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ABSTRACT: A metal-free, water-tolerant, and one-pot process for ortho-
acylation of phenols promoted by the iodine source/hydrogen peroxide
system has been developed. This transformation undergoes ether formation,
iodocyclization, C−C bond cleavage, and oxidative hydrolysis in a one-step
manner, which is supported by control experiments.

Phenolic compounds are prevalent in nature. Examples
include lignin in plants, peptides and proteins containing

tyrosine amino acid, steroids such as estrones, etc.1 They are
also featured widely in many advanced materials and
pharmaceuticals and also used as chiral ligands such as
BINOLs in asymmetric synthesis.2 Therefore, the ability to
selectively functionalize phenols will lead to the discovery of
new drugs, materials, chiral ligands, new turbine bioconjuga-
tion methods, etc.3 Among them, traditional Friedel−Crafts
acylation or Fries rearrangement of esters derived from
phenols4 (Figure 1b) is regarded as a very useful method for
the synthesis of ortho-acylphenols, which are found in many
natural products and drugs as bioactive cores5 (Figure 1a).
Howeve, it is still difficult to realize ortho-acylation of complex
phenolic molecules or phenols with active or acid-sensitive
groups by traditional methods. Recently, Rh/Cu catalyzed
ortho-acylation of N-phenoxyacetamide with alkyne has also
been reported as an alternative method6 (Figure 1b).
On the other hand, the environmentally benign iodine

source/hydrogen peroxide catalytic system was found to be
very effective for some oxidative couplings.7−11 Among them,
enantioselective cycloetherification by Ishihara and co-work-
ers,8 diamination of styrene,9 cross-dehydrogenative cou-
plings,10 and our reported α-amination of aldehydes11 are
regarded as representative examples. With our continuous
efforts to explore these green aspects of organic trans-
formations, we concentrate on the development of a novel
and efficient chemical process to realize the ortho-acylation of
phenols under the conditions of a metal-free, water-tolerant,
and environmentally friendly oxidant (O2, aqueous H2O2) in a
one-step manner by employing simple and readily available
substrates as starting materials.
For this goal, intramolecular cascade transformations into

ortho-acylphenol skeletons starting from propargyl aryl ether is
an important and challenging task because metal-free cleavage
and reassembly of the unsymmetrical C−C triple bond12 and
metal-free cross-coupling at the ortho position of phenols13 are
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Figure 1. Strategy for metal-free, one-pot ortho-acylation of phenols.
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rarely achieved. In this context, we envisage that a cascade
reaction involving iodocyclization, C−C bond cleavage, and
oxidative hydrolysis in the oxidative system of iodine source/
hydrogen peroxide may be feasible (Figure 1c). In this process,
aqueous hydrogen peroxide serves as a green oxidant and
oxygen source.
In this paper, we report a novel, metal-free, and water-

tolerant method for the synthesis of ortho-acylphenols
promoted by the iodine source/hydrogen peroxide system.
This transformation smoothly proceeds through ether
formation, iodocyclization, C−C bond cleavage, and oxidative
hydrolysis in a one-step manner. In addition, control
experiments led to a possible mechanism.
The iodine source/hydrogen peroxide catalytic system was

examined for the reaction by selecting propargyl aryl ether 1a
as a model substrate (Table 1). Our preliminary study was

carried out by varying the iodine source with aqueous H2O2
(∼30%, ∼8.0 equiv) as the oxidant and oxygen source in
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) under an air atmos-
phere at 100 °C for 12 h. As shown in Table 1, no target
product was detected without any iodine source (Table 1,
entry 1). When sodium iodide was used for the reaction, only a
trace of product could be observed (Table 1, entry 2).
Gratifyingly, molecular iodine could provide ortho-acylphenol
2a in a yield of 29% (Table 1, entry 3). Intriguingly, when the
amount of iodine was changed to 0.4 equiv, the yield was
increased to 47% (Table 1, entry 4). However, the yield was
not further improved by increasing the catalytic quantity of
iodine (Table 1, entry 6). N-Iodosuccinimide (NIS) was also

found to be effective for this transformation, and the desired
product was afforded in 42% yield while 0.8 equiv of NIS was
used (Table 1, entry 7). Additionally, tert-butyl hydroperoxide
(∼65% solution in water) took part in this reaction and the
desired product 2a could be obtained in 39% yield (Table 1,
entry 8; see SI for other oxidants). Then, the effects of solvents
on the reaction were evaluated. As revealed in Table 1, entries
9−12, HFIP had the better effect than other solvents, such as
acetonitrile, 1,4-dioxane, and tert-butanol (see SI for other
solvents). Finally, considering that aqueous hydrogen peroxide
played the role of a green oxidant, an oxygen source, and an
aqueous medium in the reaction, further investigation into the
way of adding it to the reaction was attempted. To our delight,
the yield could be increased to 70% with Method A (Table 1,
entry 13) or 67% with Method B (Table 1, entry 15).
Subsequently, the scope of different phenolic structures was

investigated by using the optimized Method A or B as shown
in Scheme 1. The halogen functionality at the ortho-, meta-, or

para-positions of phenol proceeded smoothly with Method A,
and the corresponding products 2b−f were afforded in 49%−
70% yields. A variety of substrates 1d−j bearing electron-
donating or weak electron-withdrawing para-substituents such
as Me, OMe, tBu, and CF3 were also suitable for this
transformation, providing the desired products 2d−j in
moderate to good yields. para-Hydroxymandelic acid and

Table 1. Optimization of the Reaction Conditionsa

entry iodine source (equiv) solvent yield (%)b

1  HFIP 0
2 NaI (0.6) HFIP trace
3 I2 (0.3) HFIP 29
4 I2 (0.4) HFIP 47
5c I2 (0.4) HFIP trace
6 I2 (0.6) HFIP 46
7 NIS (0.8) HFIP 42
8d I2 (0.4) HFIP 39
9 I2 (0.4) MeCN 38
10 I2 (0.4) 1,4-dioxane 0
11 I2 (0.4)

tBuOH 0

12 I2 (0.4) DMSO 0
13e I2 (0.4) HFIP 70
14e I2 (0.4) MeNO2 64
15f NIS (1.0) HFIP 67

aThe reaction was carried out with propargyl aryl ether 1a (0.2
mmol), iodine source, aqueous H2O2 (∼163.4 μL, ∼30%, ∼8.0 equiv)
in solvent (0.5 mL) under air atmosphere at 100 °C for 12 h.
bIsolated yields. c80 °C. dtert-Butyl hydroperoxide (∼65% solution in
water, ∼8.0 equiv). eMethod A: After 1a (0.2 mmol), iodine (0.4
equiv), and aq. H2O2 (∼40.8 μL, ∼30%, ∼2.0 equiv) in HFIP (0.5
mL) were stirred at 10 °C for 3 h, additional aq. H2O2 (∼122.6 μL,
∼30%, ∼6.0 equiv) was then added and stirred at 100 °C for 12 h.
fMethod B: 1a (0.2 mmol) and NIS (1.0 equiv) in HFIP (0.5 mL)
were stirred at rt for 2 min, and aq. H2O2 (∼81.6 μL, ∼30%, ∼4.0
equiv) was then added and stirred at 100 °C for 12 h.

Scheme 1. Scope of Different Phenolic Structuresa,b

aReactions were carried out with Method A or B. bYields of the
isolated products are given.
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sesamol are important intermediates for the preparation of
antihypertensive drugs. Consequently, para-hydroxymandelic
ester 1k and sesamol 1l were used for the reaction and it is
interesting that these mild conditions showed good tolerance
to free active hydroxyl and diether groups. For an aromatic
fused ring, 1-naphthol derivative 1m was selected as a
representative example for this process, and 2-benzoyl-1-
naphthol 2m was obtained in 43% yield. In contrast, when 2-
bromo-1-naphthol derivative 1n was used for this reaction, the
acylation only occurred at the C-8 position while no C-2 or C-
4 acylated product was observed, which also supported the
existence of a cyclized intermediate. Late-stage diversification
of drugs or natural products containing phenolic structures is
further studied. The reaction with the substrates 1o−p
separately derived from tyrosine and estrone were attempted
with Method B. Luckily, potential acylation drugs 2o−p were
isolated with yields of 31%−44%. Additionally, propargyl aryl
ether derived from N-Boc-tyrosine or the corresponding
iodocyclized intermediate was also attempted for this trans-
formation. Unfortunately, no target product was obtained.
Next, we explored the scope of aryl alkyne motifs as

presented in Scheme 2. First, the effect of a fluorine substituent

at different positions of the aromatic ring was examined, and
the results showed that the order of acylation reactivity is ortho
(3a, 67%) > meta (3b, 61%) > para (3c, 43%) when Method A
was used. Then, a series of aryl alkynes with various functional
groups at the para position, such as, chloro, methyl, methoxy,
formyl, ester, and nitro groups, were evaluated, giving the
corresponding acylated products 4d−i in 42%−71% yields. It
is noteworthy that an easily oxidized aldehyde group is
compatible to the mild catalytic system. Likewise, the
substrates bearing other (hetero)aromatic alkyne motifs, such
as naphthyl and thienyl groups, were also competent in the
transformation, delivering the target products 4j−k in 37%−
41% yields.
After the identification of the catalytic system and expanding

the scope of propargyl aryl ether, we next explored the
feasibility of metal-free, one-pot acylation reaction of phenol
with alkynol, which was prepared from phenylacetylene and

paraformaldehyde.14 Phenol and 3-phenylprop-2-yn-1-ol were
chosen as the starting materials. After the successive operation
of the Mitsunobu reaction15 and Method B without column
chromatography separation, it is gratifying that ortho-
acylphenol 2a was isolated in 42% yield (Scheme 3).

To clarify the reaction process for metal-free ortho-acylation
of phenols with alkynol, several control experiments were
carried out as revealed in Scheme 4. First, using a N2

atmosphere instead of air, the model reaction was performed
smoothly with Method A [Scheme 4, eq (a)]. In contrast, no
reaction occurred by using only air or O2 as the oxidant for the
model reaction without aqueous H2O2 [Scheme 4, eq (b)].
Thus, hydrogen peroxide is the active oxidant in the reaction.
Next, 3-iodo-4-phenyl-2H-benzopyran 5 can be produced
through the iodocyclization of propargyl phenyl ether 1a under
Method A (i) or B (i) [Scheme 4, eq (c)]. Then, the cyclized
intermediate 5 was subjected to Method A or B [Scheme 4, eq
(d)] and the desired product 2a was isolated in 91% or 53%
yield. The results supported the involvement of iodocyclization
and oxidative cleavage in the acylation reaction. In addition,
phenyl 3-phenylpropiolate 6 can not afford the acylated
product 2a [Scheme 4, eq (e)]. This shows that iodocycliza-
tion is more likely to occur in oxidative hydrolysis in the
iodine/hydrogen peroxide system.

Scheme 2. Scope of Aryl Alkyne Motifsa,b

aReactions were carried out with Method A or B. bYields of the
isolated products are given.

Scheme 3. Metal-Free, One-Pot Acylation of Phenol with 3-
Phenylprop-2-yn-1-ol

Scheme 4. Control Experiments
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On account of control experiments and related literature
reports,16 a mechanistic hypothesis about metal-free acylation
of phenols starting from propargyl aryl ether 1 or 3 was
proposed as shown in Figure 2. First, electrophilic hypoiodite

is in situ generated by molecular iodine with hydrogen
peroxide, which reacts with propargyl aryl ether 1 or 3
through intramolecular iodoarylation reaction to afford
benzofused heterocycle B. Then, under the assistance of
hydrogen peroxide the oxidative cleavage of the iodinated
double bond occurs through the dioxetane intermediate C.
Finally, the oxidative hydrolysis of aryl ether D activated by an
electron-withdrawing group provides the acylation product 2
or 4.
In summary, a metal-free, water-tolerant, and one-pot

acylation reaction of phenols through an oxidative cleavage
process of a C−C triple bond has been developed by using the
iodine source/hydrogen peroxide system. Control experiments
supported this one-pot transformation that involved a
Mitsunobu reaction, iodocyclization, C−C bond cleavage,
and oxidative hydrolysis. Further expansion of the metal-free,
one-pot method and practical applications, especially in the
modification of drugs and peptides, is underway.
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