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Abstract: 3,5-Bis(perfluorodecyl)phenylboronic acid has been
synthesized based on the direct coupling of perfluorodecyl iodide
with 1,3-diiodobenzene. This new boronic acid is shown to be a
“green” catalyst for the direct amide condensation reaction by virtue
of the strong electron-withdrawing effect and the immobility in the
fluorous recyclable phase of the perfluorodecyl group.
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Arylboronic acids bearing electron-withdrawing substitu-
ents at the aryl group behave as water-, acid-, and base-
tolerant thermally stable Lewis acids and can be easily
handled in air. We have succeeded in enhancing the cata-
lytic activities of a chiral acyloxyborane (CAB) derived
from 2,6-di(isopropoxy)benzoyltartaric acid and bo-
rane�THF, Corey’s chiral oxazaborolidine catalyst de-
rived from N-(p-toluenesulfonyl)-(S)-tryptophan and
borane�THF, and the Brønsted acid-assisted chiral Lewis
acid (BLA) derived from chiral tetrol and borane�THF by
a modified method using 3,5-bis(trifluoromethyl)phenyl-
boronic acid (1) instead of borane•THF.1−3 Moreover, we
have found that 1 and 3,4,5-trifluorophenylboronic acid
(2) are highly effective catalysts for the amide condensa-
tion of amines (1 equiv) and carboxylic acids (1 equiv).4

To the best of our knowledge, this is the first example of
a catalytic and direct amide condensation which does not
require excess amounts of substrates.

Most of the above homogeneous catalytic reactions re-
quire relatively large quantities of arylboronic acid cata-
lysts (1~20 mol%), and trace amounts of the catalysts
must be removed from the reaction products. This has
hampered the application of this methodology to large-
scale syntheses. Recently, the concept of fluorous bi-pha-
sic catalysis (FBC) was introduced as an environmentally
benign recycling process.5−7 In this paper, we describe a
convenient and high-yielding route to phenylboronic ac-
ids 3 and 4 bearing perfluorinated ponytails based on the
direct coupling of fluoroalkyl iodides with halobenzenes
and their catalytic and recyclable application in a direct
amide condensation.

Cross-coupling of fluoroalkyl iodides with iodoaromatic
compounds to give fluoroalkyl-substituted aromatics in
the presence of copper was reported by McLoughlin and
Thrower more than three decades ago.8 Prompted by this
early finding, we attempted the synthesis of perfluoro-

alkylated phenylboronic acids 3 and 4 (Scheme). Treat-
ment of 4-iodoanisole (5) and perfluorodecyl iodide in
DMSO (120 °C, 40 h) gave the substituted anisole 6 in
90% yield.9 Compound 6 was converted to 7 by demethy-
lation with boron tribromide (70% yield) and subsequent
triflation with triflic anhydride (>99% yield). The palladi-
um-catalyzed cross-coupling of triflate 7 with bis(pinaco-
lato)diboron yielded the corresponding arylboronate 8 in
81% yield.10a Finally, 8 was converted to 311 in 70% yield
by treatment with boron tribromide. Thus, the new boron-
ic acid 3 was prepared from 5 in five steps. In a similar
manner, 3,5-bis(perfluorodecyl)phenylboronic acid (4)12

was prepared from 1,3-diiodobenzene (9) in four steps:
copper-mediated coupling of 9 with perfluorodecyliodide,
electrophilic aromatic bromination of 10 with N-bromo-
succinimide (NBS),13 palladium-catalyzed cross-coupling
of arylbromide 11 with bis(pinacolato)diboron,10b and
deprotection of 12 with boron tribromide.

We first investigated the catalytic activities of arylboronic
acids 1�4 (5 mol%), which promote the model reaction of
4-phenylbutyric acid (1 equiv) with 3,5-dimethylpiperi-
dine (1 equiv) in toluene at azeotropic reflux with removal
of water (4-Å molecular sieves in a Soxhlet thimble) for 1
h, and its recovery by extraction with fluorous solvents
(Table 1). As expected, 3,5-bis(perfluorodecyl)phenylbo-
ronic acid 4 was more active than 4-(perfluorodecyl)phe-
nylboronic acid 3, and was recovered in quantitative yield
by extraction with perfluoromethylcyclohexane. Al-
though 1 and 2 were more active than 4, they could not be
recovered by extraction with any fluorous solvents. The
amide condensation proceeded cleanly in the presence of
5 mol% of 4, the desirable amide was obtained in 95%
yield by azeotropic reflux for 15 h. In addition, the corre-
sponding N-benzylamide was obtained in quantitative
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yield by heating 4-phenylbutyric acid with benzylamine
in the presence of 2 mol% of 4 under azeotropic reflux
conditions for 4 h.

Based on the above results, the recyclable use of 4 was ex-
amined for direct amide condensation (Table 2 and Figure
1).14 The reaction of cyclohexanecarboxylic acid and ben-
zylamine in a 1:1:1 mixture of o-xylene, xylene, and per-
fluorodecalin was carried out under azeotropic reflux
conditions with removal of water for 12 h in the presence
of 3 mol% of 4.15 After cooling to ambient temperature,
the two heterogeneous phases were separated to give the

corresponding amide in quantitative yield. Catalyst 4 was
completely recovered and reused in the recyclable fluo-
rous immobilized phase.

Catalyst 4 was insoluble in toluene and o-xylene at room
temperature even in the presence of carboxylic acids,
amines, and amides. However, the amide condensation
catalyzed by 4 proceeded homogeneously under reflux
conditions. To demonstrate this advantage of 4 with re-
spect to solubility,16 we attempted to reuse 4 (5 mol%) 10
times for the amide condensation reaction of cyclohexan-
ecarboxylic acid with benzylamine (Table 3 and Figure
2).17 After heating the reaction mixture at reflux with re-
moval of water for 3 h, the mixture was allowed to stand
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(–H2O), 1 h
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1
2
3
4

PhB(OH)2
–d

Yield of amide (%)a

59
60
39

47 (95)c

23
<2

Recovery of ArB(OH)2 (%)b

    0
    0
  57
>99
    0
    –

99% yield, >99% recovery of 4
[Reaction conditions:  4 (2 mol%),
toluene, azeotropic reflux for 4 h]

a Isolated yield.  b Extraction with perfluoromethylcyclohexane.  c Yield after 
heating at azeotropic reflux for 15 h is indicated in parenthesis.  d No catalyst 
was added.

Table 1 Catalytic Activities and Recovery of Arylboronic Acid for
Direct Amide Condensation

CO2H
PhCH2NH2

O

N
H

Ph

+

4 (3 mol%)

o-xylene–toluene-perfluorodecaline (1:1:1)
azeotropic reflux, 12 h

1
>99 (99)

2
>99

3
>99

4
>99 (98)

5c

>99 (99)
Cyclea

Conversion (%)b

Table 2 Recovery and Reuse of 4 in the Recyclable Fluorous Im-
mobilized Phasea

aReaction conditions (See Scheme 2): 4 (0.03 mmol), cyclohexane-
carboxylic acid (1 mmol), benzylamine (1 mmol), o-xylene (2.5 mL),
toluene (2.5 mL), and perfluorodecaline (2.5 mL). After the reaction,
a solution of the amide in the upper phase was decanted and the cata-
lyst 4 in the lower phase was recycled successively. bValues in par-
entheses refer to the isolated yields. cCatalyst 4 was recovered in 98%
yield from the perfluorodecalin phase.
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at ambient temperature for 1 h to precipitate 4. The liquid
phase of the resultant mixture was decanted and the resid-
ual solid catalyst 4 was reused without isolation. No loss
of activity was observed for the recovered catalyst, and
26% of 4 remained in the flask in the 10th reaction. This
means that 88% of 4 was retained in each cycle. The total
isolated yield of the amide which was obtained in ten re-
actions was 96%. Moreover, pure compound 4 could be
recovered in 97% yield as a white solid from the above re-
action mixture by filtration and washing with toluene.17

Table 3 Reuse of Catalyst 4 for the Amide Condensation of Cyclo-
hexanecarboxylic Acid with Benzylamine.a

aReaction conditions: 4 (0.05 mmol), cyclohexanecarboxylic acid (1
mmol), benzylamine (1 mmol), xylene (5 mL). After the reaction, the
solution was decanted and the residual catalyst 4 was reused without
isolation (see, Scheme 2). bRecovered catalyst 4 was used successive-
ly (Use 2, 3, 4,.)

In conclusion, we have shown that 3,5-bis(perfluorode-
cyl)phenylboronic acid 4 is a “green” catalyst by virtue of
the electron-withdrawing effect and the immobility in the
fluorous recyclable phase of the perfluorodecyl group. In
addition, it is noteworthy that 4 was simply recovered by
filtration without using any fluorous solvents. Perfluoro-
decyl groups on 4 increased precipitation properties in
nonfluorous organic solvents. We believe that direct
amide condensation catalyzed by a reusable boronic acid
4 may be useful as an environmentally and industrially
ideal condensation method in the near future.
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Figure 2 Recovery of 4 by decantation and its reuse without
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