. Chen, H. Jiang, Org. Lett. 2013, 15, 2604–2607.
- [8] a) H. Huang, X. Ji, W. Wu, H. Jiang, Adv. Synth. Catal. 2013, 355, 170–180; b) Y.-P. Zhu, F.-C. Jia, M.-C. Liu, A.-X. Wu, Org. Lett. 2012, 14, 4414–4417; c) Y.-P. Zhu, F.-C. Jia, M.-C. Liu, Q. Cai, Y. Gao, A.-X. Wu, Org. Lett. 2012, 14, 5378–5381; d) H. Jiang, H. Huang, H. Cao, C. Qi, Org. Lett. 2010, 12, 5561–5563; e) P. T. Parvatkar, P. S. Parameswaran, S. G. Tilve, Chem. Eur. J. 2012, 18, 5460–5489; f) M. Jereb, D. Dražič, M. Zupan, Tetrahedron 2011, 67, 1355–1387; g) M. Gao, Y. Yang, Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhang, L.-P. Cao, N.-F. She, A.-X. Wu, Org. Lett. 2010, 12, 4026–4029.
- [9] a) Y. Zhu, Y. Shi, Y. Wei, Monatsh. Chem. 2010, 141, 1009–1013; b) Y. Zhu, Y. Wei, Can. J. Chem. 2011, 89, 645–649; c) W. Ge, Y. Wei, Synthesis 2012, 44, 934–940; d) W. Ge, Y. Wei, Green Chem. 2012, 14, 2066–2070.
- [10] a) B. C. Ranu, T. Mandal, *Can. J. Chem.* 2006, 84, 762–770; b) N. Srivastava, B. K. Banik, *J. Org. Chem.* 2003, 68, 2109–2114; c) F. Fringuelli, F. Pizzo, L. Vaccaro, *J.*

Org. Chem. 2004, 69, 2315-2321; d) B. C. Ranu, T. Mandal, S. Banerjee, S. S. Dey, Aust. J. Chem. 2007, 60, 278-283; e) D. Amantini, F. Fringuelli, O. Piermatti, S. Tortoioli, L. Vaccaro, Arkivoc 2002, 11, 293-311; f) J. Hynes, T. Nasser, L. E. Overman, D. A. Watson, Org. Lett. 2002, 4, 929-931; g) T. Yechezkel, E. Ghera, D. Ostercamp, A. Hassner, J. Org. Chem. 1995, 60, 5135-5142; h) V. V. Samoshin, K. V. Kudryavtsev, Tetrahedron Lett. 1994, 35, 7413-7414; i) T. Mukaiyama, T. Takashima, S. Ono, Tetrahedron Lett. 1967, 3439-3442; j) P. Barbier, C. Benezra, Tetrahedron Lett. 1982, 23, 3511-3512; k) M. A. McKervey, P. Ratananukul, Tetrahedron Lett. 1983, 24, 117-120; l) H. J. Monteiro, A. L. Gamal, Synthesis 1975, 437-438; m) K. Iwai, H. Kosugi, H. Uda, M. Kawai, Bull. Chem. Soc. Jpn. 1977, 50, 242; n) D. Kaminsky, J. Shavel Jr, R I. Meltzer, Tetrahedron Lett. 1967, 859-861; o) J. L. Garcia Ruano, M. Alonso, D. Cruz, A. Fraile, M. R. Martin, M. T. Peromingo, A. Tito, F. Yuste, *Tetrahedron* **2008**, *64*, 10546–10551; p) L. Engman, K. W. Törnroos, J. Organomet. Chem. 1990, 391, 165-178; q) K. C. Guérard, C. Sabot, L. Racicot, S. Canesi, J. Org. Chem. 2009, 74, 2039-2045; r) C. Sabot, K. C. Guérard, S. Canesi, Chem. Commun. 2009, 2941-2943.

[11] a) D. Huang, J. Chen, W. Dan, J. Ding, M. Liu, H. Wu, Adv. Synth. Catal. 2012, 354, 2123–2128; b) M. Tudge, M. Tamiya, C. Savarin, G. R. Humphrey, Org. Lett. 2006, 8, 565–568; c) C. C. Silveira, S. R. Mendes, L. Wolf, G. M. Martins, Tetrahedron Lett. 2010, 51, 2014– 2016; d) Z. Li, J. Q. Hong, X. J. Zhou, Tetrahedron 2011, 67, 3690–3697; e) Z. Li, L. Hong, R. Liu, J. Shen, X. Zhou, Tetrahedron Lett. 2011, 52, 1343–1347; f) Y. J. Guo, R. Y. Tang, J. H. Li, P. Zhong, X. G. Zhang, Adv. Synth. Catal. 2009, 351, 2615–2618; g) X. L. Fang, R. Y. Tang, P. Zhong, J. H. Li, Synthesis 2009, 4183–4189; h) K. M. Schlosser, A. P. Krasutsky, H. W. Hamilton, J. E. Reed, K. Sexton, Org. Lett. 2004, 6, 819–821.

FF These are not the final page numbers!

asc.wiley-vch.de

FULL PAPERS

Iodine-Catalyzed Selective Synthesis of 2-Sulfanylphenols *via* Oxidative Aromatization of Cyclohexanones and Disulfides

Adv. Synth. Catal. 2013, 355, 1–9

Wenlei Ge, Xun Zhu,* Yunyang Wei*

9