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Palladium(0)-Catalyzed Silylation of Aryl Halides with Triorganosilanes: 
Synthesis of Aryl(2-furyl)silanes
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Abstract: Triorganosilanes, which possess two aryl groups on the
silicon atom, undergo palladium-catalyzed silylation of aryl io-
dides. Aryl(2-furyl)silanes thus obtained are potentially useful start-
ing materials for carbon–carbon bond-forming reactions in the
presence of transition-metal catalysts and tetrabutylammonium
fluoride.
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Recently, much attention has focused on the coupling re-
action of metalloid hydride with organic electrophiles as
an atom-economical method for the synthesis of organo-
metalloids. The metalations of aryl halides using various
metalloid hydrides, including boron,1 silicon,2 germani-
um,3 and tin compounds,4 have been extensively studied;
however, the scope of metalloid hydrides used as metalat-
ing reagents is still limited. In fact, examples of silylation
using hydrosilanes other than triethoxysilane are rare.5

Therefore, we were interested in expanding the scope of
palladium-catalyzed silylation to another hydrosilane as
the silicon source. We report herein that triorganosilanes
1 couple with aryl halides 2 in the presence of a palladium
catalyst to give carbon-substituted arylsilanes 3; the selec-
tive silylation requires two aryl groups on the silicon atom
of triorganosilanes 1 (Equation 1). During the completion
of this work, Yamanoi reported a similar palladium-cata-
lyzed method for the combination of triorganosilanes with
aryl iodides.6

Equation 1 Palladium-catalyzed silylation of aryl halides using
triorganosilanes

An initial screening was performed using several triorga-
nosilanes 1 for the silylation of 4-iodoanisole (2a;
Table 1). Treatment of 2a with 1 and i-Pr2NEt in the pres-
ence of Pd2(dba)3·CHCl3 and P(o-tol)3 in NMP at room
temperature was found to lead to the corresponding aryl-

silanes 3aa–ha. The formation of anisole 4a by reduction
of the starting aryl halide 2a was the major side reaction.
Under our conditions, the ratio of 3/4a was strongly influ-
enced by substituents on the silicon atom of 1. Among the
hydrosilanes 1a–h examined, diarylmethylhydrosilanes
1d–f (Equation 1, n = 2) exhibited the highest product se-
lectivity to produce the corresponding arylsilanes 3da–fa
in 75–82% yields (Table 1, entries 4–6). The use of diaryl-
hydrosilanes was suitable for the silylation, as the
differences in the yields and selectivity among diaryl-
methylhydrosilanes 1d–f were not particularly great. Un-
fortunately, the use of triarylhydrosilanes 1a–c (n = 3)
produced lower 3/4a ratios (Table 1, entries 1–3). For
dimethylphenylsilane (1g) and triethylsilane (1h), no se-
lectivity was observed (Table 1, entries 7 and 8).

The results obtained with representative aryl halides 2,
giving arylsilanes 3 are listed in Table 2. On the whole,

Ar1
nMe3–nSi H + I Ar2

Ar1
nMe3–nSi Ar2 H Ar2+

1 2

3 4

Pd2(dba)3/P(o-tol)3

(i-Pr)2NEt

NMP

Table 1 Reaction of 4-Iodoanisole (2a) with Representative Hy-
drosilanes 1a

Entry 1 3 Yield (%)b

3 4a

1 Ph3SiH (1a) 3aa 64 (33)

2

1b

3ba 71 (29)

3

1c

3ca 68 (31)

4 Ph2MeSiH (1d) 3da 79 (18)

5

1e

3ea 82 (12)

6

1f

3fa 75 (14)

7 PhMe2SiH (1g) 3ga 34 (57)

8 Et3SiH (1h) 3ha (44) (46)

a Reaction conditions: 2a (1.0 mmol), 1 (1.5 mmol), i-Pr2NEt (3 
mmol), Pd2(dba)3⋅CHCl3 (15 mmol), P(o-tol)3 (60 mmol), in NMP (4 
mL) at r.t. for 2 h.
b Isolated yields are based on 2a. Yields in parentheses are GC yields.
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the desired products 3 were contaminated with small
amounts of reduced by-products 4, but their isolation was
very easy. The present process was extremely tolerant of
a variety of common functional groups. Thus, 2 contain-
ing a free amine NH2 (Table 2, entry 4), a phenolic OH
moiety (Table 2, entry 5), an amide (Table 2, entry 12), an
acetoxy group (Table 2, entry 6), and a halogen atom
(Table 2, entry 7) were all efficiently converted to the cor-
responding products 3. In contrast, the traditional methods
via Grignard reagents or organolithiums require the pro-
tection of functional groups frequently.7 Although aryl io-

dides were significantly reactive, replacing the leaving
group of aryl halides with the corresponding bromide or
triflate gave a lower yield under our normal conditions.
Gratifyingly, by treating the reaction mixture with an ad-
ditional excess amount of iodide anion, the silylation of
aryl bromide, triflate, and nonaflate afforded moderate to
good product yields (Table 2, entries 9–12).8 In such cas-
es, KOAc was a more favorable base for selective silyla-
tion. Unfortunately, all attempts at silylation of ortho-
substituted or electron-deficient aryl halides were unsuc-
cessful.2,6

Table 2 Reaction of Representative Aryl Halidesa

Entry Hydrosilane 1 Aryl halide 2 Product 3 Yield (%)b

1 1e

2b 3eb

67c

2 1e

2c 3ec

80

3 1f 2c

3fc

90

4 1e

2d 3ed

71

5 1e

2e 3ee

55

6 1e

2f 3ef

79

7 1e

2g 3eg

77

8 1e

2h 3eh

88

9d 1d 3da 69

10d 1d 3da 84

11d 1d 3da 83

12d 1d 72

a Reaction conditions: 2 (1.0 mmol), 1 (1.5 mmol), i-Pr2NEt (3 mmol), Pd2(dba)3⋅CHCl3 (15 mmol), P(o-tol)3 (60 mmol), in NMP (4 mL) at r.t. 
for 2 h.
b Isolated yields are based on 2.
c GC yield.
d KI (3 mmol) was used as an additive, and KOAc (3 mmol) was used instead of i-Pr2NEt.
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We then turned our attention toward a synthetic applica-
tion of aryl(2-furyl)silanes 3 thus obtained via the transi-
tion-metal-catalyzed coupling reaction. Recently, several
groups have demonstrated the palladium-catalyzed cross-
coupling reactions of all-carbon-substituted organosi-
lanes, such as 2-pyridyl-9 and 2-thienyl(alkenyl)si-
lanes.10,11 In these reactions, the heteroaryl group acts as a
good dummy group upon treatment with a fluoride ion to
form possible organosilanols. We found that a 2-furyl
group on a silicon atom worked in a manner similar to
those heteroaryl groups (Scheme 1).12 For example, after
treatment of di(2-furyl)(methyl)phenylsilane 3eb with
TBAF in dioxane–H2O (8:1) at 90 °C, the palladium-cat-
alyzed cross-coupling reaction with 4-bromobenzotrifluo-
ride took place to produce the corresponding
unsymmetrical biaryl in 76% yield. Also, 3eb participated
in rhodium-catalyzed 1,4-addition to an a,b-unsaturated
ester to give the desired adduct in good yield.13

Scheme 1 Synthetic utility of aryl(2-furyl)silanes

In conclusion, triorganosilanes, which possess two aryl
groups on the silicon atom, were found to undergo palla-
dium-catalyzed silylation of aryl iodides; however, the
mechanism for this silylation is unclear at the present
stage.14 In addition, we have demonstrated that aryl(2-fu-
ryl)silanes can be coupled with electrophiles, such as aryl
halides and a,b-unsaturated carbonyl compounds.

All experiments were carried out under an argon atmosphere. NMR
spectra were recorded on a JNM-A500 spectrometer. Mass spectra
were obtained at an ionization potential of 70 eV with a JEOL JMS-
SX102 spectrometer. Heteroarylsilanes (1b, 1c, 1e, and 1f) were
prepared from the corresponding lithium reagents and chlorosi-
lanes.15

Silylation of Aryl Iodides; General Procedure
Pd2(dba)3·CHCl3 (0.015 mmol) and P(o-tol)3 (0.06 mmol) were
placed in a test tube capped with a rubber septum. The test tube was
flushed with nitrogen and then charged with NMP (4 mL). Aryl io-
dide 2 (1.0 mmol), i-Pr2NEt (3 mmol), and hydrosilane 1 (1.5
mmol) were added successively. The reaction mixture was then
stirred at r.t. for 2 h. When the reaction was complete, Et2O (10 mL)
was added; the organic phase was washed with H2O (3 × 15 mL) to
remove NMP and dried over Na2SO4. The solvent was removed un-
der reduced pressure and the residue was purified by flash column
chromatography (hexane–Et2O, 20:1) to give the desired arylsilane
3.

3ea
1H NMR (CDCl3): d = 0.78 (s, 3 H), 3.81 (s, 3 H), 6.42 (dd, J = 3.0,
1.8 Hz, 2 H), 6.76 (d, J = 3.0 Hz, 2 H), 6.93 (d, J = 8.5 Hz, 2 H),
7.54 (d, J = 8.5 Hz, 2 H), 7.72 (d, J = 1.8 Hz, 2 H).
13C NMR (CDCl3): d = –4.24, 55.05, 109.61, 113.79, 122.79,
124.52, 136.24, 147.72, 155.38, 161.14.

HRMS (EI): m/z calcd for C16H16O3Si [M+]: 284.0868; found:
284.0840.

3fa
1H NMR (CDCl3): d = 0.88 (s, 3 H), 3.81 (s, 3 H), 6.92 (d, J = 7.9
Hz, 2 H), 7.21 (dd, J = 4.3, 3.6 Hz, 2 H), 7.34 (d, J = 3.6 Hz, 2 H),
7.52 (d, J = 7.9 Hz, 2 H), 7.68 (d, J = 4.3 Hz, 2 H).
13C NMR (CDCl3): d = –0.87, 55.03, 113.69, 128.26, 131.98,
135.77, 126.43, 136.26, 136.80, 161.05.

HRMS (EI): m/z calcd for C16H16OS2Si [M+]: 316.0412; found:
316.0443.

3eb
1H NMR (CDCl3): d = 0.81 (s, 3 H), 6.43 (dd, J = 3.0, 1.2 Hz, 2 H),
6.78 (d, J = 3.0 Hz, 2 H), 7.3–7.5 (m, 3 H), 7.62 (d, J = 8.0 Hz, 2 H),
7.73 (d, J = 1.2 Hz, 2 H).
13C NMR (CDCl3): d = –4.47, 109.65, 122.98, 127.97, 129.96,
133.84, 134.65, 147.82, 154.95.

HRMS (EI): m/z calcd for C15H14O2Si [M+]: 254.0763; found:
254.0721.

3ec
1H NMR (CDCl3): d = 0.78 (s, 3 H), 2.36 (s, 3 H), 6.42 (dd, J = 3.0,
1.8 Hz, 2 H), 6.77 (d, J = 3.0 Hz, 2 H), 7.20 (d, J = 7.5 Hz, 2 H),
7.51 (d, J = 7.5 Hz, 2 H), 7.72 (d, J = 1.8 Hz, 2 H).
13C NMR (CDCl3): d = –4.38, 21.57, 109.61, 122.84, 128.84,
130.11, 134.70, 140.01, 147.74, 155.22.

HRMS (EI): m/z calcd for C16H16O2Si [M+]: 268.0919; found:
268.0912.

3fc
1H NMR (CDCl3): d = 0.89 (s, 3 H), 2.36 (s, 3 H), 7.2–7.3 (m, 4 H),
7.35 (d, J = 3.1 Hz, 2 H), 7.50 (d, J = 7.3 Hz, 2 H), 7.69 (d, J = 4.3
Hz, 2 H).
13C NMR (CDCl3): d = –0.99, 21.55, 128.26, 128.77, 132.00,
133.02, 134.74, 135.55, 136.85, 139.92.

HRMS (EI): m/z calcd for C16H16S2Si [M+]: 300.0463; found:
300.0442.

3ed
1H NMR (CDCl3): d = 0.75 (s, 3 H), 3.78 (br s, 2 H), 6.41 (dd,
J = 3.0, 1.2 Hz, 2 H), 6.69 (d, J = 8.0 Hz, 2 H), 6.75 (d, J = 3.0 Hz,
2 H), 7.40 (d, J = 8.0 Hz, 2 H), 7.71 (d, J = 1.3 Hz, 2 H).
13C NMR (CDCl3): d = –4.23, 109.54, 114.63, 122.58, 129.27,
136.08, 147.58, 148.13, 155.78.

HRMS (EI): m/z calcd for C15H15NO2Si [M+]: 269.0872; found:
269.0834.

3ee
1H NMR (CDCl3): d = 0.78 (s, 3 H), 4.85 (s, 1 H), 6.42 (dd, J = 3.0,
1.8 Hz, 2 H), 6.76 (d, J = 3.0 Hz, 2 H), 6.85 (d, J = 8.5 Hz, 2 H),
7.50 (d, J = 8.5 Hz, 2 H), 7.72 (d, J = 1.8 Hz, 2 H).
13C NMR (CDCl3): d = –4.27, 109.61, 115.47, 122.81, 126.12,
136.49, 147.73, 155.28, 157.15.

HRMS (EI): m/z calcd for C15H14O3Si [M+]: 270.0712; found:
270.0733.

3eb
TBAF (2 equiv)

dioxane–H2O 
(8:1)

Ph OtBu

O
OtBu

O(2 equiv)

(1.0 equiv)

(1.0 equiv)

90 °C, 2 h

CF3

Ph

CF3

Br

PdCl2(dppf) (5 mol%)

[Rh(OH)(cod)]2 (2.5 mol%)

90 °C, 16 h

90 °C, 16 h
76% yield

80% yield
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3ef
1H NMR (CDCl3): d = 0.77 (s, 3 H), 2.30 (s, 3 H), 6.43 (dd, J = 1.8,
3.0 Hz, 2 H), 6.79 (d, J = 3.0 Hz, 2 H), 7.10 (d, J = 8.0 Hz, 2 H),
7.62 (d, J = 8.0 Hz, 2 H), 7.73 (d, J = 1.8 Hz, 2 H).
13C NMR (CDCl3): d = –4.41, 21.17, 109.68, 120.75, 122.78,
128.94, 131.44, 136.02, 147.88, 152.18, 169.30.

HRMS (EI): m/z calcd for C17H16O4Si [M+]: 312.0818; found:
312.0845.

3eg
1H NMR (CDCl3): d = 0.79 (s, 3 H), 6.44 (dd, J = 3.6, 1.2 Hz, 2 H),
6.78 (d, J = 3.6 Hz, 2 H), 7.36 (d, J = 8.3 Hz, 2 H), 7.53 (d, J = 8.3
Hz, 2 H), 7.73 (d, J = 1.2 Hz, 2 H).
13C NMR (CDCl3): d = –4.49, 109.71, 123.19, 128.25, 132.25,
136.02, 136.41, 147.98, 154.38.

HRMS (EI): m/z calcd for C15H13O2
35ClSi [M+]: 288.0373; found:

288.0418.

3eh
1H NMR (CDCl3): d = 0.85 (s, 3 H), 6.43 (dd, J = 1.2, 3.7 Hz, 2 H),
6.83 (d, J = 3.7 Hz, 2 H), 7.23 (dd, J = 4.9, 3.1 Hz, 1 H), 7.43 (d,
J = 3.1 Hz, 1 H), 7.69 (d, J = 4.9 Hz, 1 H), 7.73 (d, J = 1.2 Hz, 2 H).
13C NMR (CDCl3): d = –3.24, 109.47, 109.73, 123.07, 128.34,
132.32, 137.00, 147.90, 154.45.

HRMS (EI): m/z calcd for C13H12O2SiS [M+]: 260.0327; found:
260.0368.

Palladium-Catalyzed Cross-Coupling of Aryl(2-furyl)silanes
A mixture of di(2-furyl)(methyl)phenylsilane (2 mmol) and
TBAF·3H2O (2 mmol) in dioxane–H2O (8:1, 3.6 mL) was stirred at
90 °C for 2 h. To this solution were added PdCl2(dppf) (0.05 mmol)
and 4-bromobenzotrifluoride (1.0 mmol). After stirring at 90 °C for
16 h, GC analysis of the resulting mixture indicated the formation
of 4-phenylbenzotrifluoride in 76% yield.

Rhodium-Catalyzed 1,4-Addition of Aryl(2-furyl)silanes to a,b-
Unsaturated Esters 
A mixture of di(2-furyl)(methyl)phenylsilane (2 mmol) and
TBAF·3H2O (2 mmol) in dioxane–H2O (8:1, 3.6 mL) was stirred at
90 °C for 2 h. To this solution were added [Rh(OH)(cod)]2 (0.025
mmol) and tert-butyl acrylate (1.0 mmol). After stirring at 90 °C for
16 h, GC analysis of the resulting mixture indicated the formation
of tert-butyl 3-phenylpropionate in 80% yield.
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