Nitrogen-Functionalized Cyclopentadienyl Ligands with a Rigid Framework: Complexation Behavior and Properties of Cobalt(I), -(II), and -(III) Half-Sandwich Complexes

Markus Enders,* Gunter Ludwig, and Hans Pritzkow

Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany

Received August 15, 2000

Reaction of 2-lithio-*N*,*N*-dimethylaniline with 2,3,4,5-tetramethylcyclopentenone yields 1-[2-(*N*,*N*-dimethylaminophenyl)-2,3,4,5-tetramethylcyclopentadiene (**2**). As in 1-(8-quinolyl)-2,3,4,5-tetramethylcyclopentadiene (**1**), the N-donor is connected to the Cp ring by a rigid C₂ spacer. $Co_2(CO)_8$ reacts with **1** or **2** to give the Co^I-dicarbonyl half-sandwich complexes **7** and **3**, respectively. Irradiation leads to the binuclear complexes **4** and **8** with a Co–Co double bond. Oxidation of **3** or **7a** is possible with iodine. Whereas **7a** directly forms the Co^{III} complex **9** with coordination of the quinoline to the metal, **3** yields the monocarbonyldiiodo complex **5**. Upon gentle heating in dichloromethane, **5** loses carbon monoxide to give the cobalt complex **6**, displaying intramolecular nitrogen coordination. Reaction of the dimethylaniline-substituted cyclopentadienide **10** with CoCl₂ yields the Co^{II} complex **11**. The Co^{III} complex **6** and the Co^{II} complex **11** were treated with methylaluminoxane (MAO) and gave low-activity catalysts for the polymerization of ethylene.

Introduction

During the past decade cyclopentadienyl ligands bearing a sidearm with a donor moiety have attracted a lot of attention in organometallic chemistry.¹ In these hemilabile ligands, the association character and placeholder function of the donor group could steer catalytic processes.² Half-sandwich complexes of cobalt with intramolecular phosphorus coordination are known for the cobalt atom in oxidation states +I and +II.1e However, the corresponding complexes with pendant nitrogen ligands have only been prepared with Co^{III} centers.³ Nitrogen donors such as amines or pyridines prefer bonding to transition metals in high oxidation states. Due to their poor acceptor quality, they coordinate only weakly to electron-rich transition metals and labile complexes are built. In contrast, the Cp ligand $(Cp = C_5R_5, R = H, alkyl, aryl)$ is known to form strong bonds to many transition metals. Therefore a chelating ligand in which Cp is combined with an amine becomes hemilabile with late transition metals.

We have synthesized the functionalized cyclopentadiene **1**, where the nitrogen donor atom is incorporated into a rigid aromatic framework.⁴ Deprotonation of **1** leads to a chelating ligand which forms stable, crystalline half-sandwich compounds with early transition metals.

(4) Enders, M.; Rudolph, R.; Pritzkow, H. Chem. Ber. 1996, 129, 459.

Here we report the synthesis of the cyclopentadiene **2**, which is functionalized with an *N*,*N*-dimethylaniline, and the use of **1** and **2** for the preparation of cobalt(I), -(II), and -(III) half-sandwich complexes. In both systems the spacer group between the nitrogen atoms and the cyclopentadiene is a rigid C_2 chain.

Results

Ligand Synthesis. The synthesis of the new cyclopentadiene **2** follows the route for the preparation of **1**.⁴ We treated orthometalated *N*,*N*-dimethylaniline⁵ with tetramethylcyclopentenone. After acidic workup and treatment with ammonia, **2** was purified by distillation and a yellow viscous liquid was obtained. The NMR spectra show that a mixture of the three isomers **2a**, **2b**, and **2c** is present. However, the ratio of the isomers changes when the mixture is stored at room temperature. After several weeks, the isomer **2b** becomes the main product and separates as light yellow crystals.

The X-ray structure analysis of **2b** shows that the mainly planar cyclopentadiene forms an angle of 50.7° to the aniline moiety. Because of the conjugation

⁽¹⁾ Review articles: (a) Okuda, J. Comm. Inorg. Chem. **1994**, 16, 185. (b) Jutzi, P.; Siemeling, U. J. Organomet. Chem. **1995**, 500, 175. (c) Jutzi, P.; Redeker, T. Eur. J. Inorg. Chem. **1998**, 6, 663. (d) Müller, C. Vos, D. Jutzi, P. J. Organomet. Chem. **2000**, 600, 127. (e) Butenschön, H. Chem. Rev. **2000**, 100, 1527. (f) Siemeling, U. Chem. Rev. **2000**, 100, 1495.

^{(2) (}a) Lindner, E. *Coord. Chem. Rev.* **1991**, *91*, 27. (b) Cornils, B.; Herrmann, W. A.; Schlögl, R.; Wong, C. *Catalysis from A to Z*; Wiley-VCH: Weinheim, 2000.

⁽³⁾ Jutzi, P.; Kirsten, M. O.; Dahlhaus, J.; Neumann, B.; Stammler, H. G. *Organometallics* **1993**, *12*, 2980.

⁽⁵⁾ Lepley, A.; Khan, W. A.; Gumanini, A. B. J. Org. Chem. **1966**, 31, 2047.

Scheme 1. Preparation of Co^I and Co^{III} Complexes Starting with the Dimethylaniline-Substituted Cyclopentadiene 2

between the double bonds in the five-membered ring and the adjacent aniline, isomer **2b** is thermodynamically favored over **2a**. An additional stabilization comes from the interaction of the acidic H atom of the Cp ring and the nitrogen atom. The two ring systems are oriented in a way that the nitrogen lone pair points toward the acidic H atom of the Cp ring. The distance N1–H10 (2.55 Å) is shorter than the sum of the van der Waals radii (2.75 Å), so that the interaction can be described as a C-H···N hydrogen bond.⁶ We were also able to obtain crystals from the quinolyl-substituted cyclopentadiene 1. Similar to 2b, the orientation of the Cp ring and the quinoline moiety allows interaction of the proton H14 with the nitrogen lone pair, and a H14-N1 distance of 2.59 Å results. The proximity of the heterocyclic system to H14 is also observable in solution: the chemical shift of the H14 atom in the ¹H NMR spectrum of **1** (δ (H10) = 4.2⁴) is clearly shifted downfield compared to that of C₅(CH₃)₅H.⁷

Cobalt Complexes Starting from 2. It is well known that substituted cyclopentadienes react with $Co_{2^-}(CO)_8$ under elimination of hydrogen and formation of dicarbonyl cobalt half-sandwich compounds.³⁸ We treated dicobaltoctacarbonyl with cyclopentadiene **2** in refluxing tetrahydrofuran. After purification by chromatography, the dicarbonyl complex **3** was obtained as red-brown, air-sensitive crystals in good yield (Scheme 1).

The IR spectrum of **3** shows two intense absorptions (1950.7 and 2009.6 cm⁻¹), proving that two CO ligands are present, and therefore no coordination of the nitrogen donor to the saturated cobalt(I) center can occur. In addition we analyzed the solid-state structure of **3** (Figure 2). Two independent molecules are present in the unit cell, and each shows the expected half-sandwich arrangement. The planes of the Cp ring and the aromatic substituent form angles of 69.0° and 69.7°,

respectively. Therefore there is no strong interaction between the two π -systems of the ligand. The lone pair of the noncoordinating nitrogen atom points above the plane of the Cp ring opposite the metal center.

Nitrogen donors are weak ligands for low-valent late transition metals. Therefore the aniline group in 3 cannot displace a CO ligand. To create a vacant coordination site, we eliminated one carbon monoxide by irradiation of **3** in hexane. The red-brown solution turns green after a few hours of irradiation with a mercury high-pressure lamp. IR spectroscopy shows that the two absorptions from the terminal carbonyl ligands of 3 become less intense and that a new product is formed (4) with a bridging carbonyl group giving a band in the IR at 1770 cm⁻¹. After 4 days the reaction is complete. The NMR spectrum of **4** is very similar to that of the starting compound 3. The mass spectrum indicates that a dimeric complex was formed. This was not unexpected because it is known that $C_5H_5C_0(CO)_2$ and $C_5(CH_3)_5$ - $Co(CO)_2$ also form dimers upon irradiation.⁹ Complex 4 was analyzed by X-ray crystallography (Figure 3). The solid-state structure shows a bimetallic molecule with bridging CO ligands and pendant *N*,*N*-dimethylaniline groups. Therefore, the loss of one CO ligand in **3** was not compensated by coordination of the free nitrogen donor but by dimerization of the resulting 16-VE fragment. The metal centers in 4 obey the 18-electron rule by interacting via a Co-Co double bond. The distance between the two Co atoms (2.346 Å) lies in the expected range for such molecules.⁹

The donor properties of the chelating nitrogen ligands for cobalt in oxidation state +III have also been investigated. The half-sandwich complex 3 reacts with iodine at room temperature, and dark brown crystals of 5 are formed. The IR spectrum proves that there is still one terminal CO ligand present (2056.7 cm⁻¹). However, the EI mass spectrum shows only an ion without carbon monoxide and with one iodine atom. Jutzi et al. have already demonstrated that oxidation of amino-functionalized Cp-cobaltdicarbonyl complexes with halogens leads to Co^{III} compounds in which one CO ligand remains in the molecule and the nitrogen function does not interact with the metal center.³ In our case we observed exactly the same behavior. In addition we confirmed the structure of 5 by X-ray crystallography.¹⁰ Gentle heating of **5** in dichloromethane is sufficient to replace the CO ligand by intramolecular coordination of the dimethylamino group to give green, crystalline **6**.

The ¹H and ¹³C NMR signals of the dimethylamino group in **6** are shifted to lower field compared to those of compound **5** ($\Delta \delta = 0.5$ in ¹H NMR, $\Delta \delta = 19$ in ¹³C NMR). The crystal structure analysis of **6** (Figure 4) demonstrates the suitable geometry of the new ligand for chelate complexes.

The aniline ring and the planar Cp ligand are nearly orthogonal (92.9°). This brings the nitrogen donor into an ideal position to coordinate to the metal center with

 ^{(6) (}a) Bondi, A. J. Phys. Chem. 1964, 68, 441. (b) Mascal, M. Chem. Commun. 1998, 303. (c) Taylor, R. Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.

⁽⁷⁾ Burger, W.; Delay, A.; Mazenod, F. Helv. Chim. Acta 1974, 57, 2106.

^{(8) (}a) Okuda, J.; Zimmermann, K. H. *Chem. Ber.* **1989**, *122*, 1645. (b) Cirjak, L. M.; Ginsburg, G. E.; Dahl, F. *Inorg. Chem.* **1982**, *21*, 940.

⁽⁹⁾ Baldwin, J. C.; Kaska, W. C. J. Organomet. Chem. 1979, 165, 373.

⁽¹⁰⁾ The quality of the structure analysis of **5** is poor. In the crystals of compound **5** one I₂ molecule in the bridge interacts with two metal complexes forming an I₄ bridge. A similar arrangement has been found in compound **9** (see Figure 5). Such iodine bridges are known (see ref 11).

Figure 1. Solid-state structures of **1** (left) and **2b** (right). Selected bond lengths [Å] and angles [deg]: **1**: C1–C10 1.480-(4), C10–C11 1.360(4), C11–C12 1.472(4), C12–C13 1.341(4), C13–C14 1.518(4), C10–C14 1.508(4), C14–N1 3.113(5), H14–N1 2.59(3), C14–C10–C1–C2 52.5(4); **2b**: C1–C9 1.482(2), C9–C10 1.513(2), C10–C11 1.509(2), C11–C12 1.342-(2), C12–C13 1.478(2), C13–C9 1.355(2), C10–H10 0.98(2), C10–N1 3.120(2), H10–N1 2.55(2), C2–N1–C8 116.78(11), C2–N1–C7 114.37(11), C10–C9–C1–C2 51.1(2).

Figure 2. Solid-state structure of **3**, showing one of the two independent molecules in the unit cell. Selected bond lengths [Å] and angles [deg] of the molecule shown: Co- $C_{Cp} 2.065-2.097$; Co- $C_{CO} 1.732-1.740$, C-O 1.147-1.151, C2-N1 1.421(1); C7-N1 1.456(2); C2-N1-C7 114.62(12); C2-N1-C8 115.87(12); C7-N1-C8 110.67(14); plane_{Cp}-plane_{dimethylaniline} 69.7.

Figure 3. Solid-state structure of **4**. Selected bond lengths [Å] and angles [deg]: $Co-C_{Cp}$ 2.084–2.117; Co1–C18 1.860(2); C–O 1.184(3), Co–Co 2.346(1), C7–N1 1.467(3); C8–N1 1.457(3); C2–N1–C8 113.4(2); C8–N1–C7 110.6-(2); C2–N1–C7 115.4(2); plane_{Cp}–plane_{dimethylaniline} 67.30.

a distance of 2.205 Å. The angles at the nitrogen atom $(107-109^{\circ})$ are very close to the ideal value for a tetrahedral arrangement. The cobalt atom is not centered below the Cp ring, but shifted toward the *N*,*N*-dimethylaniline substituent. Therefore the Co-C9 dis-

Figure 4. Solid-state structure of **6.** Selected bond lengths [Å] and angles [deg]: Co-C9 2.014(3), Co-C10 2.071(3), Co-C11 2.124(3), Co-C12 2.136(3), Co-C13 2.055(3), Co-I1 2.612(1), Co-I2 2.595(1), Co-N 2.205(2), plane_{Cp}-plane_{aniline} 92.9, C2-N-Co 108.8(2), C2-N-C7 107.67(22), C7-N-C8 107.3(3).

tance is 0.12 Å shorter than the average distance from the metal center to C11 and C12. Similar shifts are observed for other donor-functionalized Cp cobalt complexes such as **9** and **11** or examples from the literature.³

Cobalt Complexes Starting from 1. We compared the ligand properties of **2** with those of the quinoline-substituted cyclopentadiene **1**. The donor properties of the nitrogen atoms in **1** and **2** are slightly different. Whereas **2** has an sp³-nitrogen atom without any acceptor properties, the sp²-nitrogen atom of the quinoline group in **1** is also able to accept electron density because empty π^* -orbitals are available.

1 reacts with $Co_2(CO)_8$ to give the cobalt complex **7a**. In addition we isolated a second complex (**7b**) as a byproduct in up to 5% yield. In **7b** the quinoline is hydrogenated in the heterocyclic moiety. As was the case with **3**, **7a** is transformed to a bimetallic complex (**8**) with bridging CO ligands. However, complex **7a** shows different behavior upon oxidation. Both CO ligands are eliminated by reaction of the red-brown solution in hexane with iodine, leading directly to compound **9**. The observed reactivity shows that the sp²-nitrogen atom of the quinolyl substituent is able to displace carbon

Figure 5. Solid-state structure of **9** with coordinated I₂. Selected bond lengths [Å] and angles [deg]: Co1-C10 2.016(3), Co1-C11 2.082(2), Co1-C12 2.121(3), Co1-C13 2.135(3), Co1-C14 2.047(3), Co-I1 2.608(1), Co-I3 2.595-(1), Co-N 1.981(2), I1-I2 3.3625(2), $plane_{Cp}-plane_{quinoline}$ 63.0, C10-C1-C9 126.99(24), C10-C1-C2 113.65(21), Co1-I1-I2 97.29(1), I1-I2-I2' 178.13(1).

Figure 6. Solid-state structure of 11. Selected bond lengths [Å] and angles [deg]: Co-C7 1.977(3), Co-C8 2.081(2), Co-C9 2.099(2), Co-Cl 2.224(1), Co-N 2.025(3), plane_{Cp}-plane_{aniline} 90.0, C2-N-Co 108.8(2), C2-N-C10 110.0(2), C10-N-Co 109.2(2).

monoxide easily in cobalt(III) complexes, whereas the dimethylaminoaniline ligand binds less strongly to the metal.

The crystal structure analysis of a charge-transfer adduct of two molecules of 9 with one iodine molecule is shown in Figure 5. The Co^{III} center is coordinated by the nitrogen donor, and the nearly planar quinoline (max. deviation from planarity 0.017 Å) builds an interplanar angle of 83° to the Cp ring. Two halfsandwich complexes are linked by an I₂ molecule, forming a nearly linear I4 chain. Similar arrangements of iodine chains are known.¹¹

Cobalt(II) Complexes. Cyclopentadienyl half-sandwich complexes of cobalt(I) and cobalt(III) are common. The reaction of Co^{II} salts with cyclopentadienides leads preferably to cobaltocene derivatives, because the intermediate half-sandwich complex is electronically unsaturated (15 valence electrons). With the pentamethylcyclopentadienyl ligand, half-sandwich complexes of cobalt(II) have been isolated as dimers. However, in the

Scheme 3. Preparation of the Cobalt(II) Half-Sandwich Complex 11

presence of phosphines, or pyridine as external donors, it is possible to isolate compounds of the type [CpCoL₂]⁺ or CpCoLX (L = phosphine, X = halogen).^{12,13} We deprotonated the functionalized cyclopentadiene 2 with n-BuLi and obtained the lithium salt 10, which was treated with CoCl₂ in tetrahydrofuran at room temperature (Scheme 3).

By this route we obtained the Co^{II} complex 11 as a blue powder in 76% yield. The EI mass spectrum shows the molecular ion in 33% abundance. Blue needles that were suitable for X-ray analysis precipitated from a toluene solution (Figure 6).

The molecule has a mirror plane going through the aniline ring as well as the cobalt, chlorine, and one of the carbon atoms of the Cp ring. The distance between the metal center and the plane of the five-membered ring is 1.667 Å and thus significantly shorter than those in Co^{III} complexes 6 (1.684 Å) and 9 (1.683 Å). In addition the Co-N bond in 11 (2.025(3) Å) is much shorter than in 6 (2.205 Å). We conclude that due to the lower coordination number of the cobalt atom, the ligands are more strongly bound in **11** than in **6**.

We recorded an EPR spectrum of 11 in frozen toluene at 110 K (Figure 7). The resonance shows a rhombic g-tensor with characteristic ⁵⁹Co hyperfine structure. Two g-values and the corresponding hyperfine coupling constants were directly taken from the spectrum; the values for the third octet in the middle of the spectrum were determined by comparison with a simulated spectrum (see Figure 7 for details).¹⁴

^{(11) (}a) Gray, L. R.; Gulliver, D. J.; Levason, W.; Webster, M. Inorg. *Chem.* **1983**, *22*, 2362. (b) Le Bras, J.; Amouri, H.; Vaissermann, J. Inorg. Chem. **1998**, *37*, 5056.

^{(12) (}a) Pfeiffer, E.; Kokkes, M. W.; Vrieze, K. Transition Met. Chem. **1979**, *4*, 393. (b) McKinney, R. J. *Inorg. Chem.* **1982**, *21*, 2051. (c) Broadley, K.; Connelly, G. N.; Geiger, W. E. J. Chem Soc., Dalton Trans. 1983, 121.

^{(13) (}a) Koelle, U.; Fuchs, B.; Khouzami, F. Angew. Chem., Int. Ed. Engl. 1982, 21, 131; Angew. Chem. Suppl. 1982, 230. (b) Koelle, U.; Fuchs, B.; Belting, M.; Raabe, E. Organometallics 1986, 5, 980. (c)
 Raabe, E.; Koelle, U. J. Organomet. Chem. 1985, 279, C29.
 (14) WINEPR SimFonia, Version 1.25; Bruker Analytische Messtech-

nik: Karlsruhe, 1996

Figure 7. Experimental X-band EPR spectrum of **11** in frozen toluene solution at 110 K (top) and simulated spectrum (bottom). Parameters used for simulation: A(x,x) = 92.0 G, g(x) = 2.265, line width = 10 G; A(y,y) 18.0 G, g(y) = 2.090, line width = 18 G; A(z,z) 41.0 G, g(z) = 1.975, line width = 16 G.

To obtain chelated Co(I) complexes, **11** and **9** have been reduced with Na/Hg in the presence of CO. However, only the dicarbonyl complexes **3** and **7a**, respectively, have been obtained. A similar reduction experiment in the presence of ethylene did not lead to isolable products.

Catalytic Olefin Polymerization. Several halfsandwich complexes of transition metals, such as titanium or chromium in oxidation states III or IV, with functionalized Cp ligands show high activity as olefin polymerization catalysts.¹⁵ It is also known that cationic Co^{III} complexes of the type $[C_5Me_5Co(H)L(C_2H_4)]^+$ (L = PR₃, P(OR)₃) catalyze the polymerization of ethylene with low activity.¹⁶ Highly active catalysts with late transition metals have been developed with neutral chelating nitrogen ligands.¹⁷

We tested the Co^{III} complex **6** as well as the Co^{II} complex **11** in catalytic olefin polymerization experiments. Solutions of **6** or **11** in toluene were activated with 1000 equiv of methylaluminoxane, and the mixtures were stirred under an atmosphere of ethylene at room temperature for 1 h. The polymerization was stopped by addition of a mixture of CH₃OH/HCl. Filtration led to small amounts of solid polyethylene. The activity of **6** as well as of **11** lies in the range between 3 and 8 ($g_{(polymer)}$ mmol⁻¹(catalyst) h⁻¹ bar⁻¹).

Conclusion

We have synthesized a hemilabile chelating ligand in which an amino group is connected to a cyclopentadienyl ring by a rigid C_2 unit. The coordination properties of the new ligand in comparison to the 8-quinolylcyclopentadienyl ligand have been evaluated in terms of the complexation chemistry of Co^I, Co^{II}, and Co^{III} centers.

The dimethylamino group as well as the 8-quinolyl group is able to displace CO ligands in Co^{III} compounds, but not in Co^I compounds. The quinolyl substituent shows a greater tendency to bind to the Co^{III} center compared to the *N*,*N*-dimethylamino group. Crystal structure determinations of the cobalt complexes with intramolecular nitrogen coordination prove the tailored fit of the new ligand for the formation of half-sandwich compounds. The paramagnetic Co^{III} complex **11** is stable toward ligand dismutation with formation of a cobaltocene derivative. The EPR spectrum shows a rhombic *g*-tensor and large ⁵⁹Co electron coupling. In combination with methylaluminoxane complexes **6** and **11** show low activity for the polymerization of ethylene.

Experimental Section

All manipulations were carried out under a nitrogen atmosphere with anhydrous solvents saturated with nitrogen. Glassware was heated under vacuum prior to use. Compound 1 was synthesized according to the reported procedure.⁴ NMR spectra were recorded on a Bruker AC200 spectrometer (200.1 MHz for ¹H; 50.3 MHz for ¹³C). EPR spectra were obtained on a Bruker ESP300 instrument at 9.3 GHz equipped with a frequency counter. Simulation of the anisotropic spectrum of 11 was carried out with the program SimFonia.¹⁴

1-(2-N,N-Dimethylaminophenyl)-2,3,4,5,-tetramethylcyclopentadiene (2). N,N-Dimethylaniline (30.0 g, 0.25 mol) and 80.0 mL (0.20 mol) of 2.5 M n-BuLi in hexane were refluxed for 52 h. At room temperature 27.1 g (0.20 mol) of 2,3,4,5-tetramethylcyclopent-2-enone was added, and the solution was heated to reflux for 48 h. After cooling to room temperature 100 g of ice was added followed by 10 mL of concentrated hydrochloric acid. The mixture was stirred for 30 min, extracted with diethyl ether, and dried over Mg₂SO₄. Distillation at 125–135 °C/10⁻² mbar gave 21.9 g of **2** (45%) as a yellow oil. Storage of the isomeric mixture at room temperature for several weeks led to the formation of the crystalline isomer 2b. The spectroscopic data are given for 2b. ¹H NMR (CDCl₃): $\delta = 0.89$ (d, 3 H, ³J(H,H) = 4.0 Hz, CH₃); 1.80 (s, 3 H, CH₃); 1.88 (s, 6 H, CH₃); 1.96 (s, 3 H, CH₃); 2.64 (s, 6 H, N-CH₃); 3.5 (q, 1 H, ${}^{3}J(H,H) = 4.0$ Hz, CpH); 0.6.97– 7.05 (m, 2 H, CHAr); 7.02-7.35 (m, 2 H, CHAr). ¹³C NMR (CDCl₃): δ 11.1, 11.9, 12.5, 14.4 (Cp-CH₃); 43.1 (N-CH₃); 51.7 (CH_{Cp}); 117.0, 126.8, 127.4, 131.9 (CH^{Ar}); 121.2, 128.8, 130.0, 132.2, 134.1, 140.0 (C_q). EI MS: m/z (%) 241 (100, M⁺); 226 $(34, M^+ - CH_3)$, 212 $(42, M^+ - 2CH_3)$, 196 $(30, M^+ - 3CH_3)$, 182 (20, $M^+ - 4CH_3$), 120 (10, $M^+ - Cp^+$), 77 (5, $C_6H_5^+$). HR-MS(EI): calcd for C₁₇H₂₃N 241.1830; found 241.1823

Dicarbonyl- η^{5} -[1-(2-N,N-dimethylaminophenyl)-2,3,4,5tetramethylcyclopentadienyl]cobalt(I) (3). A solution of 0.26 g (0.76 mmol) of Co₂(CO)₈ and 0.37 g (1.52 mmol) of 2 in 50 mL of THF was heated to reflux for 5 h. The solvent was removed in a vacuum, and the red-brown oily residue was extracted with 20 mL of hexane. The raw product was purified by chromatography on Al₂O₃ (eluent toluene) to give 0.39 g of **3** (72%). ¹H NMR (C₆D₆): δ 1.76 (s, 6 H, CH₃), 1.62 (s, 6 H, CH₃); 2.87 (s, 6 H, CH₃); 6.92–6.79 (m, 2 H, CH^{Ar}); 7.09–7.13 (m, 1 H, CH^{Ar}); 7.75 (d, 1 H, CH^{Ar}). ¹³C NMR (C₆D₆): δ 10.5, 10.9 (CH₃); 43.1 (CH₃); 56.3, 97.1, 97.5 (C^C^p); 108.5, 118.0, 121.8, 137.7, (CHAr); 126.4, 154.0 (CAr); 208.1 (CO). MS: (EI) m/z (%) 355 (33, M⁺); 327 (18, M⁺ – CO); 297 (100, M⁺ – 2CO - 2H); 241 (15, **2**⁺). FT-IR: (hexane) ν (cm⁻¹) 2009.6, 1950.7. Anal. Calcd for C19H22NO2Co (355.3): C, 64.23; H, 6.24; N, 3.94. Found: C, 63.99; H, 6.32; N, 3.88.

Bis{carbonyl- η^{5} -**[1-(2-***N*,*N*-**dimethylaminophenyl)**-**2,3,4,5,-tetramethylcyclopentadienyl]cobalt(I)**} (4). A Pyrex Schlenk tube with a solution of 0.43 g (1.21 mmol) of **3** in 50 mL of hexane was irradiated with a 150 W mercury lamp for 24 h. The color of the solution changed from red-brown to

^{(15) (}a) Stevens, J. C.; Timmers, F. J.; Wilson, D. R.; Schmidt, G. F. Nickias, P. N.; Rosen, R. K.; Knight, G. W. Lai, S. Y. (Dow Chemical Co.), EP-B 0416815, 1990 [*Chem. Abstr.* 1991, 115, 93163m]. (b) Emrich, R.; Heinemann, O.; Jolly, P. W.; Krüger, C.; Verhovnik, G. P. J. *Organometallics* 1997, *16*, 1511. (c) Theopold; K. H. *Eur. J. Inorg. Chem.* 1998, 15. (d) Flores, J. C.; Chien, J. C. W.; Rausch, M. D. *Organometallics* 1994, *13*, 4140. (16) (a) Cracknell, R. B.; Orpen, A. G.; Spencer, J. L. J. Chem. Soc.,

^{(16) (}a) Cracknell, R. B.; Orpen, A. G.; Spencer, J. L. J. Chem. Soc., Chem Commun. 1984, 326. (b) Schmidt, G. F.; Brookhart, M. J. Am. Chem. Soc. 1985, 107, 1443.
(17) (a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000,

^{(17) (}a) Ittel, S. D.; Johnson, L. K.; Brookhart, M. *Chem. Rev.* **2000**, 100, 1169. (b) Britovsek, G. J. P.; Gibson, V. C.; Waas, D. F. *Angew. Chem., Int. Ed.* **1999**, *38*, 428.

Table 1. Crystal Data and Structure Refinement Details for 1–4, 6, 7a, 9, and 11

	4	01	0	
	1	2b	3	4
empirical formula	$C_{18}H_{19}N$	$C_{17}H_{23}N$	$C_{19}H_{22}CoNO_2$	$C_{36}H_{44}Co_2N_2O_2$
fw	249.34	241.36	355.31	654.60
cryst syst	tr <u>i</u> clinic	tr <u>i</u> clinic	tr <u>i</u> clinic	triclinic
space group	<i>P</i> 1	P1	<i>P</i> 1	<i>P</i> 1
unit cell dimens: <i>a</i> , A	7.100(5)	7.2223(7)	8.4292(1)	8.608(4)
b, Å	9.170(10)	10.3578(10)	14.9784(2)	9.012(4)
с, А	11.210(10)	10.9185(10)	15.0976(2)	11.470(6)
a, deg	93.36(5)	67.116(2)	107.392(1)	78.02(3)
$\beta \deg$	102.01(5)	72.827(2)	100.742(1)	68.63(3)
γ , deg	93.27(5)	88.440(2)	92.757(1)	76.88(3)
volume, A ³	710.9(11)	715.38(12)	1776.15(4)	799.3(7)
Z	2	2	4	1
density (calcd), Mg/m ³	1.165	1.121	1.329	1.360
abs coeff, mm^{-1}	0.067	0.064	0.974	1.072
F(000)	268	264	/44	344
cryst size, mm ³	$0.35 \times 0.25 \times 0.10$	$0.42 \times 0.28 \times 0.20$	$0.56 \times 0.44 \times 0.44$	$0.8 \times 0.6 \times 0.15$
<i>θ</i> range for data	1.86 to 25.03	2.13 to 28.25	1.43 to 28.28	1.92 to 25.00
collection, deg	0 < k < 0	0 < k < 0	11 + k + 10	0 < k < 10
index ranges	$-8 \le h \le 8$,	$-9 \le h \le 9$,	$-11 \le h \le 10$,	$-9 \le h \le 10$,
	$-10 \le K \le 10$,	$-12 \le k \le 13$,	$-19 \le K \le 18$,	$-10 \le k \le 10$,
	$0 \le I \le 13$	$0 \le I \le 14$	$0 \le I \le 20$	$0 \le I \le 13$
no. of refins collected	2503	4903 2242 [D(int) = 0.010]	23480 9599 [D(int) = 0.021]	2809
110. Of find refins	2497	3343 [R(IIII) = 0.010]	8588 [R(IIII) = 0.031]	2809
no. of refins with $I \ge 20(I)$	1402	2388 04 90/	/ 338	2377
completeness to θ_{max}	99.3%	94.2%	97.4%	99.9%
abs corr	ψ -scan	semiemp. from	semiemp. from	ψ -scan
man and min thomann	0.000 and 0.875	equivalents	equivalents	1 000 and 0 709
max. and min. transmin	0.999 and 0.875	0.928 and 0.851	0.831 and 0.039	1.000 and 0.702
no. of data/restraints/params	2497/0/248	3343/0/233	8388/0/391	2809/0/278
goodness-on-int on F^{\sim}	0.985 P1 = 0.0560	0.907 P1 - 0.0457	1.018 D1 = 0.0282	1.044 D1 = 0.0974
mai κ mulces $[1 > 20(1)]$	KI = 0.0309, WD2 = 0.1242	KI = 0.0437, wD2 = 0.1122	K1 = 0.0283, WD2 = 0.0762	R1 = 0.0274, wP2 = 0.0700
Pindices (all data)	WKL = 0.1242 D1 = 0.1202	WK2 = 0.1133 D1 = 0.0672	WKL = 0.0702 D1 = 0.0245	WR2 = 0.0700 P1 = 0.0217
R multes (an uata)	mP2 = 0.1503,	KI = 0.0072, wP2 = 0.1230	M = 0.0343, W P 2 = 0.0702	$R_1 = 0.0317$, $wP_2 = 0.0725$
largest diff peak and	0.170 and -0.202	0.280 and -0.1250	0.469 and -0.242	0.252 and -0.294
hole e Å ⁻³	0.170 and 0.202	0.200 and 0.155	0.405 and 0.242	0.202 and 0.204
	0	7 -	Otula T	11
	0	/a	9 with 1 ₂	11
empirical formula	C ₁₇ H ₂₂ Co I ₂ N	C ₂₀ H ₁₈ Co N O ₂	C ₁₈ H ₁₈ Co I ₃ N	C ₁₇ H ₂₂ Cl Co N
fw	553.09	363.28	687.96	334.74
cryst syst	monoclinic	triclinic	monoclinic	monoclinic
snace group				
space group	P2(1)/c	P_{1}	$P_{\mathcal{L}}(1)/\mathcal{C}$	$P_2(1)/m$
unit cell dimens <i>a</i> , Å	P2(1)/c 8.7194(4)	P1 8.362(5)	$F_{2}(1)/c$ 13.2848(2)	P2(1)/m 7.469(4)
unit cell dimens <i>a</i> , Å <i>b</i> , Å	$\begin{array}{c} P2(1)/c \\ 8.7194(4) \\ 25.4550(12) \\ 2.254570(12) \end{array}$	P1 8.362(5) 9.119(5)	72(1)/c 13.2848(2) 7.6319(1)	P2(1)/m 7.469(4) 10.662(5)
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4)	P1 8.362(5) 9.119(5) 12.310(7) 22.95(4)	7.6319(1) 19.7849(3)	<i>P2</i> (1)/ <i>m</i> 7.469(4) 10.662(5) 10.804(5)
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α, deg	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4)	$F_{2}(1)/C$ 13.2848(2) 7.6319(1) 19.7849(3) 90	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90
unit cell dimens a , Å b, Å c, Å α , deg β , deg	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1)	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4)	$\begin{array}{c} F_{2}(1)/c\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ \end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2)
unit cell dimens a , Å b, Å c, Å α , deg β , deg γ , deg γ , deg	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1812.08(15)	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(9)	$\begin{array}{c} F_{2}(1)/c\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1005(20)(5)\end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808 6(7)
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15)	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8)	$\begin{array}{c} F_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ \end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7)
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (color), M5/m ³	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417	$\begin{array}{c} r_{2}(1)/t \\ 13.2848(2) \\ 7.6319(1) \\ 19.7849(3) \\ 90 \\ 101.783(1) \\ 90 \\ 1963.69(5) \\ 4 \\ 2.287 \end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff mm ⁻¹	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4 344	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018	$\begin{array}{c} r_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>H</i> (000)	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376	$\begin{array}{c} F_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11	P_1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40	$\begin{array}{c} F_{2}(1)/t \\ 13.2848(2) \\ 7.6319(1) \\ 19.7849(3) \\ 90 \\ 101.783(1) \\ 90 \\ 1963.69(5) \\ 4 \\ 2.327 \\ 5.589 \\ 1276 \\ 0.40 \times 0.18 \times 0.15 \end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 \times 0.45 \times 0.15
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ β ronge for data	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.20	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98	$\begin{array}{c} F_{2}(1)/t \\ 13.2848(2) \\ 7.6319(1) \\ 19.7849(3) \\ 90 \\ 101.783(1) \\ 90 \\ 1963.69(5) \\ 4 \\ 2.327 \\ 5.589 \\ 1276 \\ 0.40 \times 0.18 \times 0.15 \\ 1.57 \ to 28.26 \end{array}$	$\begin{array}{c} P2(1)/m \\ 7.469(4) \\ 10.662(5) \\ 10.804(5) \\ 90 \\ 109.97(2) \\ 90 \\ 808.6(7) \\ 2 \\ 1.375 \\ 1.216 \\ 350 \\ 0.45 \times 0.45 \times 0.15 \\ 2.01 \\ to 27.90 \\ \end{array}$
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98	$\begin{array}{c} r_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57\ to\ 28.26 \end{array}$	$\begin{array}{c} P2(1)/m \\ 7.469(4) \\ 10.662(5) \\ 10.804(5) \\ 90 \\ 109.97(2) \\ 90 \\ 808.6(7) \\ 2 \\ 1.375 \\ 1.216 \\ 350 \\ 0.45 \times 0.45 \times 0.15 \\ 2.01 \text{ to } 27.99 \end{array}$
splice group unit cell dimens a , Å b, Å c, Å α , deg β , deg γ , deg γ , deg volume, Å ³ Z density (calcd), Mg/m ³ abs coeff, mm ⁻¹ F(000) cryst size, mm ³ θ range for data collection index ranges	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le b \le 11$	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$	$\begin{array}{c} r_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57 \ to \ 28.26\\ -17 \le b \le 17 \end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9$
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33$	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$	$\begin{array}{l} F_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57 \ to \ 28.26\\ -17 \le h \le 17,\\ 0 \le k \le 10 \end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ 0 < k < 14
sphere group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 < l < 10$	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9,$ $-10 \le k \le 10,$ $0 \le l \le 14$	$\begin{array}{l} r_{2}(1)/c\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40 \times 0.18 \times 0.15\\ 1.57 \text{ to } 28.26\\ -17 \leq h \leq 17,\\ 0 \leq k \leq 10,\\ 0 < l < 26\end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å α , deg β , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12.363	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9,$ $-10 \le k \le 10,$ $0 \le l \le 14$ 2994	$\begin{array}{l} r_{2}(1)/l\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57\ {\rm to}\ 28.26\\ -17\leq h\leq 17,\\ 0\leq k\leq 10,\\ 0\leq l\leq 26\\ 23452\end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of ind reflns	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12.363 4396 [<i>R</i> (int) = 0.023]	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994	$\begin{array}{l} F_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40 \times 0.18 \times 0.15\\ 1.57 \text{ to } 28.26\\ -17 \leq h \leq 17,\\ 0 \leq k \leq 10,\\ 0 \leq l \leq 26\\ 23452\\ 4806 \left\lfloor B(\inf t) \right\rfloor = 0.036 \right\rfloor$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050 2050
unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of ind reflns no. of reflections	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12 363 4396 [R(int) = 0.023] 4011	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2917	$\begin{array}{l} r_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57\ to\ 28.26\\ -17\leq h\leq 17,\\ 0\leq k\leq 10,\\ 0\leq l\leq 26\\ 23452\\ 4806\ [R(int)=0.036]\\ 4373\end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050 2050 1534
spice group unit cell dimens a , Å b, Å c, Å α , deg β , deg γ , deg volume, Å ³ Z density (calcd), Mg/m ³ abs coeff, mm ⁻¹ F(000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $J \ge 2\alpha(D)$	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12 363 4396 [R(int) = 0.023] 4011	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2917	$\begin{array}{l} r_{2}(1)/t\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40 \times 0.18 \times 0.15\\ 1.57 \ to \ 28.26\\ -17 \leq h \leq 17,\\ 0 \leq k \leq 10,\\ 0 \leq l \leq 26\\ 23452\\ 4806 \ [R(int) = 0.036]\\ 4373 \end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050 2050 1534
splite group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $I > 2\sigma(I)$ completeness to θ_{max}	$P2(1)/c$ 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 × 0.20 × 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12 363 4396 [$R(int) = 0.023$] 4011 97.8%	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9,$ $-10 \le k \le 10,$ $0 \le l \le 14$ 2994 2994 2917 99.8%	$P_{2}(1)/2$ $13.2848(2)$ $7.6319(1)$ $19.7849(3)$ 90 $101.783(1)$ 90 $1963.69(5)$ 4 2.327 5.589 1276 $0.40 \times 0.18 \times 0.15$ $1.57 \text{ to } 28.26$ $-17 \le h \le 17,$ $0 \le k \le 10,$ $0 \le l \le 26$ 23452 $4806 [R(\text{int}) = 0.036]$ 4373 98.7%	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14,$ $0 \le l \le 14$ 2050 2050 1534 100.0%
splite group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, 0 $\leq k \leq 33$, 0 $\leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8%	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2917 99.8% ψ -scap	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050 2050 1534 100.0% ψ -scap
splitter group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $I > 2\sigma(I)$ completeness to θ_{max} abs corr	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, 0 $\leq k \leq 33$, 0 $\leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2994 2917 99.8% ψ -scan	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 $0.45 \times 0.45 \times 0.15$ 2.01 to 27.99 $-9 \le h \le 9$, $0 \le k \le 14$, $0 \le l \le 14$ 2050 2050 1534 100.0% ψ -scan
splitt global unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflextions with $I > 2\sigma(I)$ completeness to θ_{max} abs corr max, and min_transmn	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, 0 $\leq k \leq 33$, 0 $\leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2917 99.8% ψ -scan 1.000 and 0.915	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan 0.831 and 0.568	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 $0.45 \times 0.45 \times 0.15$ 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050 1534 100.0% ψ -scan 1.000 and 0.746
splite gloup unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflex collected no. of reflex collected no. of reflex sollected no. of reflex collected no. of reflex sollected no. of ata/restraints/	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq$ 11, 0 $\leq k \leq$ 33, 0 $\leq l \leq$ 10 12 363 4396 [<i>R</i> (int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396(0/278)	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2917 99.8% ψ -scan 1.000 and 0.915 2994/0/247	$\begin{array}{l} r_{2}(1)/r\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57\ to\ 28.26\\ -17\leq h\leq 17,\\ 0\leq k\leq 10,\\ 0\leq l\leq 26\\ 23452\\ 4806\ [R(int)=0.036]\\ 4373\\ 98.7\%\\ multiscan\\ 0.831\ and\ 0.568\\ 4806/0/281\\ \end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ 0 ≤ k ≤ 14, 0 ≤ l ≤ 14 2050 2050 1534 100.0% ψ-scan 1.000 and 0.746 2050/0/154
sphere group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $I > 2\sigma(I)$ completeness to θ_{max} abs corr max. and min. transmn no. of data/restraints/ params	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12 363 4396 [<i>R</i> (int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2917 99.8% ψ -scan 1.000 and 0.915 2994/0/247	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan 0.831 and 0.568 4806/0/281	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 \times 0.45 \times 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14$ 2050 2050 1534 100.0% ψ -scan 1.000 and 0.746 2050/0/154
sphere group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflns collected no. of reflex collected no. of reflexs to θ_{max} abs corr max. and min. transmn no. of data/restraints/ params goodness-of-fit on F^2	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278 1.064	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2997 99.8% ψ -scan 1.000 and 0.915 2994/0/247 1.046	$P_{2}(1)/t$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan 0.831 and 0.568 4806/0/281 1.051	$P_2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 -9 ≤ h ≤ 9, 0 ≤ k ≤ 14, 0 ≤ l ≤ 14 2050 2050 1534 100.0% ψ-scan 1.000 and 0.746 2050/0/154 1.030
sphere group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg <i>b</i> , deg <i>y</i> , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collect	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 $-11 \le h \le 11,$ $0 \le k \le 33,$ $0 \le l \le 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278 1.064 R1 = 0.0246	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2994 2917 99.8% ψ -scan 1.000 and 0.915 2994/0/247 1.046 R1 = 0.0245	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan 0.831 and 0.568 4806/0/281 1.051 R1 = 0.0196	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14,$ $0 \le l \le 14$ 2050 2050 1534 100.0% ψ -scan 1.000 and 0.746 2050/0/154 1.030 R1 = 0.0374
sphere group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg β , deg γ , deg γ , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $I > 2\sigma(I)$ completeness to θ_{max} abs corr max. and min. transmn no. of data/restraints/ params goodness-of-fit on F^2 final <i>R</i> indices $ I > 2\sigma(I)$	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, $0 \leq k \leq 33$, $0 \leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278 1.064 R1 = 0.0246, wR2 = 0.0619	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 0.80 \times 0.50 \times 0.40 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2994 2994 2994 2917 99.8% ψ -scan 1.000 and 0.915 2994/0/247 1.046 R1 = 0.0245, wR2 = 0.0688	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan 0.831 and 0.568 4806/0/281 1.051 R1 = 0.0196, wR2 = 0.0484	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14,$ 2050 2050 1534 100.0% ψ -scan 1.000 and 0.746 2050/0/154 1.030 R1 = 0.0374, wR2 = 0.0788
space group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg <i>β</i> , deg <i>γ</i> , deg <i>y</i> , deg volume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $I > 2\sigma(I)$ completeness to θ_{max} abs corr max. and min. transmn no. of data/restraints/ params goodness-of-fit on <i>F</i> ² final <i>R</i> indices [$I > 2\sigma(I)$] <i>R</i> indices (all data)	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, $0 \leq k \leq 33$, $0 \leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278 1.064 R1 = 0.0246, wR2 = 0.0619 R1 = 0.0279.	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2994 2994 2994 2994 2994 2917 99.8% ψ -scan 1.000 and 0.915 2994/0/247 1.046 R1 = 0.0245, wR2 = 0.0688 R1 = 0.0252.	$\begin{array}{l} P_{2}(1)/2\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57\ to\ 28.26\\ -17\leq h\leq 17,\\ 0\leq k\leq 10,\\ 0\leq l\leq 26\\ 23452\\ 4806\ [R(int)=0.036]\\ 4373\\ 98.7\%\\ multiscan\\ 0.831\ and\ 0.568\\ 4806/0/281\\ 1.051\\ R1=0.0196,\\ wR2=0.0484\\ R1=0.0231.\\ \end{array}$	P2(1)/m 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 $0.45 \times 0.45 \times 0.15$ 2.01 to 27.99 $-9 \le h \le 9$, $0 \le k \le 14$, $0 \le 1 \le 14$ 2050 2050 1534 100.0% ψ -scan 1.000 and 0.746 2050/0/154 1.030 R1 = 0.0374, wR2 = 0.0788 R1 = 0.0657.
splice group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg <i>f</i> , deg <i>y</i> , deg <i>y</i> , deg <i>y</i> , deg <i>v</i> olume, Å ³ <i>Z</i> density (calcd), Mg/m ³ abs coeff, mm ⁻¹ <i>F</i> (000) cryst size, mm ³ θ range for data collection index ranges no. of reflns collected no. of reflns collected no. of reflections with $I > 2\sigma(I)$ completeness to θ_{max} abs corr max. and min. transmn no. of data/restraints/ params goodness-of-fit on <i>F</i> ² final <i>R</i> indices $[I > 2\sigma(I)]$ <i>R</i> indices (all data)	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, 0 $\leq k \leq 33$, 0 $\leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278 1.064 R1 = 0.0246, wR2 = 0.0619 R1 = 0.0279, wR2 = 0.0635	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2995 ψ -scan 1.000 and 0.915 2994/0/247 1.046 R1 = 0.0245, wR2 = 0.0688 R1 = 0.0252, wR2 = 0.0694	$P_{2}(1)/2$ 13.2848(2) 7.6319(1) 19.7849(3) 90 101.783(1) 90 1963.69(5) 4 2.327 5.589 1276 0.40 × 0.18 × 0.15 1.57 to 28.26 -17 ≤ h ≤ 17, 0 ≤ k ≤ 10, 0 ≤ l ≤ 26 23452 4806 [R(int) = 0.036] 4373 98.7% multiscan 0.831 and 0.568 4806/0/281 1.051 R1 = 0.0196, wR2 = 0.0484 R1 = 0.0231, wR2 = 0.0495	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9$, $0 \le k \le 14$, $0 \le l \le 14$, $0 \le l \le 14$ 2050 2050 1534 100.0% ψ -scan 1.000 and 0.746 2050/0/154 1.030 R1 = 0.0374, wR2 = 0.0788 R1 = 0.0657, wR2 = 0.0871
space group unit cell dimens <i>a</i> , Å <i>b</i> , Å <i>c</i> , Å <i>a</i> , deg <i>f</i> , deg <i>y</i> , deg <i></i>	P2(1)/c 8.7194(4) 25.4550(12) 8.2347(4) 90 97.028(1) 90 1813.98(15) 4 2.025 4.344 1056 0.32 \times 0.20 \times 0.11 1.60 to 28.29 -11 $\leq h \leq 11$, $0 \leq k \leq 33$, $0 \leq l \leq 10$ 12 363 4396 [R(int) = 0.023] 4011 97.8% semiemp. from equivalents 0.831 and 0.531 4396/0/278 1.064 R1 = 0.0246, wR2 = 0.0619 R1 = 0.0279, wR2 = 0.0635 1.577 and -0.876	P1 8.362(5) 9.119(5) 12.310(7) 98.35(4) 104.25(4) 105.97(4) 851.5(8) 2 1.417 1.018 376 $0.80 \times 0.50 \times 0.40$ 1.75 to 24.98 $-9 \le h \le 9$, $-10 \le k \le 10$, $0 \le l \le 14$ 2994 2017 1.046 R1 = 0.0245, wR2 = 0.0688 R1 = 0.0252, wR2 = 0.0694 0.308 and -0.211	$\begin{array}{l} P_{2}(1)/2\\ 13.2848(2)\\ 7.6319(1)\\ 19.7849(3)\\ 90\\ 101.783(1)\\ 90\\ 1963.69(5)\\ 4\\ 2.327\\ 5.589\\ 1276\\ 0.40\times 0.18\times 0.15\\ 1.57\ to\ 28.26\\ -17\leq h\leq 17,\\ 0\leq k\leq 10,\\ 0\leq l\leq 26\\ 23452\\ 4806\ [R(int)=0.036]\\ 4373\\ 98.7\%\\ multiscan\\ 0.831\ and\ 0.568\\ 4806/0/281\\ 1.051\\ R1=0.0196,\\ wR2=0.0484\\ R1=0.0231,\\ wR2=0.0495\\ 0.865\ and\ -0.596\\ \end{array}$	$P2(1)/m$ 7.469(4) 10.662(5) 10.804(5) 90 109.97(2) 90 808.6(7) 2 1.375 1.216 350 0.45 × 0.45 × 0.15 2.01 to 27.99 $-9 \le h \le 9,$ $0 \le k \le 14,$ $0 \le l \le 14,$ $0 \le l \le 14$ 2050 2050 1534 100.0% ψ -scan 1.000 and 0.746 2050/0/154 1.030 R1 = 0.0374, wR2 = 0.0788 R1 = 0.0657, wR2 = 0.0871 0.270 and -0.408

green. The reaction mixture was concentrated in a vacuum, and at – 30 °C green needles of **4** precipitated (0.31 g, 78%). ¹H NMR (C₆D₆): δ 1.47 (s, 12 H, CH₃); 2.15 (s, 12 H, CH₃); 2.38 (s, 12 H, CH₃); 6.06 (d, 2 H, CH^{Ar}); 6.46 (dd, 2H, CH^{Ar}); 6.66 (d, 2 H, CH^{Ar}); 6.96 (dd, 2 H, CH^{Ar}). ¹³C NMR (C₆D₆): δ 8.8, 9.2 (CH₃); 43.1 (CH₃); 99.5, 93.4 (C^C_P); 117.6, 121.0, 127.6, 136.1 (CH^{Ar}) (some of the quartenary ¹³C resonances were not detected due to the low solubility of **4**). MS: (EI) *m*/*z* (%) 653 (19, M⁺); 355 (20, **3**⁺); 327 (23, **3**⁺ – CO); 299 (100, **3**⁺ – 2CO); 241 (4, **2**⁺). FT-IR (hexane) ν (cm⁻¹): 1770. Anal. Calcd for C₃₆H₄₄N₂O₂CO₂ (654.6): C, 66.05; H, 6.77; N, 4.28. Found: C, 65.79; H, 6.58; N, 4.26.

Carbonyldiiodo-η⁵-[1-(2-N,N-dimethylaminophenyl)-2,3,4,5-tetramethylcyclopentadienyl]cobalt(III) (5). A solution of 0.30 g (1.18 mmol) of I2 in 30 mL of diethyl ether was added dropwise to a solution of 0.41 g (1.15 mmol) of 3 in 30 mL of diethyl ether at -30 °C. The color of the reaction mixture changed from red-brown to dark violet. After stirring for 16 h at room temperature, the reaction mixture was concentrated to give violet crystals at -30 °C. The crystals were washed with 10 mL of n-hexane and dried in a vacuum (yield 0.39 g, 58%). ¹H NMR (CD₂Cl₂): δ 2.27, 2.43 (s, 12 H, CH₃); 2.52 (s, 6 H, CH₃); 7.16–7.21 (m, 2 H, CH^{Ar}); 7.38–7.50 (m, 1 H, CH^{Ar}); 8.01-8.05 (m, 1 H, CH^{Ar}). ¹³C NMR (CD₂Cl₂): δ 10.8, 11.9 (CH₃); 42.7 (CH₃); 100.5, 101.5, 103.4 (C^C^p); 118.3, 121.4, 129.8, 133.6 (CHAr); 120.4, 153.2 (CAr). MS: (EI) m/z (%) 426 (52, M⁺ - CO - I); 241 (99, 2⁺); 28 (100, CO⁺). FT-IR (CH₂Cl₂): v (cm⁻¹) 2056.7.

Diiodo- η^{5} -[1-(2-*N*,*N*-dimethylaminophenyl)-2,3,4,5-tetramethylcyclopentadienyl]cobalt(III) (6). A solution of 0.20 g (0.34 mmol) of 5 in 30 mL of dichloromethane was heated to reflux for 6 h. Removal of solvent and washing with hexane yielded 0.16 g (85%) of green 6. ¹H NMR (CD₂Cl₂): δ 1.71, 2.13 (CH₃); 2.93 (CH₃); 7.42–7.53 (m, 2 H, CH^{Ar}); 7.63– 8.00 (m, 2 H, CH^{Ar}). ¹³C NMR (CD₂Cl₂): δ 11.2, 14.1 (CH₃); 61.7 (CH₃); 88.4, 91.1, 99.1 (C^{Cp}); 147.5, 160.6 (C^{Ar}); 121.3, 126.2, 127.3, 130.2 (CH^{Ar}). MS (EI) *m*/*z* (%): 426 (5.7, M⁺ – I); 241 (100, **2**⁺); 127 (38, I⁺).

Dicarbonyl⁷⁵-[1-(8-chinolyl-2,3,4,5-tetramethylcyclopentadienyl]cobalt(I) (7a). A solution of 0.44 g (1.29 mmol) of Co₂(CO)₈ and 0.64 g (2.57 mmol) of 1 in 50 mL of tetrahydrofuran was heated to reflux for 16 h. The solvent was removed in vaccum, and the red-brown residue was extracted with 50 mL of *n*-hexane and purified by chromatography on Al₂O₃ (eluent toluene/hexane, 1:1). Yield: 0.28 g (30%). (The hydrogenated derivative 7b was isolated in up to 5% yield and identified by mass and NMR spectroscopy.) ¹H NMR (C₆D₆): δ 1.73, 2.11 (s, 12 H, CH₃); 7.45 (dd, 1 H); 7.63 (dd, 1 H); 7.85 (dd, 1 H); 8.18-8.20 (m, 2 H); 8.97 (dd, 1 H). ¹³C NMR (C₆D₆): δ 10.5, 11.1 (CH₃); 97.5, 98.9, 106.6 (C^{Cp}); 121.0, 127.5, 128.2, 133.6, 135.9, 136.6, 148.5, 149.9 (CAr); 208.7 (CO). MS: (EI) m/z (%) 363 (12, M⁺); 335 (20, M⁺ - CO); 307 (100, M⁺) CO). FT-IR: (hexane) v (cm⁻¹) 1948.4, 2007.2. Anal. Calcd for C₂₀H₁₈NO₂Co (363.3): C, 66.12; H, 4.99; N, 3.86. Found: C, 66.06; H, 5.04; N, 3.79.

Bis{**carbonyl**- η^{5} -**[1(8-chinolyl)-2,3,4,5-tetramethylcy-clopentadienyl]cobalt(I) (8).** A Pyrex tube with a solution of 0.20 g (0.55 mmol) of 7 in 50 mL of hexane was irradiated with the light of a 150 W mercury lamp for 24 h. The color of the solution changed from red-brown to green. After removal of the solvent in a vacuum, the raw product was washed with hexane to give 0.12 g (65%) of 8 as a green powder. ¹H NMR (C₆D₆): δ 1.48, 2.19 (s, 12 H, *CH*₃); 6.72 (d, 1 H); 6.88 (dd, 1 H); 7.31–7.36 (m, 1 H); 7.57–7.60 (m, 1 H); 7.65 (dd, 1 H);

8.70 (dd, 1 H). ¹³C NMR (CD₂Cl₂): δ 9.4, 9.9 (CH₃); 87.6, 97.4, 108.1 (C^{Cp}); 123.8, 127.9, 128.6, 129.0, 137.8, 157.5, (CH^{Ar}); 129.0, 129.6, 156.6 (C^{Ar}); 182.4 (CO). MS: (EI) *m/z* (%) 670 (21, M⁺), 614 (5, M⁺ - 2 CO), 335 (64, 7⁺ - CO), 307 (100, 7⁺ - 2CO). FT-IR: (hexane) ν (cm⁻¹) 1770. Anal. Calcd for C₃₈H₃₆N₂O₂CO₂ (670.6): C, 68.06; H, 5.41; N, 4.18. Found: C, 67.83; H, 5.49; N, 4.13.

Diiodo η^{5} -[1-(8-chinolyl-2,3,4,5-tetramethylcyclopentadienyl]cobalt(III) (9). A solution of 0.18 g (0.71 mmol) of iodine in 20 mL of diethyl ether was added dropwise to a solution of 0.25 g (0.69 mmol) of 7 in 30 mL of diethyl ether at -30 °C. The reaction mixture was stirred at room temperature for 16 h, the solvent was removed in a vacuum, and the brownviolet residue was washed with 20 mL of hexane to give 0.10 g (26%) of brown-violet 9. In the presence of excess iodine, crystals were obtained from dichloromethane at -30 °C. ¹H NMR (CDCl₃): δ 2.00, 2.09 (s, 12 H, *CH*₃); 7.28 (dd, 1 H); 7.74– 7.85 (m, 2 H); 7.99 (dd, 1 H); 8.25–8.35 (m, 2 H). ¹³C NMR (CDCl₃): δ 10.5, 12.2 (*C*H₃); 89.9, 93.7, 105.2 (*C*^{Cp}); 123.0, 126.6, 127.7, 128.2, 136.4, 161.9 (*C*H^Ar); 128.3, 128.4, 155.8 (q, *C*^{Ar}). MS (FAB⁺): *m*/*z* (%) 561 (5, M⁺); 434 (90, M⁺ – I); 307 (M⁺ – 2I).

Chloro- η^5 -[1-(2-*N*,*N*-dimethylaminophenyl)-2,3,4,5,-tetramethylcyclopentadienyl]cobalt(I) (11). A 0.40 g (1.66 mmol) sample of the substituted cyclopentadiene 2 in 30 mL of THF was deprotonated with 0.66 mL (1.65 mmol) of n-BuLi (2.5 M in hexane) at room temperature. After 30 min the orange solution was added dropwise to a suspension of 0.21 g (1.62 mmol) of CoCl₂ in 20 mL of THF. The reaction mixture was stirred for 16 h, and the solvent was removed in a vacuum. The blue solid was dissolved in 20 mL of toluene and filtered through a fritted column (G4) to give 0.42 g (77%) of blue **11**. Crystals were obtained from a concentrated solution in toluene at -30 °C. MS (EI): m/z (%) 334 (19, M⁺); 296 (21, M⁺ - HCl - 2H); 241 (100, 2+); 120 (20, C₆H₄NMe₂+). HR-MS (EI): calcd for C₁₇H₂₂NCoCl 334.0773, found 334.0751. EPR (110 K): g₁ = 2.265, g_2 = 2.090, g_3 = 1.975; A_1 = 92.0 G, A_2 = 18.0, A_3 = 41.0 G.

X-ray Crystal Structure Determinations of 1–4, 6, 7a, 9, and 11. Crystal data for **2**, **3**, **6**, and **9** were collected on a Bruker AXS SMART 1000 diffractometer with a CCD area detector (Mo K α radiation, graphite monochromator, $\lambda =$ 0.71073 Å) at –100 °C, and for **1**, **4**, **7a**, and **11** on a Siemens STOE AED2 (Mo K α radiation, graphite monochromator, $\lambda =$ 0.71073 Å) at –70 °C. The structures were solved by direct methods and refined by full-matrix least squares against F^2 with all reflections using the SHELXTL-programs.¹⁸ All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were located in difference Fourier maps and refined isotropically. Crystal data and experimental details are listed in Table 1.

Acknowledgment. The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 247) and the state Baden-Württemberg.

Supporting Information Available: Tables giving X-ray crystal structure data for 1-4, **6**, **7a**, **9**, and **11**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0007163

⁽¹⁸⁾ Sheldrick, G. M. SHELXTL NT V5.1; Bruker AXS: Madison, WI, 1999.