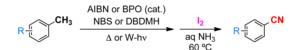
Direct Oxidative Conversion of Methylarenes into Aromatic Nitriles

ORGANIC LETTERS XXXX Vol. XX, No. XX 000–000


Daisuke Tsuchiya, Yuhsuke Kawagoe, Katsuhiko Moriyama, and Hideo Togo*

Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

togo@faculty.chiba-u.jp

Received July 8, 2013

ABSTRACT

A variety of methylarenes were successfully converted into the corresponding aromatic nitriles in good to moderate yields by the treatment with NBS or DBDMH in the presence of a catalytic amount of AIBN or BPO, followed by the reaction with molecular iodine in aq NH₃ in a one-pot procedure. The present reaction is a useful and practical transition-metal-free method for the preparation of aromatic nitriles from methylarenes.

Study of the practical transition-metal free methods for the preparation of aromatic nitriles is very important since they are precursors for the preparation of amides, esters, primary amines, carboxylic acids, aldehydes, ketones, and nitrogen-containing heterocycles, such as tetrazoles and oxazoles.¹ They have also great importance in the synthesis of agrochemicals, therapeutic drugs, functional materials,

(3) (a) Reisner, D. B.; Coring, E. C. Organic Synthesis; Wiley: New York, 1963; Collect. Vol. IV, p 144. (b) Krynitsy, J. A.; Carhart, H. W. Organic Synthesis; Wiley: New York, 1963; Collect. Vol. IV, p 436 (c) Humber, J. G.; Davis, M. A. Can. J. Chem. 1966, 44, 2113. (d) Yamato, E.; Sugasawa, S. Tetrahedron Lett. 1970, 4348. (e) Lehnert, W. Tetrahedron Lett. 1971, 1501. (f) Campagna, F.; Caroti, A.; Casini, G. Tetrahedron Lett. 1971, 1501. (f) Campagna, F.; Caroti, A.; Casini, G. Tetrahedron Lett. 1971, 1501. (f) Campagna, F.; Caroti, A.; Casini, G. Tetrahedron Lett. 1971, 1813. (g) Mai, K.; Patal, G. Tetrahedron Lett. 1986, 27, 2203. (h) Claremon, D. A.; Phillips, B. Tetrahedron Lett. 1988, 29, 2155. (i) Nemoto, H.; Kubota, Y.; Yamamoto, Y. J. Org. Chem. 1990, 55, 4515. (j) Sznaidman, M. L.; Crasto, C.; Hecht, S. M. Tetrahedron Lett. 1993, 34, 1581. (k) Xue, C. B.; Degrado, W. F. Tetrahedron Lett. 1995, 61, 6486 and references cited therein. (l) Heck, M.; Wagner, A.; Mioskowski, C. J. Org. Chem. 1990, 61, 6486. (m) Nakajima, N.; Ubukata, M. Tetrahedron L997, 38, 2099. (n) Bose, D. S.; Jayalakshmi, B.; Goud, P. R. Synthesis 1999, 1724. (o) Bose, D. S.; Jayalakshmi, B.; Synthesis 1999, 64. (p) Kuo, C.; Zhu, J.; Wu, J.; Chu, C.; Yao, C.; Shia, K. Chem. Commun. 2007, 301.

natural products, dyes, and pigments.^{1,2} Today, the most conventional methods for the preparation of aromatic nitriles are the dehydration of primary aromatic amides^{3,4} with SOCl₂, TsCl/Py, P₂O₅, POCl₃, COCl₂, (EtO)₃P/I₂, Ph₃P/CCl₄, or (COCl)₂/DMSO and the Sandmeyer reaction of aromatic diazonium ion with toxic CuCN.^{4,5} Recently, the direct transformation of aromatic bromides into the corresponding aromatic nitriles was actively studied with CuCN in *N*,*N*-dimethylformamide (DMF) at 153 °C (the Rosenmund–von Braun reaction),^{6a} and related reactions with palladium and metal cyanide were

(6) (a) Sharman, W. M.; Van Lier, J. E. In Porphyrin Handbook;
Kadish, E., Smith, K. M., Guilard, R., Eds.; Academic Press: New York, 2003; Vol. 15, p 1. (b) Weissman, S. A.; Zewge, D.; Chen, C. J. Org. Chem. 2005, 70, 1508. (c) Littke, A.; Soumeillant, M.; Kaltenbach, R. F., III; Cherney, R. J.; Tarby, C. M.; Kiau, S. Org. Lett. 2007, 9, 1711. (d) Martin, M. T.; Liu, B.; Cooley, B. E., Jr.; Eaddy, J. F. Tetrahedron Lett. 2007, 48, 2555. (e) Nandurkar, N. S.; Bhanage, B. M. Tetrahedron 2008, 64, 3655. (f) Iqbal, Z.; Lyubimtsev, A.; Hanack, M. Synlett 2008, 2287. (g) Chen, G.; Weng, J.; Zheng, Z.; Zhu, X.; Cai, Y.; Cai, J.; Wan, Y. Eur. J. Org. Chem. 2008, 3524. (h) Schareina, T.; Zapf, A.; Cotte, A.; Müller, N.; Beller, M. Synthesis 2008, 3351. (i) Buono, F. G.; Chidambaram, R.; Mueller, R. H.; Waltermire, R. E. Org. Lett. 2008, 10, 5325. (j) Chattopadhyay, K.; Dey, R.; Ranu, B. C. Tetrahedron Lett. 2009, 50, 3164. (k) DeBlase, C.; Leadbeater, N. E. Tetrahedron 2010, 66, 1098. (l) Yan, G.; Kuang, C.; Zhang, Y.; Wang, J. Org. Lett. 2010, 12, 1052. (m) Yu, H.; Richey, R. N.; Miller, W. D.; Xu, J.; May, S. A. J. Org. Chem. 2011, 76, 665. (n) Ushkov, A. V.; Grushin, V. V. J. Am. Chem. Soc. 2011, 133, 10999. (o) Yeung, P. Y.; Tsang, C. P.; Kwong, F. Y. Tetrahedron Lett. 2011, 52, 7038. (p) Hajipour, A. R.; Rafiee, F.; Ruoho, A. E. Tetrahedron 2012, 53, 526. (q) Zhang, D.; Sun, H.; Zhang, L.; Zhou, Y.; Li, C.; Jiang, H. Chem. Commun. 2012, 48, 2909.

10.1021/ol401906q © XXXX American Chemical Society

^{(1) (}a) Sandler, S. R.; Karo, W. Nitriles (Cyanides). In Organic Functional Group Preparations; Wasserman, H. H., Ed.; Academic Press: San Diego, 1983; Vol. 12-I of Organic Chemistry, Chapter 17. (b) Fabiani, M. E. Drug News Perspect. **1999**, *12*, 207.

^{(2) (}a) Friedrick, K.; Wallensfels, K. *The Chemistry of the Cyano Group*, Rappoport, Z., Ed.; Wiley-Interscience: New York, 1970. (b) North, M. *Comprehensive Organic Functional Group Transformation*; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: Oxford; 1995. (c) Murahashi, S.-I. Synthesis from Nitriles with Retention of the Cyano Group. *Science of Synthesis*; Georg Thieme Verlag: Stuttgart, 2004; Vol. 19, pp 345–402. (d) Collier, S. J.; Langer, P. Application of Nitriles a Reagents for Organic Synthesis with Loss of the Nitrile Functionality. *Science of Synthesis*; Georg Thieme Verlag: Stuttgart, 2004; Vol. 19, pp 403–425.

⁽⁴⁾ Larock, R. C. Comprehensive Organic Transformation; VCH Publishers: Weinheim, 1989; pp 976–993.

⁽⁵⁾ Sandmeyer, T. Ber. 1884, 17 (1633), 2650.

reported.^{6b-q} However, all of these reactions require toxic metal cyanides. Typical examples of cyanide-free and transition-metal-free methods for the preparation of aromatic nitriles are the reaction of electron-rich aromatics with chlorosulfonylisocyanate to form N-chlorosulfonyl amides and the subsequent treatment with DMF to give aromatic nitriles, together with generation of SO₃ and HCl.^{7a,b} and the reaction of indoles or pyrroles with triphenylphosphine-thiocyanogen (TPPT).^{7c} Three methods reported by us recently are the reaction of bromoarenes, methoxybenzene, dimethoxybenzenes, and 1,3-difluorobenzene with *n*-BuLi and subsequently DMF, followed by the reaction with molecular iodine and aq NH₃;^{8a,b} the reaction of electron-rich aromatics, such as dimethoxybenzenes, with POCl₃-DMF, followed by the reaction with molecular iodine and aq NH3;8c,d and the reaction of bromoarenes with Mg and then DMF, followed by the reaction with molecular iodine and aq NH₃.^{8e,f} On the other hand, studies of the direct oxidative conversion of methylarenes into aromatic nitriles are extremely limited, as shown in Scheme 1. One conversion method requires high temperatures (360-460 °C) using ammonia and oxygen in the presence of $(VO)_2P_2O_7$ catalyst^{9a} (Scheme 1, eq 1).

Scheme 1. Established Methods for Transformation of Methylarene to Aromatic Nitrile

Previous work V complex (cat.) NH₃ (gas), O₂ (1) 360 - 460 °C vapor phase CuSO₄[5H₂O (0.05 equiv) NaN₂ (4.0 equiv) DIB (3.2 equiv) (2) EDG CH₃CN, rt Our work BPO or AIBN (cat.) NBS or DBDMH (3) aq NH₃ 60 °C

Another conversion method involes the reaction of methylarenes with excess amounts of NaN₃ and (diacetoxyiodo)benzene (DIB) in the presence of CuSO₄ catalyst at room temperature,^{9b} which requires toxic NaN₃ and is effective for only electron-rich methylarenes (Scheme 1, eq 2). Here, we would like to report a cyanide-free and transition-metal-free one-pot conversion of methylarenes into aromatic nitriles by treatment with *N*-bromosuccinimide (NBS) or 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) in the presence of a catalytic amount of benzoyl peroxide (BPO) or 2,2'-azobis-(isobutyronitrile) (AIBN), followed by the reaction with molecular iodine in aq NH_3 (Scheme 1, eq 3) because we know for a fact that benzvlic halides can be effectively converted into the corresponding aromatic nitriles with molecular iodine and aq NH₃ (60 °C for a few hours).¹⁰ Thus, 4-bromotoluene 1a was treated with NBS or DBDMH in the presence of a catalytic amount of BPO or AIBN in carbon tetrachloride at 80 °C, followed by the treatment with molecular iodine and aq NH₃ for 4 h at 60 °C, as the Wohl-Ziegler reaction is generally carried out in carbon tetrachloride.¹¹ After optimization studies, we found that BPO and AIBN showed the same reactivity as a radical initiator (entries 1 vs 2), DBDMH had higher reactivity than NBS (entries 1 vs 3), and acetonitrile exhibited higher reactivity than carbon tetrachloride in the Wohl-Ziegler reaction (entries 1 vs 4), to give 4-bromobenzonitrile 2a in good yields, as shown in Table 1. Then, using the optimum conditions (Table 1, entry 7),

 Table 1. One-Pot Transfomation of 4-Bromotoluene to

 4-Bromobenzonitrile

	first step			second step		
entry	radical initiator	"Br"	time (h)	$\begin{array}{c} I_2 \\ (equiv) \end{array}$	time (h)	yield (%)
1	BPO	DBDMH	2	2.5	4	86
2	AIBN	DBDMH	2	2.5	4	86
3^a	BPO	NBS	2	2.5	4	52
4^b	BPO	DBDMH	2	2.5	4	55
5^c	BPO	DBDMH	2	2.5	4	76
6	BPO	DBDMH	2	4.0	4	83
7	BPO	DBDMH	3	2.5	12	87
8		DBDMH	2	2.5	4	11

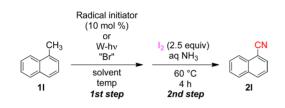
^{*a*}NBS (1.1 equiv) was used. ^{*b*}Reaction was carried out in CCl₄. ^{*c*}Reaction was carried out at 90 °C.

the conversion of 1-methylnaphthalene **11** into 1-cyanonaphthalene **21** with DBDMH in the presence of BPO, followed by treatment with molecular iodine and aq NH₃, was performed. However, 4-bromo-1-methylnaphthalene was obtained in 84% yield, together with 1-cyanonaphthalene in 9% yield, as shown in entry 1 of Table 2. Thus, under warming conditions, the polar bromination of 1-methylnaphthalene occurred to give mainly 4-bromo-1methylnaphthalene. After optimization studies to suppress the polar bromination of aromatics, it was found that

^{(7) (}a) Gerhard, L. Ber. **1967**, 100, 2719. (b) Gerhard, L. Org. Synth. **1970**, 50, 52. (c) Tamura, Y.; Kita, Y.; Kawasaki, T. J. Synth. Org. Chem. **1980**, 38, 891.

^{(8) (}a) Ushijima, S.; Togo, H. *Synlett* **2010**, 1562. (b) Ushijima, S.; Moriyama, K.; Togo, H. *Tetrahedron* **2011**, 67, 958. (c) Ushijima, S.; Togo, H. *Synlett* **2010**, 1067. (d) Ushijima, S.; Moriyama, K.; Togo, H. *Tetrahedron* **2012**, 68, 4588. (e) Ishii, G.; Moriyama, K.; Togo, H. *Tetrahedron* Lett. **2011**, 52, 2402. (f) Ishii, G.; Harigae, R.; Moriyama, K.; Togo, H. *Tetrahedron* **2013**, 69, 1462.

^{(9) (}a) Review: Lücke, B.; Narayana, K. V.; Martin, A.; Jähnisch, K. Adv. Synth. Catal. 2004, 346, 1407and references cited therein. (b) Zhou, W.; Zhang, L.; Jiao, N. Angw. Chem. Int. Ed. 2009, 48, 7094.


^{(10) (}a) Iida, S.; Togo, H. *Synlett* **2008**, 1639. (b) Iida, S.; Ohmura, R.; Togo, H. *Tetrahedron* **2009**, *65*, 6257.

^{(11) (}a) Wohl, A. Ber. **1919**, *52*, 51. (b) Ziegler, K. Ann. **1942**, *551*, 30. Organic Synthesis; Wiley: New York, 1973; Collect. Vol. V, p 145.

irradiation of the mixture of 1-methylnaphthalene **11** and NBS in carbon tetrachloride with a tungsten lamp (200 W, *W-hv*) gave 1-cyanonaphthalene **21** in 88% yield (Table 2, entry 6). Thus, those two reaction systems, namely, DBDMS with BPO in refluxing acetonitrile (method A) for electron-deficient methylarenes and NBS under irradiation with a tungsten lamp in carbon tetrachloride at room temperature (method B) for electron-rich methylarenes, are recommended for the conversion of methylarenes **1** into aromatic nitriles **2**.

 Table 2. One-Pot Transfomation of 1-Methylnaphthalene to

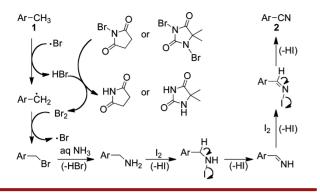
 1-Cyanonaphthalene

	first step							
entry		"Br" (mol %)	solvent	$temp(^{\circ}C)$	time (h)	yield (%)		
1	BPO	DBDMH(55)	MeCN	80	2	$9 (84)^b$		
2	AIBN	$DBDMH\left(55 ight)$	CCl_4	60	2	54		
3	$h \nu^a$	NBS (110)	CCl_4	\mathbf{rt}	1	80		
4	$h \nu^a$	NBS (110)	CCl_4	\mathbf{rt}	1	52		
5	$h \nu^a$	$DBDMH\left(55 ight)$	CCl_4	\mathbf{rt}	1	4		
6	$h \nu^a$	NBS (110)	CCl_4	\mathbf{rt}	2	88		

^{*a*} The first step reaction was carried out under tungsten lamp irradiation. ^{*b*} The number in parenthess indicates the yield of 4-bromo-1-methylnaphthalene.

Then, these two methods (methods A and B) were used for the conversion of various methylarenes 1 into aromatic nitriles 2, as shown in Table 3. For electrondeficient methylarenes 1, such as 2-bromotoluene 1b, 3-bromotoluene 1c, 4-chlorotoluene 1d, 4-iodotoluene 1e, 4-benzoyltoluene 1f, 4-methanesulfonyltoluene 1g, 4cyanotoluene 1h, and 4-nitrotoluene 1i, both methods A and B furnished the corresponding aromatic nitriles 2 in good to moderate yields (entries 1-9), while the same treatment of methyl 4-methylbenzoate 1j using methods A and B gave 4-cyanobenzamide 2j in good yields instead of methyl 4-cyanobenzoate (entry 10). This is due to the occurrence of amidation of formed methyl 4-cyanobenzoate by aq NH₃ at 60 °C. For toluene 1k, 2-methylnaphthalene 1m, 4-methylbiphenyl 1n, and 4-methyl-tert-butylbenzene 1s, both methods A and B gave the corresponding aromatic nitriles 2k, 2m, 2n, and 2s in good to moderate yields (entries 11-14 and 19). It should be noted that method A could not be used for 4-methoxytoluene 10 and 2-methoxvtoluene 1p because of polar bromination of the aromatic rings. However, using method B, 4-methoxytoluene 10 and 2-methoxytoluene 1p were smoothly transformed into 4-methoxybenzonitrile 20 and 2-methoxybenzonitrile 2p in good yields, respectively (entries 15 and 16). Moreover, when method B was used for 2-methoxytoluene 1p and

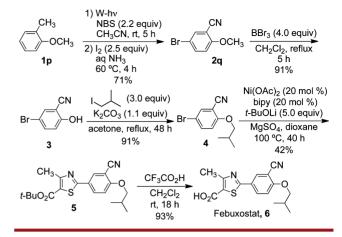
 Table 3. One-Pot Transfomation of Methylarenes to Aromatic


 Nitriles

Ar-CH ₃	Method A : BPO (10 mol %) DBDMH (55 mol %) CH ₃ CN, 80 °C			I_2 (2.5 equiv) aq NH $_3$		Ar-CN
1	Method B : NBS (11 CCl ₄ , rt,		%)	60 °	C	2
entry	product			yield (%) (time ^{1st} (h), time ^{2nd} (Method A Method B		
	R					
1	R = 4-Br	2a	87 (3,	12)	$88^{a,b}$ (2)	4)
2	R = 2-Br	2b		$1^{\circ}(4,48)$ 56 (2) 4		Í) Í
3	R = 3-Br	2c	71° (4,		$69^{b}(2, -6)$	4)
4	R = 4-C1	2d	80^{d} (21)		63 (2, 4	4)
5	R = 4-I	2e	82^{c} (2,	18)	$68^{b}(2,$	4)
6	R = 4-COPh	2f	74^{d} (12)	2, 8)	60 (2, 5	5)
7	$R = 4-SO_2CH_3$	2g	60 (12	, 4)	$75^{b}(2,$	18)
8	R = 4-CN	2h	87 (2,	15)	85 (2, 1	(5)
9	$R = NO_2$	2i	71^{d} (13)		61 (4, 1	(2)
10	$R = 4$ -CON H_2	2ј	$75^{e}(2,$	4)	78^{e} (4,	18)
11	R = H	2k	$80^{c,f}$ (4	, 4)	61 (2, 4	4)
12	CN CN	21	71 ^{c,g,h,i}	(2, 4)	88 (2, 4	4)
13	CN CN	2m	60 ^{c,g} (2	2, 4)	77 (2, 4	4)
14	Ph	2n	82 ^{<i>c,j</i>} (2	, 16)	53 (2, 4	4)
15	CH ₃ O	20	0 (2, 4)	90 (2, 4	4)
16		2p	-		92 (2, 4	4)
17	Br CN OCH ₃	2q	-		71 ^{<i>a,k</i>} (5	, 4)
18	CH ₃ O CH ₃ O Br	2r	-		72^{k} (6,	4)
19	t-Bu CN	2s	76 ^c (2,	4)	82 (2, 4	4)
20		2t	0 (2, 4)	40 ¹ (2, -	4)
21	CN S	2u	0 (2, 4)	$48^{b,m}$ (4	I , 18)
22	NC	2h	64 ^{<i>c</i>,<i>n</i>} (2	2, 4)	74 ^{g,n} (2	, 4)
23	CN CN	2w	63 ^{<i>c</i>,<i>n</i>} (2	2, 12)	59 ⁿ (2,	12)

 $^a\mathrm{CH_3CN}$ was used instead of CCl₄. $^b\mathrm{DBDMH}$ (1.0 equiv) was added instead of NBS. $^c\mathrm{CCl_4}$ was used instead of CH₃CN. $^d\mathrm{DBDMH}$ (0.75 equiv) was added. $^e\mathrm{Methyl}$ 4-methylbenzoate was used. $^f\mathrm{The}$ reaction was carried out on a 3 mmol scale. $^g\mathrm{The}$ reaction was carried out at 60 °C. $^h\mathrm{NBS}$ (1.1 equiv) was added instead of DBDMH. $^i\mathrm{AIBN}$ (0.1 equiv) was added instead of BDDMH (1.0 equiv) was added. $^t\mathrm{The}$ reaction was carried out in diluted conditions (0.1 M). $^m\mathrm{I_2}$ (3.5 equiv) was added at the second step. $^n\mathrm{NBS}$ (2.2 equiv) was added at the first step, and I₂ (5.0 equiv) and aq NH₃ (6 mL) were added at the second step.

4-methyl-1,2-dimethoxybenzene 1r with 2.2 equiv of NBS, brominated aromatic nitriles, such as 5-bromo-2-methoxybenzonitrile 2q and 2-bromo-4,5-dimethoxybenzonitrile


Scheme 2. Plausible Reaction Mechanism for Transformation of Methylarenes into Nitriles

2r were selectively obtained (entries 17 amd 18). N-Benzensulfonyl-3-methylindole 1t and 3-methylbenzothiophene 1u were also converted into N-benzenesulfonyl-3-cyanoindole 2t and 3-cyanobenzothiophene 2u in moderate yields, respectively, by method B (entries 20 and 21). Furthermore, *p*-xylene 1v and *m*-xylene 1w were also converted into terephthalonitrile 2h and isophthalonitrile 2w in moderate yields, respectively, by methods A and B using twice the amounts of DBDMS or NBS reagent (entries 22 and 23). The present reaction pathway is shown in Scheme 2. At the initial step, the Wohl-Ziegler reaction of methylarenes with DBDMH or NBS in the presence of BPO or AIBN under warming conditions or irradiation conditions with a tungsten lamp occurs to form the corresponding arylmethyl bromides. By adding molecular iodine and aq NH_3 to the reaction mixture, the S_N2 reaction of arylmethyl bromides by NH3 occurs to form arylmethylamines. Once arylmethylamines are formed, they are smoothly converted into the corresponding aromatic nitriles via the formation of imines and N-iodoimines.¹² Finally, the present method was applied to the preparation of Febuxostat precursor 5, a nonpurine selective inhibitor of xanthine oxidase.¹³ 2-Methoxytoluene was treated with NBS (method B) under irradiation conditions to form 5-bromo-2-methoxybenzonitrile 2q, as shown in Scheme 3. Then, compound 2q was demethylated with BBr₃ and treated with 1-bromo-2-methylpropane to form

(12) (a) Iida, S.; Togo, H. *Synlett* **2006**, 2633. (b) Iida, S.; Togo, H. *Synlett* **2007**, 407. (c) Iida, S.; Togo, H. *Tetrahedron* **2007**, 63, 8274.

Scheme 3. Synthesis of Febuxostat

5-bromo-2-isobutoxybenzonitrile **4**. Compound **4** was coupled with 4-methyl-5-*t*-butoxycarbonylthiazole in the presence of Ni(OAc)₂ and *t*-BuOLi to generate Febuxostat precursor **5**.¹⁴ Once precursor **5** is formed, Febuxostat was easily obtained in 93% yield by treatment with CF₃CO₂H.

In conculsion, a variety of methylarenes were smoothly converted into the corresponding aromatic nitriles in good to moderate yields by the treatment with NBS or DBDMH in the presence of a catalytic amount of AIBN or BPO, followed by the reaction with molecular iodine in aq NH₃ in a one-pot procedure. The present reaction is a useful, practical, and transition-metal-free method for the preparation of aromatic nitriles from methylarenes.

Acknowledgment. Financial support in the form of a Grant-in-Aid for Scientific Research (No. 25105710) from the Ministry of Education, Culture, Sports, Science, and Technology in Japan, Iodine Research Project in Chiba University, is gratefully acknowledged.

Supporting Information Available. Experimental procedures, spectral data, and copies of NMR spectra. This material is available free of change via the Internet at http://pubs.acs.org.

⁽¹³⁾ Okamoto, K.; Eger, B. T.; Nishuno, T.; Kondo, S.; Pai, E. F.; Nishino, T. *J. Biol. Chem.* **2003**, *278*, 1848.

⁽¹⁴⁾ Canivel, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009, 11, 1733.

The authors declare no competing financial interest.