Article

Convergent Synthesis of the Dihydropyran Core Containing C1-C15 Subunit of Sorangicin A Employing Gold(I)-Catalyzed Cyclization of an Allenic Alcohol
 Sadagopan Raghavan, and Satyanarayana Nyalata
 J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b01743 • Publication Date (Web): 10 Oct 2016
 Downloaded from http://pubs.acs.org on October 14, 2016

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Convergent Synthesis of the Dihydropyran Core Containing C1C15 Subunit of Sorangicin A Employing Gold(I)-Catalyzed Cyclization of an Allenic Alcohol

Sadagopan Raghavan* and Satyanarayana Nyalata
Natural Product Chemistry Division, Indian Institute of Chemical Technology, Hyderabad, India
sraghavan@iict.res.in

Abstract

A convergent route to the C1-C15 subunit of sorangicin A is disclosed. The key steps include carbon-carbon bond formation using an α-chlorosulfide, regioselective hydrozirconation of an internal alkyne for the preparation of a trisubstituted iodo alkene, allene formation using Myers-Movassaghi protocol, stereoselective reduction of allylic and propargylic ketones using Noyori's catalyst and gold(I)-catalyzed cyclization of a β-hydroxy allene to construct the dihydropyran ring.

INTRODUCTION

The isolation and structure elucidation of sorangicin A 1, obtained from a fermentation broth of myxobacteria Sorangium cellulosum (strain So ce 12) ${ }^{1}$ was reported by Jansen and co-workers in 1985. Sorangicin A displayed potent antibiotic activity against both Gram-positive and Gram-negative bacteria at concentrations of $0.01-0.3$ and $3-25 \mu \mathrm{~g} / \mathrm{mL}$ respectively. The mechanism of action involves inhibition of DNA-dependant RNA polymerase (RNAP) of bacteria, without affecting eukaryotic cells. ${ }^{2}$ Sorangicin A displayed activity against rifampicin resistant microbes, too.

The structure assigned to sorangicin A was based on extensive NMR experiments and mass spectrometry. ${ }^{3}$ Structurally, sorangicin A is comprised of C1-C8 side chain with a carboxyl group, attached to an unsaturated 31-membered macrocyclic lactone, possessing 15 stereocenters. A dioxabicyclo[3.2.1]octane, (Z, Z, E) trienoate linkage and di- and tetrahydropyran ring systems are contained in the macrocyclic ring.

The challenging structure, potent antibiotic activity and novel mechanism of action has led to widespread interest in sorangicin A among synthetic chemists. Smith and coworkers reported the first and only total synthesis of sorangicin A in 2009. ${ }^{4}$ Crimmins and coworkers have reported a formal synthesis ${ }^{5}$ and many groups have reported the synthesis of subunits. ${ }^{6}$ By a retrosynthetic disconnection, sorangicin A was envisioned to be obtained by the union of fragments 2-6, Scheme 1 .

Scheme 1. Retrosynthetic Disconnection of Sorangicin A.

Herein, we disclose a highly stereoselective route to the $\mathrm{C} 1-\mathrm{C} 15$ subunit 2, of sorangicin, utilizing an α-chlorosulfide intermediate for the C4-C5 bond formation and goldcatalyzed 6 -endo cyclization of a β-hydroxy allene to construct the dihydropyran core. The fragment $\mathbf{2}$ can be derived from β-hydroxy allene 7, which in turn can be obtained from the union of a suitable nucleophile derived from iodoalkene $\mathbf{8}$ and allenic aldehyde $\mathbf{9}$. The iodo alkene $\mathbf{8}$ can be obtained from sulfide $\mathbf{1 0}$ and alkyne 11. The aldehyde $\mathbf{9}$ was envisioned to be obtained from propargylic alcohol $\mathbf{1 2}$ which in turn can be traced to chloro acetonide $\mathbf{1 3}$ and Weinreb amide 14, Scheme 2.

Scheme 2. Retrosynthetic Analysis of Subunit 2.
$P=$ Protecting groups
RESULTS AND DISCUSSION
The synthesis began with the known sulfide $\mathbf{1 5},{ }^{7}$ prepared from methallyl alcohol by a chemoenzymatic route, which was converted readily into its benzyl ether $\mathbf{1 0}$. Treatment of $\mathbf{1 0}$ with N-chlorosuccinimide yielded the α-chlorosulfide 16, which without isolation was reacted with the alkynylzinc reagent prepared from 11, to furnish propargylic sulfide $\mathbf{1 7}$ as an inconsequential mixture of diastereomers (4.5:5.5). ${ }^{8}$ One-pot reduction and hydrogenolysis furnished alcohol 18. Oxidation using the Swern protocol ${ }^{9}$ yielded aldehyde 19, which on subjecting to the Ohira-Bestman protocol ${ }^{10}$ afforded the alkyne 20. Methylation of the lithio acetylide furnished alkyne 21 that on reaction with an excess of $\mathrm{Cp}_{2} \mathrm{ZrHCl}$ in THF at $50{ }^{\circ} \mathrm{C}^{11}$ followed by quenching the resulting vinylzirconium species with iodine yielded iodo alkene 8, Scheme 3.

n-BuLi, THF,
$\begin{gathered}\text { DMPU, Mel } \\ 95 \%\end{gathered}, \begin{aligned} & \text { 20, } \mathrm{X}=\mathrm{H} \\ & \mathbf{2 1}, \mathrm{X}=\mathrm{Me}\end{aligned}$

8

Scheme 3. Synthesis of Iodo Alkene 8.

The synthesis of aldehyde 9 commenced with (D)-tartaric acid which was transformed by a known sequence of four straight forward reactions ${ }^{12}$ into chloroacetonide 13. Alkynol 22 , obtained by treatment of 13 with $\mathrm{LiNH}_{2},{ }^{13}$ was protected using standard conditions as its MOM-ether 23. Reaction of the lithium acetylide derived from 23 with the Weinreb amide $14,{ }^{14}$ furnished the ketone 24 . Stereoselective reduction of the propargylic ketone using the Noyori protocol ${ }^{15}$ afforded alcohol $12(82 \%, 99 \%$ de $)$. Alcohol 12 was converted to allene 27 using Myers-Movassaghi's protocol. ${ }^{16}$ Thus reaction of 12 with hydrazone 25 under Mitsunobu conditions ${ }^{17}$ yielded hydrazone derivative 26 that on treatment with aq trifluroethanol led to diazene formation and further rearrangement to afford allene 27. Deprotection of the PMB-ether using DDQ ${ }^{18}$ furnished the alcohol 28 that on oxidation using Dess-Martin periodinane ${ }^{19}$ furnished aldehyde 9, Scheme 4.

Scheme 4. Synthesis of Aldehyde 9.
The reaction of alkenyllithium derived from iodoalkene $\mathbf{8}$ with aldehyde 9 required lots of experimentation. Attempted reaction of the aldehyde 9 with the alkenyllithium derived from 8 at $-78{ }^{\circ} \mathrm{C}$ led to the competitive isomerization of the allenic aldehyde into a $E, Z-$ mixture of diene aldehydes which further reacted to afford a complex mixture of products.

The situation was no better using the less basic organomagnesium or organozinc reagents prepared by transmetalation. Also trials involving inverse addition of alkenyllithium to aldehyde afforded a complex mixture of products. Finally it was found that soon after addition of the aldehyde to the alkenyllithium at $-78^{\circ} \mathrm{C}$, warming to $0^{\circ} \mathrm{C}$ and maintaining for 10 minutes led to a separable mixture of alcohols 7 and 29 in a $4: 6$ ratio and in 70% combined yield. ${ }^{20}$ In an effort to improve the diastereoselectivity in favour of the desired carbinol 7, the solution of an equimolar mixture of ZnCl_{2} and aldehyde 9 was added to the alkenyllithium at $-78{ }^{\circ} \mathrm{C}$, warmed immediately to $0{ }^{\circ} \mathrm{C}$ and quenched after 10 min . The selectivity of 7:29 improved only slightly from 4:6 to 7:3 though at the cost of the yield (60\%). The alcohol 29 was oxidized using Dess-Martin periodinane and reduced using Noyori catalyst ${ }^{21}$ to furnish alcohol 7 (9:1 dr). The key transformation of the allenic alcohol to dihydropyran proceeded cleanly using $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)_{2}$ in the presence of $\mathrm{AgSbF} \mathrm{F}_{6}$ in toluene to furnish the dihydropyran derivative $\mathbf{2}{ }^{22}$ The structure of compound $\mathbf{2}$ was supported by NOE studies that revealed NOE between C 10 H and C 14 H and absence of any NOE between C9H and C13H, Scheme 5.

Scheme 5. Synthesis of the C1-C15 Subunit 2.

CONCLUSION

In conclusion we have devised a highly stereoselective route to the $\mathrm{C} 1-\mathrm{C} 15$ subunit of sorangicin A comprising the trans-2,6-dihydropyran core. The key features of the route include the use of α-chlorosulfide for C-C bond formation, regioselective hydrozirconation of an internal alkene, Myers-Movassaghi protocol for allene formation, Noyori reduction for the creation of C9 and C13 carbinol stereocenters and gold-catalyzed cyclization for the preparation of dihydropyran core. The synthesis of the other subunits are in progress and would be reported in due course.

EXPERIMENTAL SECTION

Dry reactions were performed under an inert atmosphere using argon or nitrogen. All glassware apparatus used for reactions were thoroughly oven-dried. Anhydrous solvents were distilled prior to use: THF from Na and benzophenone; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and toluene from CaH_{2}; MeOH from Mg cake; CHCl_{3} from $\mathrm{P}_{2} \mathrm{O}_{5}$; acetone from KMnO_{4} and $\mathrm{K}_{2} \mathrm{CO}_{3}$. Commercial reagents were used without purification. Column chromatography was carried out by using silica gel (100-200 mesh). Analytical thin-layer chromatography (TLC) was run on silica gel 60 F254 precoated plates ($250 \mu \mathrm{~m}$ thickness). Optical rotations $[\alpha]_{\mathrm{D}}$ were measured on a polarimeter and are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. Infrared spectra were recorded neat or in KBr (as mentioned) and reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. Mass spectral data were obtained using MS (EI) ESI and HRMS mass spectrometers. High-resolution mass spectra (HRMS; ESI+) were obtained using either a TOF or a double-focusing spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300,400 , or 500 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 75,100 , or 125 MHz in CDCl_{3} with the residual solvent signal as an internal standard unless mentioned otherwise; chemical shifts are in ppm downfield from tetramethylsilane, and coupling constants (J) are reported in hertz (Hz). The following abbreviations are used to designate signal multiplicity: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad.
(S)-2-Methyl-3-(phenylthio)propan-1-ol 15: AIBN ($2.56 \mathrm{~g}, 15.62 \mathrm{mmol}$) was added to a solution of methallyl alcohol ($5.18 \mathrm{~g}, 72 \mathrm{mmol}$) in thiophenol $(376 \mathrm{~mL})$ at rt . The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 12 h . The mixture was cooled to rt . After dilution with $\mathrm{Et}_{2} \mathrm{O}(400 \mathrm{~mL})$, the solution was washed successively with aq $5 \% \mathrm{NaOH}$ solution $(400 \mathrm{~mL})$, brine $(2 \times 400 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography using 20% EtOAc/hexanes (v / v) as the eluent to afford the racemic alcohol $\mathbf{1 5}(11.6 \mathrm{~g}, 63.7 \mathrm{mmol})$ in 88\% yield as a liquid; TLC: $\mathrm{R}_{\mathrm{f}} 0.25$ (20\% EtOAc/hexane); IR (neat): 3356, 2958, 2954, 2873, 1477, 1030, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.15 (m, 1H), 3.63 (dd, $J=10.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}$, $J=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=13.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{brs}, 1 \mathrm{H}), 1.05$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 136.5,128.5,128.4,125.4,66.0,36.8$, 35.1, 16.0; MS (ESI): $m / z 183[\mathrm{M}+\mathrm{H}]^{+}$.

To a stirred solution of (\pm)-alcohol $15(11.61 \mathrm{~g}, 63.8 \mathrm{mmol})$ in anhydrous chloroform (90 mL) cooled at $0{ }^{\circ} \mathrm{C}$ was added vinyl acetate ($16.3 \mathrm{~g}, 255 \mathrm{mmol}$) and Pseudomonas fluorescens Amano Lipase (PFL) (0.7 g). The resulting solution was then stirred at $0^{\circ} \mathrm{C}$ for 5 h. Monitoring by HPLC using a chiral column revealed the absence of $(R)-\mathbf{1 5}$. $($ HPLC: ee $=$ 99.0\%, Chiralpak IC column, mobile phase: hexane/isopropanol 98/02, flow rate: 1 mL $\min ^{-1}$, temperature $=25^{\circ} \mathrm{C}$, detection: UV 220 nm , retention time (S)-isomer $=25.47 \mathrm{~min}$, (R)-isomer 23.76 min$)$. The resulting reaction mixture was filtered through a pad of Celite, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to yield the crude product. Purification of the crude residue by column chromatography using 20% EtOAc/hexane (v/v) as the eluent afforded alcohol $15(5.22 \mathrm{~g}, 28.71 \mathrm{mmol})$ in 45% yield as a colorless liquid; TLC: $\mathrm{R}_{\mathrm{f}} 0.25(20 \% \mathrm{EtOAc} /$ hexane $) .[\alpha]^{20}{ }_{\mathrm{D}}=+15.45\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; MS (ESI): $m / z 183[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{OS}: 183.0838$, found: 183.0834.
(S)-(3-(Benzyloxy)-2-methylpropyl)(phenyl)sulfane 10: To a suspension of $\mathrm{NaH}(60 \%$ in Nujol, $1.83 \mathrm{~g}, 45.7 \mathrm{mmol})$ in anhydrous THF $(40 \mathrm{~mL})$ cooled at $0^{\circ} \mathrm{C}$ was added the solution of alcohol $\mathbf{1 5}(5.2 \mathrm{~g}, 28.54 \mathrm{mmol})$ in anhydrous THF $(90 \mathrm{~mL})$. After the mixture was stirred for 30 min , benzyl bromide ($3.4 \mathrm{~mL}, 28.54 \mathrm{mmol}$) and TBAI ($1.77 \mathrm{~g}, 4.81 \mathrm{mmol}$) were added and the reaction mixture was stirred at rt for 2 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and treated with aq satd $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The aq phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with brine $(2 \times 50 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash column chromatography using $0.5-1 \%$ EtOAc/hexane (v/v) as the eluent to afford the compound $\mathbf{1 0}(6.98 \mathrm{~g}, 25.7 \mathrm{mmol})$ in 90% yield as a colourless liquid; TLC: $\mathrm{R}_{\mathrm{f}} 0.4$ (hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=-9.74$ (c 1.0, CHCl_{3}); IR (neat): 3060, 2856, 1477, 1364, 1094, $737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.36-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=10.5,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42$ (dd, $J=10.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=13.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=13.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.3$, 137.0, 128.5, 128.4, 128.0, 127.2, 127.1, 125.2, 73.7, 72.7, 37.1, 33.6, 16.5; MS (ESI): m / z $273[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{OS}$: 273.1308, found: 273.1322.

(((6S)-7-(Benzyloxy)-6-methyl-5-(phenylthio)hept-3-yn-1-yl)oxy)(tert-butyl)

dimethylsilane 17: To a solution of (but-3-yn-1-yloxy)(tert-butyl)dimethylsilane (11) (10.5 $\mathrm{g}, 57.1 \mathrm{mmol})$ in anhydrous THF $(57 \mathrm{~mL})$ cooled at $-10^{\circ} \mathrm{C}$ was added $i-\mathrm{PrMgCl} \cdot \mathrm{LiCl}(1.5 \mathrm{M}$ in THF, $38.1 \mathrm{~mL}, 57.1 \mathrm{mmol}$) and stirred for 30 min at the same temperature. To the generated Grignard reagent, a solution of $\mathrm{ZnBr}_{2}(1.5 \mathrm{M}$ in THF, $41.9 \mathrm{~mL}, 62.8 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ and stirred for 30 min . Separately in another rb flask the chlorosulfide $\mathbf{1 6}$ was prepared by adding a solution of sulfide $10(7.76 \mathrm{~g}, 28.5 \mathrm{mmol})$ in anhydrous benzene (145 $\mathrm{mL})$ to NCS $(3.81 \mathrm{~g}, 28.5 \mathrm{mmol})$ in anhydrous benzene $(140 \mathrm{~mL})$ and stirring for 45 min . To
the organozinc reagent maintained at $0^{\circ} \mathrm{C}$ was added a solution of chlorosulfide (28.5 mmol) in benzene (285 mL). The reaction mixture was stirred gradually allowing it to attain rt and stirred further for a period of 7 h when TLC examination indicated complete consumption of the chlorosulfide. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched by the addition of aq sat $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). It was allowed to warm to rt and diluted with $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$. The layers were separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 80 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$, brine (100 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure to afford a crude compound which was purified by column chromatography using 1-2\% EtOAc/hexanes (v/v) as the eluent to afford the pure product $\mathbf{1 7}$ as a 4.5:5.5 mixture of diastereomers at the newly created stereocentre ($8.35 \mathrm{~g}, 18.39 \mathrm{mmol}$) in 72% yield as a light yellow liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.2$ ($1 \% \mathrm{EtOAc} /$ hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+15.26$ (c 1.0, CHCl_{3}); IR (neat): 3061, 2930, 1472, 1253, $1102,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (diastereomers with 0.9:1 ratio and the minor isomer denoted with asterisk, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 16 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}) *, 4.46(\mathrm{~s}$, $2 \mathrm{H}), 4.25(\mathrm{dt}, J=4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 4.02(\mathrm{dt}, J=4.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.3,6.4 \mathrm{~Hz}$, $1 \mathrm{H})^{*}, 3.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ $(\mathrm{dd}, J=9.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=9.3,5.3 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 2.40-2.36(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.11(\mathrm{~m}$, $2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 0.89(\mathrm{~s}, 9 \mathrm{H})^{*}, 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}$, 12 H); ${ }^{13} \mathrm{C}$ NMR (diastereomers with $0.9: 1$ ratio and the minor isomer denoted with asterisk, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.35,138.30^{*}, 135.1,134.9^{*}, 132.0^{*}, 131.5,128.62^{*}, 128.60,128.57$, 128.16, 128.13*, 127.39*, 127.31, 126.9, 126.8*, 82.9*, 82.0, 79.8*, 77.6, 72.9, 72.8, 72.3*, $61.8,42.7^{*}, 41.3,38.3,37.2^{*}, 25.8,23.1,18.1,14.7,12.6^{*},-5.3$; MS (ESI): $m / z 477$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NaO}_{2} \mathrm{SSi}$: 477.2254, found: 477.2266.
(R)-7-((tert-Butyldimethylsilyl)oxy)-2-methylheptan-1-ol 18: To a solution of compound $\mathbf{1 7}(8.3 \mathrm{~g}, 18.3 \mathrm{mmol})$ in methanol (152 mL) was added freshly prepared W2 Raney-Nickel
(suspension in methanol, 32 g) and the above mixture was stirred for 16 h under hydrogen atmosphere. The reaction mixture was filtered through a pad of Celite and washed with methanol $(2 \times 30 \mathrm{~mL})$. The combined organic layers were concentrated under reduced pressure, and the residue was purified by column chromatography using $10-12 \%$ EtOAc/hexanes (v / v) as the eluent to afford the pure product $\mathbf{1 8}(4.1 \mathrm{~g}, 15.7 \mathrm{mmol})$ in 86% yield as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.15$ ($5 \% \mathrm{EtOAc} / \mathrm{hexane}$); $[\alpha]^{20}{ }_{\mathrm{D}}=+4.80$ (c 1.0 , CHCl_{3}); IR (neat): $3352,2930,1466,1253,1100,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=10.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-$ $1.56(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.16-1.04(\mathrm{~m}, 1 \mathrm{H})$, $0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 67.9$, 63.1, 35.5, 33.0, 32.6, 26.6, 26.0, 25.8, 18.2, 16.4, -5.3; MS (ESI): $m / z 261[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{Si}$: 261.2244, found: 261.2235 .
(R)-7((tert-Butyldimethylsilyl)oxy)-2-methylheptanal 19: Dimethylsulfoxide (4.42 mL , $62.4 \mathrm{mmol})$ was added drop wise to a solution of oxalyl chloride ($2.72 \mathrm{~mL}, 31.2 \mathrm{mmol}$) in anhydrous dichloromethane (142 mL) cooled at $-78^{\circ} \mathrm{C}$ and the solution was maintained under a nitrogen atmosphere. After 0.5 h a solution of alcohol $\mathbf{1 8}(4.06 \mathrm{~g}, 15.6 \mathrm{mmol})$ in anhydrous dichloromethane (16 mL) was added dropwise. After a further 45 min , triethylamine ($17.4 \mathrm{~mL}, 124.8 \mathrm{mmol}$) was added and the mixture was warmed to rt over 1 h . Water (100 mL) was added and the layers were separated. The aq phase was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with water (80 mL), brine (80 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure to give a yellow colour liquid. The residue was purified by column chromatography using 5-8 \% EtOAc/hexanes (v/v) as the eluent to afford the pure aldehyde $19(3.66 \mathrm{~g}, 14.1$ $\mathrm{mmol})$ in 90% yield as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.25(5 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]^{20}{ }_{\mathrm{D}}=-7.04$ (c 1.0, CHCl_{3}); IR (neat): 2932, 2858, 1708, 1466, 1253, 1100, 835, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.61(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.64$ $(\mathrm{m}, 1 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.09(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205,62.9,46.1,32.5,30.4,26.8,25.8,25.7,18.2,13.2$, -5.3; MS (ESI): $m / z 259[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{31} \mathrm{O}_{2}$ Si: 259.2087, found: 259.2073.
(R)-tert-Butyldimethyl((6-methyloct-7-yn-1-yl)oxy)silane 20: To a solution of OhiraBestman reagent ($5.4 \mathrm{~g}, 28 \mathrm{mmol}$) in anhydrous THF $(40 \mathrm{~mL})$ cooled at $-78^{\circ} \mathrm{C}$ was added $\mathrm{NaOMe}(5.4 \mathrm{M}$ in $\mathrm{MeOH}, 4.66 \mathrm{~mL}, 25.2 \mathrm{mmol}$) diluted with anhydrous THF (24 mL) over a period of 10 min . A solution of aldehyde $19(3.6 \mathrm{~g}, 14 \mathrm{mmol})$ in anhydrous THF (24 mL) was added to the above solution at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for a further 30 min . The mixture was quenched with aq sat Rochelle-salt solution (30 $\mathrm{mL})$. The layers were separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. The residue was purified by column chromatography using hexanes as the eluent to afford the pure product $20(2.99 \mathrm{~g}, 11.76 \mathrm{mmol})$ in 84% yield as a clear colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.3$ (hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=-11.26$ ($c \quad 1.0, \mathrm{CHCl}_{3}$); IR (neat): 3311, 2932, 2113, 1253, 1100, $837 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.46-2.37(m, 1H), $2.03(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.28$ $(\mathrm{m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 89.1, 68.0, 63.1, 36.7, 32.7, 27.0, 25.9, 25.6, 20.9, 18.3, -5.2; MS (ESI): $m / z 255[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSi}$: 255.2138 , found: 255.2133.

Note!!: The amount of base has to be less than the amount of the Ohira-Bestman reagent in order to avoid epimerisation of the aldehyde.
(R)-tert-Butyldimethyl((6-methylnon-7-yn-1-yl)oxy)silane 21: To a solution of 20 (2.95 g $11.65 \mathrm{mmol})$ in anhydrous THF (58 mL) cooled at $-78{ }^{\circ} \mathrm{C}$ was added n - $\mathrm{BuLi}(2.5 \mathrm{M}$ in Hexane, $14 \mathrm{~mL}, 35.0 \mathrm{mmol}$). Stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$ and then additionally for 15 min without dry ice bath. The lithium acetylide solution was again cooled down to -78 ${ }^{\circ} \mathrm{C}$ and treated with methyl iodide $(4.4 \mathrm{~mL}, 70 \mathrm{mmol})$ and freshly distilled DMPU (4.2 mL , $35.0 \mathrm{mmol})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h and warmed to rt and stirred for 12 h . The reaction was quenched with aq sat $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The layers were separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure the crude product was purified by flash column chromatography using 1% EtOAc/hexanes (v/v) as the eluent to afford methylated product $21(2.97 \mathrm{~g}, 11.1 \mathrm{mmol})$ in 95% yield as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.3$ (hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=-14.34$ (c 1.0, CHCl_{3}); IR (neat): 2930, 2859, 1253, $1100,836 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.60(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H})$, $1.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.12(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 83.9,75.3,63.1$, 37.2, 32.7, 27.1, 25.9, 25.8, 25.6, 21.4, 18.3, 3.4, -5.2; MS (ESI): $m / z 269[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{OSi}$: 269.2295, found: 269.2285 .
($\boldsymbol{R}, \boldsymbol{E}$)-tert-Butyl((8-iodo-6-methylnon-7-en-1-yl)oxy)dimethylsilane 8: To a solution of $\mathrm{Cp}_{2} \mathrm{ZrHC1}(5.62 \mathrm{~g}, 21.8 \mathrm{mmol})$ in anhydrous THF (24 mL) was added the solution of alkyne $21(2.92 \mathrm{~g}, 10 \mathrm{mmol})$ in anhydrous THF (30 mL) and the mixture was stirred at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere in the absence of light for 50 min resulting in a blood-red reaction mixture. This reaction mixture was cooled to rt and stirred for 5 min when it turned to an orange yellow solution. A solution of iodine ($5.6 \mathrm{~g}, 21.8 \mathrm{mmol}$) in THF (22.0 mL) was added via a cannula and this reaction mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. The temperature was raised to $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was quenched with aq sat
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$. The organic layer was separated and the aq layer was extracted with ethyl acetate $(4 \times 40 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography using $0.5 \% \mathrm{EtOAc} /$ hexanes $(\mathrm{v} / \mathrm{v})$ as the eluent to afford pure product 8 (3.45 $\mathrm{g}, 8.7 \mathrm{mmol}$) in 80% yield as a yellow colour liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.42$ (hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=-19.08$ (c 1.0, CHCl_{3}); IR (neat): 2929, 2857, 1463, 1252, 1099, 835, $774 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.93(\mathrm{dq}, J=9.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H})$, $2.36(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.19(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ (s, 9H), $0.05(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.4,92.3,63.1,36.9,35.6,32.7,27.7$, 27.1, 25.9, 25.8, 20.4, 18.3, -5.2; MS (ESI): $m / z 397[M+H]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{OISi}: 397.1418$, found: 397.1400 .

Preparation of Chloroacetonide 13: The chloroacetonide was prepared in a four step sequence from (D)-tartaric acid.
(4S,5S)-Dimethyl-2,2-dimethyl-1,3-dioxolane-4,5-dicarboxylate I: In a 50 mL , onenecked, rb flask fitted with a reflux condenser and a magnetic stirring bar under nitrogen, a mixture of D-tartaric acid ($3.0 \mathrm{~g}, 20 \mathrm{mmol}$), 2,2-dimethoxypropane ($5.67 \mathrm{~mL}, 46 \mathrm{mmol}$), methanol (1.2 mL) and p-toluenesulfonic acid monohydrate ($12 \mathrm{mg}, 0.06 \mathrm{mmol}$) was warmed to $102{ }^{\circ} \mathrm{C}$ with occasional swirling until a dark-red homogeneous solution is obtained. Additional 2,2-dimethoxypropane ($2.8 \mathrm{~mL}, 22.88 \mathrm{mmol}$) and cyclohexane (13.5 mL) are added and the flask was fitted with a $30-\mathrm{cm}$ Vigreux column and a variable reflux distilling head. The mixture was heated to reflux with internal stirring and the acetone-cyclohexane and methanol-cyclohexane azeotropes are slowly removed. Additional 2,2dimethoxypropane $(0.18 \mathrm{~mL}, 1.44 \mathrm{mmol})$ was added and the mixture was heated under reflux for 15 min . After the mixture was cooled it to rt , anhydrous potassium carbonate ($27 \mathrm{mg}, 0.2$ mmol) was added and the mixture was stirred until the reddish colour had abated. Volatile
material was removed under reduced pressure (water aspirator) and the residue was fractionally distilled under vacuum to afford the product $\mathbf{I}(3.8 \mathrm{~g}, 17.6 \mathrm{mmol})$ in 88% yield as a pale-yellow oil, bp $94-101^{\circ} \mathrm{C}(0.5 \mathrm{~mm} \mathrm{Hg})$. TLC: $\mathrm{R}_{\mathrm{f}} 0.25(15 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $\left.+44.93\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{\text {lit. } 12 \mathrm{~d}}[\alpha]^{20}{ }_{\mathrm{D}}=+48.8^{\mathrm{O}}(c 1.0, \mathrm{MeOH})\right]$; IR (neat): 2995, 2355, 1757, 1214, 1110, $859 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 169.4,113.1,76.3,52.0,25.6$; MS (ESI): $m / z 241[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{Na}$: 241.0682, found: 241.0667.
((4R,5R)-2,2-Dimethyl-1,3-dioxolane-4,5-diyl)dimethanol II: To a suspension of LiAlH_{4} $(1.7 \mathrm{~g}, 43.8 \mathrm{mmol})$ in anhydrous THF (45 mL) cooled at $0{ }^{\circ} \mathrm{C}$ was added a solution of compound I ($3.82 \mathrm{~g}, 17.5 \mathrm{mmol}$) in anhydrous THF (18 mL) dropwise over a period of 30 \min. The reaction mixture was stirred for an additional 30 min at $0^{\circ} \mathrm{C}$ and it was warmed to rt and stirred for 2 h . The reaction mixture was diluted with ether $(60 \mathrm{~mL})$ and quenched with ice pieces. The reaction mixture was stirred at room temperature for 1 h , and the resulting reaction mixture was filtered through a pad of Celite, and the filter cake was washed with EtOAc $(3 \times 100 \mathrm{~mL})$ and $\mathrm{MeOH}(200 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by column chromatography using 60-70\% EtOAc/hehane (v / v) as the eluent to afford diol II ($2.55 \mathrm{~g}, 15.75 \mathrm{mmol}$) in 90% yield as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.25(60 \%$ EtOAc/hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+6.21$ (c 1.0, CHCl_{3}); IR (neat): 3404, 2935, 2882, 1377, 1217, $1056,844 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.00-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.77$ (ddd, $J=11.7,2.6$, $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.70 (ddd, $J=11.7,2.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.83-2.66 (brs, 2 H), $1.41(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 108.5,77.8,61.5,26.2$; MS (ESI): $m / z 185[\mathrm{M}+\mathrm{Na}]^{+} . \mathrm{HRMS}$ (ESI): calcd for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}$: 185.0784, found: 185.0776.
((4R,5R)-5-(((4-Methoxybenzyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolan-4-yl)methanol
III: To a solution of diol II ($2.53 \mathrm{~g}, 15.6 \mathrm{mmol}$) in anhydrous benzene (26 mL) maintained
under nitrogen was added 4-methoxybenzyl chloride ($1.5 \mathrm{~mL}, 14.51 \mathrm{mmol}$) and KOH (0.84 $\mathrm{g}, 14.98 \mathrm{mmol})$. The reaction mixture was refluxed for 9 h and then filtered. The solvent was removed under reduced pressure, and the crude product was purified by flash column chromatography using $30-40 \%$ EtOAc/hexane (v/v) as the eluent to afford alcohol III (3.6 g , $12.8 \mathrm{mmol})$ in 82% yield as a colourless oil. TLC: $\mathrm{R}_{\mathrm{f}} 0.28(30 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]^{20}{ }_{\mathrm{D}}=$ $-9.94\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;\left[{ }^{\text {lit. }}{ }^{12 \mathrm{~b}}[\alpha]_{\mathrm{D}}^{23}=-8.44\right.$ (c 1.08, CHCl_{3})]; IR (neat): 3454, 2932, 1612, 1513, 1375, 1248, 1082, $843 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=$ 8.2, 5.9, $5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 (dt, $J=8.2$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dt}, J=11.6,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{dd}, J=9.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=7.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}$, 3 H), 1.14 ($\mathrm{s}, 3 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7$, 129.2, 128.8, 113.3, 108.8, 79.0, 76.2, 72.6, 69.6, 61.9, 54.6, 26.4; MS (ESI): $m / z 305[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{5}$: 283.1530 , found: 283.1533

(4S,5R)-4-(Chloromethyl)-5-(((4-methoxybenzyl)oxy)methyl)-2,2-dimethyl-1,3-dioxolane

 13: To a stirred solution of III ($3.58 \mathrm{~g}, 12.7 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(64 \mathrm{~mL})$ was added triphenyl phosphine $(6.7 \mathrm{~g}, 25.4 \mathrm{mmol})$ at rt and the mixture was heated at reflux for 12 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, diluted with hexanes (64 mL) and stirred for 30 min . The precipitate was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography using $3 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent to afford compound $13(3.24 \mathrm{~g}, 10.79 \mathrm{mmol})$ in 85% yield as a colourless liquid. TLC : $\mathrm{R}_{\mathrm{f}} 0.25(5 \%$ $\mathrm{EtOAc} /$ hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=-1.13$ (c 1.0, CHCl_{3}); IR (neat): 2989, 2865, 1610, 1513, 1248, 1084, $828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), 4.52 (s, 2H), 4.08-4.05 (m, 2H), 3.81 (s, 3H), 3.69-3.56 (m, 4H), 1.44 (s, 3H), 1.43 (s , $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 158.7,129.3,128.6,113.1,109.2,77.6,77.2,72.5,69.5$,54.4, 43.9, 26.5, 26.4; MS (ESI): m/z 323 [M+Na] ${ }^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{ClNa}$: 323.1020, found: 323.1001 .
(S)-1-((4-Methoxybenzyl)oxy)but-3-yn-2-ol 22: To freshly prepared LiNH_{2} (prepared in situ by dissolving lithium metal (65 mg atom) in liq $\mathrm{NH}_{3}\left(160 \mathrm{~mL}\right.$) at $-33^{\circ} \mathrm{C}$ was added the solution of chloride $\mathbf{1 3}(2.2 \mathrm{~g}, 10.7 \mathrm{mmol})$ in anhydrous THF (11 mL) during 3 min . After 30 \min, solid $\mathrm{NH}_{4} \mathrm{Cl}(11 \mathrm{~g})$ was added and ammonia was warmed to rt to evaporate. The residue was partitioned between water $(50 \mathrm{~mL})$ and ether $(50 \mathrm{~mL})$. The organic layer was separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography using 20-25\% EtOAc/hexanes (v/v) as the eluent to afford pure product $\mathbf{2 2},(1.98 \mathrm{~g}, 9.63 \mathrm{mmol})$ in 90% yield as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.2(20 \% \mathrm{EtOAc} / \mathrm{hexane}) ;[\alpha]^{20}{ }_{\mathrm{D}}=+4.66$ (c 1.0, CHCl_{3}); IR (neat): 3412, 3284, 2909, 2115, 1512, 1246, $1030 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=9.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.70$ (brs, 1 H), $2.45(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.7,129.2,129.0$, 113.3, 81.9, 73.3, 72.7, 72.4, 60.7, 54.7; MS (ESI): $m / z 229$ [M+Na] ${ }^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}$: 229.0835 , found: 229.0821.
(S)-1-Methoxy-4-(((2-(methoxymethoxy)but-3-yn-1-yl)oxy)methyl)benzene 23: To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of compound $22(1.96 \mathrm{~g}, 9.53 \mathrm{mmol})$ and $i-\mathrm{Pr}_{2} \mathrm{NEt}(4.9 \mathrm{~mL}, 28.6$ mmol) in anhydrous dichloromethane (48 mL) was added $\mathrm{MOM}-\mathrm{Cl}(1.1 \mathrm{~mL}, 14.3 \mathrm{mmol})$ slowly followed by TBAI ($0.35 \mathrm{~g}, 0.95 \mathrm{mmol}$) and the mixture was stirred for 6 h at rt . After completion of the reaction as monitored by TLC, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added and the reaction mixture was extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to give a crude residue, which was purified
by column chromatography using $10 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent to afford compound 23 ($2.14 \mathrm{~g}, 8.58 \mathrm{mmol}$) in 90% yield as a light yellow liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.3(10 \%$ EtOAc/hexane) ; $[\alpha]^{20}{ }_{\mathrm{D}}=+49.67$ (c 1.0, CHCl_{3}); IR (neat): 3281, 2897, 2114, 1512, 1247, 1030, $822 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) 4.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{td}, J=6.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.9,129.6,129.0,113.5,94.0$, 79.8, 74.3, 72.7, 71.7, 64.8, 55.3, 54.8; MS (ESI): $m / z 273[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}: 273.1097$, found: 273.1080 .

3-((tert-Butyldiphenylsilyl)oxy)- N-methoxy- N-methylpropanamide 14: Mono TBDPS

 protected 1,3-propane diol ($6.2 \mathrm{~g}, 20 \mathrm{mmol}$) was dissolved in acetone $(80 \mathrm{~mL})$ and cooled at $0{ }^{\circ} \mathrm{C}$. Jones reagent (12.5 mL) (prepared by dissolution of $26.72 \mathrm{~g} \mathrm{CrO}_{3}$ in 23 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and dilution to 100 mL with $\mathrm{H}_{2} \mathrm{O}$) was added slowly. The reaction mixture was stirred at the same temperature for 10 min , then the acetone was removed in vacuo. Ethyl acetate $(100 \mathrm{~mL})$ was added and this solution was washed several times with $\mathrm{H}_{2} \mathrm{O}$ and once with brine. The solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and was then evaporated in vacuo to afford the corresponding acid $(6.2 \mathrm{~g}, 19 \mathrm{mmol})$ in 95% yield as viscous oil which was used in the next step without further purification. A solution of the acid ($6.2 \mathrm{~g}, 19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(95 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ in a flame-dried flask. $1,1^{\prime}$-Carbonyl diimidazole ($3.7 \mathrm{~g}, 22.8$ mmol) was added to the reaction mixture at this temperature. After stirring for $30 \mathrm{~min}, \mathrm{~N}, \mathrm{O}-$ dimethyl hydroxylamine hydrochloride ($2.2 \mathrm{~g}, 22.8 \mathrm{mmol}$) was added and the reaction was warmed to rt. After 4 h the salts were filtered through a cotton plug and the filtrate was washed with aq $\mathrm{HCl}(1 \mathrm{M}, 50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain Weinreb amide $\mathbf{1 4}(6.22 \mathrm{~g}, 16.7 \mathrm{mmol})$ in 88% yield as a light yellow oil. TLC: $\mathrm{R}_{\mathrm{f}} 0.2$ (15% EtOAc/hexane); IR (neat): 3070, 2933, 2757,1664, 1426, 1109, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}$, $6 \mathrm{H}), 4.01(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.0,135.3,133.4,129.4,127.4,61.0,59.9,34.7,31.7$, 26.6, 18.9; MS (ESI): $m / z 394[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{Si}$: 372.1989, found: 372.1996.

(S)-5-(((4-Methoxybenzyl)oxy)methyl)-13,13-dimethyl-12,12-diphenyl-2,4,11-trioxa-12-

silatetradec-6yn-8-one 24: To a stirred solution of alkyne $23(2.12 \mathrm{~g}, 8.49 \mathrm{mmol})$ in THF $(28 \mathrm{~mL})$ was added $i-\mathrm{PrMgCl}(2.0 \mathrm{M}$ in THF, $4.24 \mathrm{~mL}, 8.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After stirring at the same temperature for 1 h , the mixture was transferred to the solution of Weinreb amide $\mathbf{1 4}(2.4 \mathrm{~g}, 6.53 \mathrm{mmol})$ in THF (38 mL) via cannula at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. Then the mixture was warmed to rt and stirred for 8 h . The reaction was quenched by adding aq sat $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and the reaction mixture was diluted with EtOAc $(25 \mathrm{~mL})$. After separation of the two layers, the aq layer was extracted with EtOAc $(3 \times 25$ mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated under reduced pressure. The residue was purified by flash column chromatography using $15 \% \mathrm{EtOAc} / \mathrm{hexane}(\mathrm{v} / \mathrm{v})$ as the eluent to afford compound $\mathbf{2 4}$ ($3.18 \mathrm{~g}, 5.68 \mathrm{mmol}$) in 87% yield as a pale yellow liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.4$ ($15 \% \mathrm{EtOAc} /$ hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+42.09\left(c 1.0, \mathrm{CHCl}_{3}\right)$; IR (neat): 3069, 2933, 2213, 1680, 1248, 1107, 1031, 705 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}$, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 185.3,159.2,135.4,133.1,129.6,129.5,129.2,127.6,113.7,94.7$, 87.8, 84.4, 73.0, 71.0, 65.1, 59.0, 55.6, 55.1, 48.0, 26.6, 19.0; MS (ESI): $m / z 578\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{NSi}$: 578.2932 , found: 578.2951.
(5S,8S)-5-(((4-Methoxybenzyl)oxy)methyl)-13,13-dimethyl-12,12-diphenyl-2,4,11-trioxa-12-silatetradec-6-yn-8-ol 12: A solution of compound $\mathbf{2 4}$ ($4.1 \mathrm{~g}, 7.23 \mathrm{mmol}$) in ethyl acetate $(144 \mathrm{~mL})$ was added to a suspension of $[(S, S)-\mathrm{TsDPEN}] \mathrm{Ru}$ - $(p$-cymene) $\mathrm{Cl}(91 \mathrm{mg}, 0.144$ $\mathrm{mmol})$, sodium formate $(9.0 \mathrm{~g}, 115.6 \mathrm{mmol})$ and 1-butyl-3-methylimidazolium tetrafluoroborate $(163 \mathrm{mg}, 0.72 \mathrm{mmol})$ in water $(144 \mathrm{~mL})$. The reaction mixture was stirred for 12 h at rt . The phases were separated and the aq phase was extracted with ethyl acetate $(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with brine $(40 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product obtained was purified by column chromatography using $20-25 \% \mathrm{EtOAc} /$ hexane (v / v) as the eluent to afford compound $12(3.33 \mathrm{~g}, 5.93 \mathrm{mmol})$ in 82% yield as liquid. TLC : $\mathrm{R}_{\mathrm{f}} 0.25(20 \%$ EtOAc/hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+45.45$ (c 1.0, CHCl_{3}); IR (neat): 3448, 3070, 2932, 2116, 1513, 1248, 1107, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.37(\mathrm{~m}, 6 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.70(\mathrm{~m}$, $1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{ddd}, J=6.8,4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=11.9,7.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.78(\mathrm{~m}, 4 \mathrm{H}), 3.66-3.60$ (m, 2H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.04$ ($\mathrm{s}, 9 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.1,135.4,132.8,129.8,129.7,129.1,127.7$, 113.6, 94.2, 86.9, 80.7, 72.8, 72.0, 65.2, 61.5, 61.1, 55.5, 55.1, 38.8, 26.6, 18.9; MS (ESI): $m / z 580\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{46} \mathrm{O}_{6} \mathrm{NSi}: 580.3088$, found: 580.3103.

(S)-(5S,8S)-5-(((4-Methoxybenzyl)oxy)methyl)-13,13-dimethyl-12,12-diphenyl-2,4,11-

 trioxa-12-silatetradec-6-yn-8-yl-2-methoxy-2-phenylacetate IV: To a solution of the alcohol $12(14 \mathrm{mg}, 0.025 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added (S) - O-methyl mandelic acid ($4.2 \mathrm{mg}, 0.025 \mathrm{mmol}$), DCC $(6.2 \mathrm{mg}, 0.03 \mathrm{mmol})$ and a few crystals of DMAP and the mixture was stirred for 45 min . The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using 10-12\%EtOAc/hexane (v/v) as the eluent to afford a esters IV ($14.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) in 82% yield as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.69-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 9 \mathrm{H}), 7.32-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.7(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.41(\mathrm{~m}, 3 \mathrm{H}), 3.80$ (s, 3H), 3.75-3.62 (m, 2H), $3.49(\mathrm{dd}, J=10.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=10.7,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$.

(R)-(5S,8S)-5-(((4-Methoxybenzyl)oxy)methyl)-13,13-dimethyl-12,12-diphenyl-2,4,11-

 trioxa-12-silatetradec-6-yn-8-yl-2-methoxy-2-phenylacetate \mathbf{V} : To a solution of the alcohol 12 ($14 \mathrm{mg}, 0.025 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added (R) - O-methyl mandelic acid ($4.2 \mathrm{mg}, 0.025 \mathrm{mmol}$), DCC ($6.2 \mathrm{mg}, 0.03 \mathrm{mmol}$) and a few crystals of DMAP and the mixture was stirred for 45 min . The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using $10-12 \%$ EtOAc/hexane (v/v) as the eluent to afford a esters $\mathbf{V}(14 \mathrm{mg}, 0.02 \mathrm{mmol})$ in 80% yield as a colourless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.44-$ $7.32(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.33(\mathrm{~m}, 8 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$.(5S,7S)-5-(((4-Methoxybenzyl)oxy)methyl)-13,13-dimethyl-12,12-diphenyl-2,4,11-trioxa-12-silatetradeca-6,7-diene 27: DEAD ($1.1 \mathrm{~mL}, 7.1 \mathrm{mmol}$) was added dropwise to a solution containing the mixture of N-isopropylidene- $N^{\prime}-2$-nitrobenzenesulfonylhydrazine (25)(1.83 g, $7.14 \mathrm{mmol})$, alcohol $12(3.32 \mathrm{~g}, 5.9 \mathrm{mmol})$ and triphenylphosphine $(1.87 \mathrm{~g}, 7.14 \mathrm{mmol})$ in anhydrous toluene (137 mL) cooled at $0{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. After 5 min , the reaction mixture was warmed to rt . After 20 min a mixture of trifluoroethanol and water (1:1, 67.5 mL) was added to the reaction mixture to enable formation of the allylic diazene intermediate. After 3 h , the reaction mixture was partitioned between diethyl ether (60 mL)
and water $(60 \mathrm{~mL})$ and the aq layer was extracted with diethyl ether $(2 \times 100 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography using 5% EtOAc/hexane (v/v) as the eluent to afford allene $27(2.67 \mathrm{~g}, 4.9 \mathrm{mmol})$ in 83% yield as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.3$ (5\% EtOAc/hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+79.84$ (c 1.0, CHCl_{3}); IR (neat): $3069,2932,1964,1513,1248,1152,1107,1033,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 5.25(\mathrm{qd}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{td}, J=6.8,1.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.55-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{qd}, J=6.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.2,158.9,135.3,133.6,130.1,129.4,129.0,127.4,113.5,94.0,88.9$, 73.4, 72.7, 72.5, 63.3, 55.1, 55.0, 32.0, 26.7, 19.0; MS (ESI): m/z 569 [M+Na] ${ }^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Na} \mathrm{Si}: 569.2693$, found: 569.2701.
(2S,4S)-7-((tert-Butyldiphenylsilyl)oxy)-2-(methoxymethoxy)hepta-3,4-dien-1-ol 28: To a solution of the PMB ether $27(2.65 \mathrm{~g}, 4.85 \mathrm{mmol})$ in a mixture of dichloromethane (30 mL) and pH 7 phosphate buffer (3 mL) was added DDQ ($1.65 \mathrm{~g}, 7.28 \mathrm{mmol}$). The reaction mixture was stirred for 1.5 h at ambient temperature and then diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic solution was washed with water $(2 \times 10 \mathrm{~mL})$ and sat aq $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$. The combined aq layers were extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography using 20-25\% EtOAc/hexane (v/v) as the eluent to afford alcohol $28(1.9 \mathrm{~g}, 4.46 \mathrm{mmol})$ in 92% yield as a clear, colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.25(20 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]^{20}{ }_{\mathrm{D}}=+81.49\left(c\right.$ 1.0, CHCl_{3}); IR (neat): 3450, 3070, 2931, 1964, $1427,1106,1030,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.64(\mathrm{~m}$, $4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.28(\mathrm{qd}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=6.7$
$\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{tdd}, J=7.2,3.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=6.7,0.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.69-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, J=8.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{qd}, J=6.7,2.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 205.2,135.4,133.6,129.5,127.5$, 94.5, 89.3, 88.4, 76.4, 65.4, 63.2, 55.4, 32.0, 26.7, 19.1; MS (ESI): $m / z 449[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{NaSi}$: 449.2118, found: 449.2096.
(2S,4S)-7-((tert-Butyldiphenylsilyl)oxy)-2-(methoxymethoxy)hepta-3,4-dienal 9: To a solution of alcohol $28(1.87 \mathrm{~g}, 4.4 \mathrm{mmol})$ in dichloromethane (44 mL) was added sodium bicarbonate ($5.55 \mathrm{~g}, 66 \mathrm{mmol}$) and Dess-Martin periodinane ($2.8 \mathrm{~g}, 6.6 \mathrm{mmol}$). The mixture was stirred at ambient temperature for 1.5 h and then quenched with aq sat $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$. After stirring for an additional 10 min , the mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and aq sat $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The layers were separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography using $20 \% \mathrm{EtOAc} / \mathrm{Hexane}(\mathrm{v} / \mathrm{v})$ as the eluent to afford compound $9(1.68 \mathrm{~g}$, $3.96 \mathrm{mmol})$ in 90% yield, as a colourless liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.4$ ($20 \% \mathrm{EtOAc} /$ hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=$ +49.24 (c 1.0, CHCl_{3}); IR (neat): 3070, 2932, 2858, 1964, 1734, 1427, 1108, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 9.52(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H})$, $5.41(\mathrm{qd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m} \mathrm{1H}), 4.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{dt}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{td}, J=6.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{qd}, J$ $=6.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.6,198.1,135.4,133.6$, 129.5, 127.6, 94.9, 90.7, 85.4, 79.3, 63.1, 55.7, 31.8, 26.7, 19.1; MS (ESI): $m / z 447$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}: 447.1962$, found: 447.1965.
disilatricosa-7,8,12-trien-11-ol 7: n - $\mathrm{BuLi}(2.5 \mathrm{M}$ in Hexane, $0.96 \mathrm{~mL}, 2.4 \mathrm{mmol})$ was added dropwise to a stirred solution of vinyl iodide $\mathbf{8}(990 \mathrm{mg}, 2.5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(17 \mathrm{~mL})$ cooled at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min and at $0^{\circ} \mathrm{C}$ for 10 min before being re-cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of aldehyde $9(424 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added dropwise and the reaction mixture was warmed to $0{ }^{\circ} \mathrm{C}$ immediately and stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min . The reaction was quenched with aq sat $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The organic layer was separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 8 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude residue was purification by flash column chromatography using $10 \% \mathrm{EtOAc} / \mathrm{Hexane}$ $(\mathrm{v} / \mathrm{v})$ as the eluent to afford alcohol $7(194 \mathrm{mg}, 0.28 \mathrm{mmol})$ in 28% yield and alcohol 29 (291 $\mathrm{mg}, 0.42 \mathrm{mmol}$) in 42% yield as a separable mixture of diastereomers ($\mathrm{dr}=1: 1.5$ respectively).

Compound 29: TLC: $\mathrm{R}_{\mathrm{f}} 0.3$ (10\% EtOAc/hexane); IR (neat): 3469,3070 , 2930, 1964, 1467, 1253, 1104, $704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 6 \mathrm{H})$, $5.27(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=8.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{qd}, J=6.7,2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.92$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.4,135.5$, 134.3, 133.7, 131.1, 129.5, 127.5, 93.7, 88.3, 87.3, 78.0, 76.7, 63.4, 63.2, 55.5, 37.4, 32.8, 32.2, 31.9, 27.2, 26.8, 25.9, 20.9, 20.8, 19.1, 18.3, 13.0, -5.2; MS (ESI): $m / z 717[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 717.4341, found: 717.4347.

Compound 7: TLC: $\mathrm{R}_{\mathrm{f}} 0.25$ (10% EtOAc/hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+84.07$ (c $0.6, \mathrm{CHCl}_{3}$); IR (neat): $3452,2926,2856,1964,1463,1102,1028,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.68-7.64 (m, 4H), 7.44-7.35 (m, 6H), 5.22-5.14 (m, 2H), 4.87-4.82 (m, 1H), $4.75(\mathrm{~d}, J=6.5$
$\mathrm{Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{qd}, J=6.8,2.7$ $\mathrm{Hz}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 5 \mathrm{H}), 1.21-1.14(\mathrm{~m}, 1 \mathrm{H})$, $1.04(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 205.9,136.8,135.5,133.7,131.3,129.5,127.5,94.1,88.53,88.50,80.5,77.7$, 63.3, 63.2, 55.7, 37.4, 32.8, 32.1, 31.9, 29.6, 27.1, 26.7, 25.9, 20.8, 19.1, 18.3, 12.0, -5.2; MS (ESI): m/z $717[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}: 717.4341$, found: 717.4356.

Mandelate esters of the mixtutre of alcohols 7 and 29 (VI): To a solution of the mixture of alcohols 7 and $29(16 \mathrm{mg}, 0.023 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added $(R)-O$ methyl mandelic acid ($4 \mathrm{mg}, 0.023 \mathrm{mmol}$), DCC ($6 \mathrm{mg}, 0.028 \mathrm{mmol}$) and a few crystals of DMAP were added and the mixture was stirred for 45 min . The solvent was removed under vacuum and the residue was purified by flash column chromatography on silica gel using 5$7 \% \mathrm{EtOAc} /$ hexane $(\mathrm{v} / \mathrm{v})$ as the eluent to afford esters VI $(15.5 \mathrm{mg}, 0.018 \mathrm{mmol})$ in 80% yield as a colourless oil. The data for the ester of alcohol 29 is denoted with an asterisk. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.62(\mathrm{~m}, 8 \mathrm{H}), 7.46-7.29(\mathrm{~m}, 22 \mathrm{H}), 5.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 5.20-$ $5.10(\mathrm{~m}, 4 \mathrm{H}), 5.06(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 4.20(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 4.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{t}, J=8 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 3.74-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.55(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.54(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $3.42(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H})^{*}, 3.40(\mathrm{~s}, 3 \mathrm{H})^{*}, 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.74-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 8 \mathrm{H}), 1.55(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})^{*}, 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{~d}, J$ $=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H})^{*}, 0.89(\mathrm{~s}, 9 \mathrm{H})^{*}, 0.88(\mathrm{brs}, 12 \mathrm{H}), 0.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, 3H)*, 0.02 (s, $12 \mathrm{H})$.
($8 S, 10 S, 14 R, E$)-10-(Methoxymethoxy)-2,2,12,14,21,21,22,22-octamethyl-3,3-diphenyl-4,20-dioxa-3,21-disilatricosa-7,8,12-trien-11-one VII: To a solution of alcohol 29 (278 mg ,
0.4 mmol) in dichloromethane (8 mL) was added sodium bicarbonate ($504 \mathrm{mg}, 6 \mathrm{mmol}$) and Dess-Martin periodinane ($254 \mathrm{mg}, 0.6 \mathrm{mmol}$). The mixture was stirred for 1.5 h at ambient temperature and then quenched with aq sat $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$. After stirring for an additional 10 min , the mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ and aq sat $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The layers were separated and the aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by flash column chromatography using 5-8\% EtOAc/Hexane (v / v) as the eluent to afford compound VII ($243 \mathrm{mg}, 0.35 \mathrm{mmol}$) in 88% yield as light yellow liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.15$ ($5 \% \mathrm{EtOAc} /$ hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+109.76$ (c 0.33, CHCl_{3}); IR (neat): 2930, 2858, 1964, 1680, 1466, 1105, 1033, 704; ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.68-7.63(\mathrm{~m}, 4 \mathrm{H})$, 7.45-7.35 (m, 6H), $6.43(\mathrm{dq}, J=9.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.76$ (d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{td}, J=6.6,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{qd}, J=6.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 5 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 206.2, 197.4, 150.3, 135.4, 133.7, 133.6, 129.5, 127.6, 94.3, 89.9, 89.0, 75.0, 63.2, 63.1, 55.8, 36.7, 33.5, 32.7, 31.9, 27.2, 26.7, 25.9, 25.8, 20.0, 19.1, 18.3, 11.8, -5.2; MS (ESI): $m / z 715[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}: 715.4184$, found: 715.4181.
($8 S, 10 S, 11 S, 14 R, E)-10$-(Methoxymethoxy)-2,2,12,14,21,21,22,22-octamethyl-3,3-
diphenyl-4,20-dioxa-3,21-disilatricosa-7,8,12-trien-11-ol 7: To a solution of ketone VII ($235 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $1: 1$ mixture of dichloromethane $/$ water $(1.8 \mathrm{~mL})$ were added sodium formate ($231 \mathrm{mg}, 3.4 \mathrm{mmol}$) and $n-\mathrm{Bu}_{4} \mathrm{NBr}(32.8 \mathrm{mg}, 0.102 \mathrm{mmol})$. The biphasic reaction mixture was vigorously stirred and (S, S)-Noyori catalyst ($5.4 \mathrm{mg}, 2.5 \mathrm{~mol} \%$) was added. After stirring for 15 h , an additional $1 \mathrm{~mol} \%$ of catalyst was added and the reaction mixture was stirred for an additional 12 h . The layers were separated and the aq layer was extracted
with dichloromethane ($2 \times 5 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under the reduced pressure to afford a separable mixture of alcohol $\mathbf{7}$ and $\mathbf{2 9}(200 \mathrm{mg}, 0.289 \mathrm{mmol})$ in 85% combined yield as $9: 1$ mixture of isomers respectively.
tert-Butyl(2-((2S,5S,6S)-6-((R,E)-9-((tert-butyldimethylsilyl)oxy)-4-methylnon-2-en-2-yl)-5-(methoxymethoxy)-5,6-dihydro-2H-pyran-2-yl)ethoxy)diphenylsilane 2: To a solution of the allene $7(160 \mathrm{mg}, 0.23 \mathrm{mmol})$ in anhydrous toluene (3 mL) under nitrogen was added $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{AuCl}(5.9 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{AgSbF}_{6}(4.1 \mathrm{mg}, 5 \mathrm{~mol} \%)$ The mixture was stirred at rt for 6 h . The mixture was filtered through Celite, and the filtrate was concentrated under reduced pressure. The crude product was purified by flash column chromatography using 5$6 \% \mathrm{EtOAc} /$ Hexane $(\mathrm{v} / \mathrm{v})$ as the eluent to afford compound $2(99 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 62% yield as a light yellow liquid. TLC: $\mathrm{R}_{\mathrm{f}} 0.3(5 \% \mathrm{EtOAc} /$ hexane $) ;[\alpha]^{20}{ }_{\mathrm{D}}=+35.08(c \quad 0.22$, CHCl_{3}); IR (neat): 2927, 2856, 1741, 1636, 1103, 1041, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.69-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.04-5.94(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{dt}, J=9.5,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.72-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=5.0,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88-3.83 (m, 1H), 3.73-3.67 (m, 1H), $3.57(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.35(\mathrm{~m}$, $1 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.17(\mathrm{~m}, 6 \mathrm{H}), 1.04(\mathrm{~s}$, $9 \mathrm{H}), 0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $135.5,134.1,133.9,132.4,130.0,129.5,127.6,124.4,95.7,74.0,70.0,68.7,63.3,60.4,55.4$, $37.4,34.4,32.8,31.8,29.6,27.3,26.8,25.9,20.9,19.2,18.3,13.8,-5.2 ;$ MS (ESI): $m / z 717$ $[\mathrm{M}+\mathrm{Na}]^{+}$. HRMS (ESI): calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}$: 717.4341 found: 717.4354.

Supporting Information

HPLC chromatogram, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic characterization data. This material is available free of charge via the internet at http://pubs.acs.org.

ACKNOWLEDGEMENT

N. Satyanarayana is thankful to Council of Scientific and Industrial Research (CSIR)-New Delhi for fellowship. S. R is grateful to the Department of Science and Technology, New Delhi for funding the project (EMR/2014/000753) and CSIR, New Delhi for funding under the XII five year plan programme entitled ORIGIN (CSC-108).

REFERENCES

(1) Jansen, R.; Wray, V.; Irschik, H.; Reichenbach, H.; Hofle, G. Tetrahedron Lett. 1985, 26, 6031.
(2) Irschik, H.; Jansen, R.; Gerth, K.; Hofle, G.; Reichenbach, H. J. Antibiot. 1987, 40, 7.
(3) Jansen, R.; Irschik, H.; Reichenbach, H.; Schomburg, D.; Wray, V.; Hofle, G. Liebigs Ann. Chem. 1989, 111.
(4) Smith, A. B., III; Dong, S.; Brenneman, J. B.; Fox, R. J. J. Am. Chem. Soc. 2009, 131, 12109 and references cited therein.
(5) Crimmins, M. T.; Haley, M. W.; O’Bryan, E. A. Org. Lett. 2011, 13, 4712 and references cited therein.
(6) (a) Smith, A. B., III; Dong, S. Org. Lett. 2009, 11, 1099 and references cited therein. (b) Lee, K.; Kim, H.; Hong, J. Eur. J. Org. Chem. 2012, 1025. (c) Sridhar, Y.; Srihari, P. Org. Biomol. Chem. 2013, 11, 4640 and references cited therein. (d) Michaelis, L.; Schinzer, D. Synlett. 2014, 25, 951 and references cited therein
(7) Raghavan, S.; Rajendar, S. Org. Biomol. Chem. 2016, 14, 131. Addition of thiophenol to methallyl alcohol in the presence of catalytic amount of AIBN yielded the racemic alcohol 15, which was resolved using Amano lipase to furnish the (S)-alcohol in 45% yield and 99% ee.
(8) (a) Dilworth, B. M.; McKervey, M. A. Tetrahedron. 1986, 42, 3731. (b) Raghavan, S.;

Vinoth Kumar, V.; Raju Chowhan, L. Synlett 2010, 1807.
(9) Mancuso, A. J.; Brownfain, D. S.; Swern, D. J. Org. Chem.1979, 44, 4148 and references cited therein
(10) (a) Ohira, S.; Synth. Commun. 1989, 19, 561. (b) Muller, S, J.; Liepold, B.; Roth, G. J.; Bestmann, H, J. Synlett. 1996, 521.
(11) Panek, S. J.; Hu, T. J. Org. Chem. 1997, 62, 4912.
(12) (a) Kim, B. M.; Bae, S. J.; So, S. M.; Yoo, H. T.; Chang, S. K.; Lee, J. H.; Kang, J. Org. Lett. 2001, 3, 2349. (b) Roulland, E. Angew. Chem. Int. Ed. 2008, 47, 3762. (c) Lo, H. J.;

Chang, Y. K.; Yan, T. H. Org. Lett. 2012, 14, 5896. (d) Li, B.; Yang, X.; Yang , K.; Fu, E. Synth. Commun. 2005, 35, 2603.
(13) Yadav, J. S.; Chander, M. C.; Joshi, B. V. Tetrahedron Lett. 1988, 29, 2737.
(14) The amide 14 was prepared by Jones oxidation of the mono-protected silyl ether of 1,3propanediol followed by treatment of the resulting acid with carbonyldiimidazole and $\mathrm{N}, \mathrm{O}-$ dimethylhydroxylamine hydrochloride. For related preparation, see: Ng, S.M.; Bader, S.J.; Snaper, M. L. J. Am. Chem. Soc. 2006, 128, 7315.
(15) (a) Rodriguez, A. R.; Spur, B. W. Tetrahedron Lett. 2012, 53, 1912. (b) Matsumara, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738.
(16) (a) Myers, A. G.; Zheng, B. J. Am. Chem. Soc. 1996, 118, 4492. (b) Movassaghi, M.;

Ahmad, O. K. J. Org. Chem. 2007, 72, 1838.
(17) Fukuyama, T.; Jow, C.-K.; Cheung, M. Tetrahedron Lett. 1995, 36, 6373 and references cited therein.
(18) Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885.
(19) Meyer, S. D.; Schreiber, S. J. Org. Chem. 1994, 59, 7549 and references cited therein. (20) Attemted reaction of aldehyde $\mathbf{9}$ with the alkenylzinc species, obtained from 21 by reaction with Schwartz reagent followed by transmetalation with diethylzinc, did not furnish any desired product, instead a complex mixture of products resulted. For transmetalation of
alkenylzirconium to alkenylzinc species and addition to aldehyde, see: Wipf, P.; Xu, W.
Tetrahedron Lett. 1994, 35, 5197.
(21) (a) Peach, P.; Cross, D. J.; Kenny, J. A.; Mann, I.; Houson, I.; Campbell, L.; Walsgroveb, T.; Willsa, M. Tetrahedron. 2006, 62, 1864. (b) Nicolaou, K. C.; Adsool, V. A.; Hale, C. R. H. Angew. Chem. Int. Ed. 2011, 50, 5149.
(22) Gockel, B.; Krause. N. Org. Lett. 2006, 8, 4485.

TOC Graphics

