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Abstract: A mild and efficient iodine-catalyzed direct substitution of hydroxy group of allylic, progargylic and other 

alcohols with various C- and N-nucleophiles was described in this contribution. C-C and C-N bond formations could be 

readily achieved by non-metallic and green catalysis for various compounds. This facilitates access to possible 

transformations of a broad scope of substrates into bioactive and pharmaceutically important building blocks. 
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C-C and C-N bond formation reactions [1] have attracted 
tremendous attention and have been widely studied in 
synthetic organic chemistry since they provide access to 
various biologically active intermediates and 
pharmaceutically important molecules. The set-up of direct 
substitution protocols employing general alcohols with C- 
and N-nucleophiles is desirable from the point of view of 
atom economy [2] and green chemistry [3]. However, 
traditional strategies have some limitations in that hydroxy 
group in alcohols is generally pretransformed into other 
leaving groups which could be easily removed, such as 
acetates, carbonates, halides etc. These unnecessary 
pretransformations not only bring about high consumption of 
energy, toxic organic solvents and precious transition-metal 
or rare earth catalysts, but also result in operational 
complexity and low efficiency in multistep conversions 
(pathway i, Scheme 1). In contrast, direct C-C and C-N bond 
formation reactions of alcohols with aromatic or aliphatic 
nucleophiles are greener and more economical synthetic 
methodologies in which environmentally benign water is the 
only byproduct and can be discarded to circumstances 
without any pollution. There is no need to input plenty of 
preactivators, energy and chemicals, and catalytic C-X bond 
formations can be achieved in one step (pathway ii, Scheme 
1). In this context, developing new, mild and efficient 
strategies for direct substitution of hydroxy groups in 
alcohols with aromatic or aliphatic nucleophiles rekindles 
chemist’s interests due to the above-mentioned advantages. 

Nowadays, various transition-metal complexes or metal 
Lewis acids, are precious, air/moisture-sensitive and difficult 
to handle, they have been widely used to catalyze the allylic, 
propargylic substitutions and other alkylations with C- and 
N-nucleophiles [4]. In some cases, additives are also 
indispensable as copromoters and excessive amine 
nucleophiles are often necessary for smooth completion in 
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Scheme 1. Direct substitution of hydroxy groups in alcohols vs. 

multistep transformations. 

 
propargylic substitutions of amides [4a-c]. Since the leaving 
ability of hydroxy group is not satisfactory under mild 
conditions, high reaction temperature is often required. 
Although the alkylation of indoles [4d-p], amines and 
amides [4q-u] has been studied by Bandini, Ishimura and 
other groups, unsatisfactory regioselectivity and narrow 
substrate scope are limitations for further practical 
applications. 

In recent years, iodine has emerged as a versatile Lewis 
acid catalyst for various organic transformations such as 
Michael addition [5a-c], coupling [5d], cycloaddition [5e], 
silylation [5f], protection/deprotection [5g-j] and even multi-
component synthesis [5k-n], in which it can efficiently 
activate C=C, C=O, C=N and other functional groups. Iodine 
is a cheap and commercially available catalyst with high 
tolerance to air and moisture. As an extension of our 
previous work [5o], we intend to describe the iodine-
catalyzed direct substitution of alcohols with C- and N-
nucleophiles to elucidate a more efficient allylation, 
propargylation and other alkylation protocols with a versatile 
substrate scope under mild reaction conditions. 

Initially, allylation reaction of indoles with E-1,3-
diphenyl-2-propen-1-ol 1a was selected as model reaction to 
investigate the iodine-catalyzed direct substitution and the 
substrate scope (Fig. 1). Excellent yield of desired product 3-
((E)-1,3-diphenylallyl)-1H-indole 3a was afforded when 
indole 
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Table 1. Iodine-Catalyzed Allylation of C-Nucleophiles 
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(Table 1). Contd….. 

Entry C-nucleophile Time(h) Product Yield% 
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Fig. (1). 

 

2a was reacted in acetonitrile at room temperature under the 
catalysis of 10mol% molecular iodine (Entry 1, Table 1). 
Encouraged by this result, various indoles were reacted in 
this substitution and corresponding 3-allylated products were 
given in excellent yields (Entry 2-7). The direct allylation 
was satisfactory for both electron-rich and electron-deficient 
indole substrates. Furthermore, this efficient protocol was 
expanded to other aromatic compounds 2-methyl furan and 
phenols, the expected allylated products were yielded 
regioselectively and smoothly under the optimized 
conditions (Entry 8-10). The aliphatic nucleophile pentane-
2,4-dione 2k could also be converted into 3k in 95% yield 
(Entry 11). 

Besides of C-nucleophiles, a variety of amides, such as 
sulfonamides, carboxamides and carbamates, which are less 
nucleophilic, were then investigated in this direct 
substitution reaction (Fig. 2, Table 2). It was found that most 
amides screened could be efficiently transformed to give N-
allylated compounds excellent yields. p-
Nitrobenzenesulfonamide and benzamide were less reactive 
and only moderate yield were afforded (Entry 2, 5). These 
reactions were cleanly achieved to give the expected 
products without the employment of transition-metal 
catalyst, additives or harsh reaction conditions, which 
overran the Pd-catalyzed[4r,s] or Bi(OTf)3/KPF6 [4v] 
protocols. Nevertheless, since the allylic amination requires 
more activation energy at high temperature [4q], both 
nicotinamide and p-toluidine remained intact after prolonged 

stirring with 1a and starting materials were recovered under 
such mild condition (Entry 8, 9). 

To further expand the substrate scope in this direct 
substitution methodology, more alcohols with varied 
nucleophiles were screened (Fig. 3). Propargylic alcohol 1c, 
which is inert or less reactive than allylic counterparts, was 
reacted with indoles and amides to achieve good yields and 
smooth propargylation (Table 3). 

As shown in Fig. (4), Triphenylmethanol 1d was also an 
effective alkylating agent which could produce 3-
(triphenylmethyl)-1H-indoles 7a, 7b in several minutes and 
excellent yields (Entry 1 and 2, Table 4). However, no 
desired N-(triphenylmethyl)carbamate was produced due to 
lower nucleophilicity of benzyl carbamate 4d (Entry 3). To 
our delight, direct and efficient substitution of electron-
deficient Baylis-Hillman alcohols [4f, 6] 1e, 1f with 2-
methyl-1H-indole 2b and trimethoxybenzene 2l could be 
accomplished to give the corresponding alkylation products 
in reasonable yields (Entry 4, 5). 

o-Allylic and o-propargylic phenols have been reported 
in base-promoted cyclization for synthesis of 5-exo 
benzofuran or 6-endo benzopyran derivatives [7]. We 
hypothesized that this cyclization might be achieved using 
our allylated phenols 3i and 3j under basic conditions 
(1equiv. of KOBu-t/CH3CN). To our surprise, isomerized 
products, i. e. o-alkenyl phenols 8a and 8b (instead of 6-
endo chromene or 5-exo 2,3-dihydrobenzofuran) were 
afforded at room temperature which indicate a mild base-
assisted double bond migration [8] occurred to give a more 
conjugated and stable aromatic system (Scheme 2). 

In conclusion, we have described an efficient iodine-
catalyzed direct substitution of hydroxy group of allylic, 
progargylic and other alcohols with various C- and N-
nucleophiles under mild conditions [9]. Further studies on 
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Table 2. Iodine-Catalyzed Allylation of N-Nucleophiles 

 

Entry N-nucleophile Allylic alcohol Time(h) Product Yield% 
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Fig. (2). 

 
Table 3. Iodine-Catalyzed Propargylation of C- and N-Nucleophiles 
 

Entry Nucleophile Time(h) Product Yield% 
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Table 4. Iodine-Catalyzed Direct Substitution of Alcohols 
 

Entry Nucleophile Alcohol Time(h) Product Yield% 
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(Table 4). Contd….. 

Entry Nucleophile Alcohol Time(h) Product Yield% 

2 2c 1d 1 

7b

N
H

Ph

Ph

Ph

Br

 

86 

3 4d 1d 12 — n.r. 

4 2b 

H3CO

OOH

1e
 

2 

7c

H3CO

O

HN

H3C

 

90 

5 

OCH3

OCH3H3CO

2l
 

1f

Cl

OOH

 

20 

7d
Cl

OCH3

H3CO

H3CO
O

 

61 

 

Alcohol + Nucleophile
I2 (10mol%)

CH3CN, r. t.
Alkylated product

7
 

Fig. (4). 
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Scheme 2. t-BuOK-assisted isomerization of allylated phenols. 

 



Mild and Efficient Iodine-Catalyzed Direct Substitution Letters in Organic Chemistry, 2011, Vol. 8, No. 1      79 

extension of substrate scope, detailed mechanism and 
practical applications are underway in our laboratories. 
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[9] Representative experimental procedure: 
 Methacrylamide 4f (48 mg, 0.56 mmol) and E-1,3-diphenyl-2-

propen-1-ol 1a (119 mg, 0.57 mmol) were added into a flask at 
room temperature. Acetonitrile (15 ml) was then poured and the 
resulting mixture was vigorously stirred. Molecular iodine (14.4 
mg, 0.057 mmol) was added and the mixture was stirred for 14 
hours, monitored by TLC. After the completion of reactions, 
saturated solution of Na2S2O3 (2 5 ml) was poured, followed by 
the addition of water and ether (3 5 ml) to extract the crude 
product. Organic solvents were combined, dried by anhydrous 
Na2SO4 and evaporated under vacuum. The residue was purified by 
flash chromatography to afford clean product 5f as a pale yellow 
solid (144 mg, yield= 91%).  

 Spectrum data for unknown compounds: 
 3h: Yellow oil. 1HNMR (300MHz, CDCl3):  2.34(s, 3H) 4.93(d, 

J=7.3Hz, 1H) 5.98(d, J=2.0Hz, 1H) 6.05(d, J=2.0Hz, 1H) 6.48(d, 
J=15.9Hz, 1H) 6.65(dd, J=15.9Hz, 1H) 7.28-7.46(m, 10H). 
13CNMR (75MHz, CDCl3):  13.7, 48.5, 106.1, 107.6, 126.5, 126.9, 
127.5, 128.4, 128.5, 128.6, 130.2, 131.5, 137.2, 141.5, 151.5, 
154.3. IR (film): 3059, 3027, 1599, 1218, 965, 745, 697 cm-1. 
Mass: m/z calcd. for C20H18O: 274.1400, found 274.1355. 

 3j: Colorless liquid. 1HNMR (300MHz, CDCl3):  3.71(s, 3H) 
3.72(s, 3H) 3.81(s, 3H) 5.36(s, 1H) 5.45(d, J=7.0Hz, 1H) 6.21(s, 
1H) 6.47(d, J=15.8Hz, 1H) 6.84(dd, J=15.8Hz, 1H) 7.15-7.39 (m, 
9H). 13CNMR (75MHz, CDCl3):  43.7, 55.9, 61.1, 61.2, 97.3, 
115.1, 126.5, 126.6, 127.5, 127.9, 128.6, 128.7, 130.7, 132.3, 
136.4, 137.2, 142.6, 150.7, 152.2, 152.8. IR (film): 3410, 3058, 
2938, 1603, 1460, 1199, 1127, 910, 732, 697 cm-1. Mass: m/z calcd. 
for C24H24O4: 376.1675, found 376.1678. 

 5f: Pale yellow solid, mp. 119-121°C. 1HNMR (300MHz,CDCl3):  
1.96(s, 3H) 5.33(s, 1H) 5.73(s, 1H) 5.84(t, J=7.1Hz, 1H) 6.35(dd, 
J=15.9Hz, 1H) 6.42(d, J=7.9Hz, 1H) 6.52(d, J=15.9Hz, 1H) 7.18-
7.36(m, 10H). 13CNMR (75MHz,CDCl3):  18.8, 54.9, 119.8, 126.6, 
127.2, 127.7, 127.9, 128.6, 128.9, 128.9, 131.7, 136.5, 140.1, 
141.0, 167.5. IR (KBr): 3304, 3060, 3028, 1654, 1616, 1523, 1210, 
967, 746, 696 cm-1. Mass: m/z calcd. for C19H19NO: 277.1467, 
found 277.1469. 

 7b: Pale white solid, mp. 180-182°C. 1HNMR (300MHz, CDCl3):  
6.75(s, 1H) 6.83(s, 1H) 7.15-7.24(m, 17H) 7.92(s, 1H). 13CNMR 
(75MHz, CDCl3):  59.3, 112.4, 112.6, 123.8, 124.8, 125.1, 126.2, 
126.5, 127.5, 129.6, 130.7, 135.6, 146.1. IR (KBr): 3436, 3022, 
1442, 1108, 905, 731, 699 cm-1. Mass: m/z calcd. for C27H20NBr: 
437.0779, found 437.0776. 

 7c: Brown liquid. 1HNMR (300MHz, CDCl3):  2.23(s, 3H) 2.39-
2.57(m, 4H) 3.73(s, 3H) 5.30(s, 1H) 6.76(d, J=7.8Hz, 2H) 6.92(t, 
J=7.5Hz, 1H) 7.00-7.22(m, 5H) 7.29(s, 1H) 8.01(s, 1H). 13CNMR 
(75MHz, CDCl3):  12.1, 26.4, 34.9, 37.2, 55.2, 110.5, 111.4, 113.6, 
119.0, 119.2, 120.6, 127.9, 129.3, 132.5, 134.0, 135.4, 148.9, 
157.9, 159.8, 208.9. IR (film): 3392, 3011, 2922, 1694, 1246, 1036, 
752 cm-1. Mass: m/z calcd. for C22H21NO2: 331.1572, found 
331.1568. 

 7d: Yellow oil. 1HNMR (300MHz, CDCl3):  2.35-2.66(m, 4H) 
3.63(s, 6H) 3.77(s, 3H) 5.58(s, 1H) 6.12(s, 2H) 7.01-7.25(m, 5H). 
13CNMR (75MHz, CDCl3):  24.1, 32.5, 33.5, 52.9, 53.3, 89.1, 
108.9, 125.3, 127.2, 128.6, 138.9, 144.7, 156.5, 157.7, 157.8, 
206.2. IR (film): 3004, 2936, 1700, 1461, 1114, 818, 752 cm-1. 
Mass: m/z calcd. for C21H21ClO4: 372.1128, found 372.1131. 

 8a: Colorless oil. 1HNMR (300MHz, CDCl3):  3.17(d, J=7.3Hz, 
2H) 5.29(s, 1H) 6.77(t, 1H) 6.98-7.75(m, 16H). 13CNMR (75MHz, 
CDCl3):  36.5, 117.3, 117.7, 123.5, 124.7, 126.2, 126.8, 127.9, 
128.3, 128.6, 128.7, 129.2, 129.9, 132.9, 133.8, 139.3, 139.8, 
150.5. IR (film): 3506, 3058, 3028, 2922, 1594, 1195, 815, 754, 
698 cm-1. Mass: m/z calcd. for C25H20O: 336.1514, found 336.1522. 

 8b: Colorless liquid. 1HNMR (300MHz, CDCl3):  3.40(t, J=9.6Hz, 
2H) 3.55(s, 3H) 3.81(s, 3H) 3.89(s, 3H) 4.99(s, 1H) 6.42(s, 1H) 
6.58(t, J=9.6Hz, 1H) 7.18-7.32(m, 10H). 13CNMR (75MHz, 
CDCl3):  36.4, 55.9, 60.7, 61.0, 94.9, 111.4, 126.2, 127.6, 128.4, 
128.5, 128.6, 132.6, 133.0, 136.3, 139.9, 140.5, 149.1, 151.7, 
154.1. IR (film): 3439, 3058, 2936, 1607, 1491, 1458, 1232, 1125, 
1031, 757, 698 cm-1. Mass: m/z calcd. for C24H24O4: 376.1675, 
found 376.1678. 

 


