An Alternative to the Classical α-Arylation: The Transfer of an Intact 2-Iodoaryl from ArI(O₂CCF₃)₂**

Zhiyu Jia, Erik Gálvez, Rosa María Sebastián, Roser Pleixats, Ángel Álvarez-Larena, Eddy Martin, Adelina Vallribera,* and Alexandr Shafir*

Abstract: The α -arylation of carbonyl compounds is generally accomplished under basic conditions, both under metal catalysis and via aryl transfer from the diaryl λ^3 -iodanes. Here, we describe an alternative metal-free α -arylation using $ArI(O_2CCF_3)_2$ as the source of a 2-iodoaryl group. The reaction is applicable to activated ketones, such as α -cyanoketones, and works with substituted aryliodanes. This formal C– H functionalization reaction is thought to proceed through a [3,3] rearrangement of an iodonium enolate. The final α -(2iodoaryl)ketones are versatile synthetic building blocks.

he transfer of an aryl group to a position α to a carbonyl is an important class of C–C bond-forming reactions, popularized with the introduction of the metal-catalyzed (mainly Pd and Cu) coupling of aryl halides (or equivalent) to enolates.^[1,2] Predating these advances, the metal-free α -arylation has been in use since the 1960s, following reports by Beringer et al. on the ability of the diaryl- λ^3 -iodanes (e.g. [Ph₂I]Cl) to transfer an aryl ligand to an enolate (Scheme 1).^[3,4] Recent studies showed that both the C- and the O-iodonium enolate intermediates can lead to the product through a [1,2] or [2,3] shift, respectively.^[5]

This methodology, including its asymmetric versions,^[6] has since then gained importance as complementary to the crosscoupling, in turn stimulating further research into diaryl λ^3 iodanes.^[7,8] Despite the attractiveness of the method, one of the two aryl groups must act as a "spectator" ligand extruded in the form of ArI. The choice of such a group (e.g. mesityl) is often the key to a selective arylation using asymmetric

[*]	Dr. Z. Jia, Dr. E. Gálvez, Prof. Dr. R. M. Sebastián, Prof. Dr. R. Pleixats, Prof. Dr. A. Vallribera Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona Bellaterra (Spain) E-mail: adelina.vallribera@uab.cat Dr. Á. Álvarez-Larena Servei de Difracció de Raigs X, Universitat Autònoma de Barcelona
	Dr. E. Martin, Dr. A. Shafir Institute of Chemical Research of Catalonia (ICIQ) Avda. Països Catalans 16, 43007 Tarragona (Spain) E-mail: ashafir@iciq.es
[**]	This work was supported by the ICIQ, MICINN (CTQ2011-22649), the MEC (Cons. Ing. CSD2007-00006), the Generalitat de Catalunya (2014SGR1192 and 2014SGR1105), and the China Scholarship

Council (fellowship to Z.J.). We thank MINECO for support through grant CTQ2013-46705-R and Severo Ochoa Excellence Accreditation 2014–2018 (SEV-2013-0319).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201405982.

Scheme 1. The Beringer-type arylation of $\beta\text{-ketoesters}$ using diaryliodonium salts.

diaryliodanes.^[7b] Although the use of the monoaryl iodonium species (e.g. PhIX₂) would thus be attractive, examples of such usage are scarce.^[9] As part of our own research on hypervalent iodine reactivity,^[10] we wish to report an α -arylation protocol that employs monoaryl iodonium species, exemplified by phenyliodine bis(trifluoroacetate) (PIFA, **2a**).

We found that exposing the β -ketoester **1** to **2a** in CH₃CN led to an unexpected *ortho*-iodoaryl species **4** in 17% yield (Scheme 2); in contrast, none of **4** was obtained using PhI(OAc)₂ or PhI(OH)(OTs) (entries 1–3, Table 1). The

Scheme 2. The outcome of treating the β -ketoester 1 with PhI(O₂CCF₃)₂ (2 a).

Table 1: Screening of conditions in the arylation of 1 with 2a (from Scheme 2).^[a]

	,			
Entry	Solvent	PhIX ₂	Additive ^[b]	4 [%] ^[c]
1	CH₃CN	2 a	-	17
2	CH₃CN	PhI(OAc)₂	-	-
3	CH₃CN	PhI (OH) (OTs)	-	-
4	CH_2Cl_2	2a	-	14
5	CF ₃ CO ₂ H	2a	-	34
6	CH ₃ CN-CF ₃ CO ₂ H	2a	-	48
7	CH ₃ CN-CF ₃ CO ₂ H	2a	(CF ₃ CO) ₂ O	57 ^[d]
8	CH ₃ CN-CF ₃ CO ₂ H	2a	(CF ₃ SO ₂) ₂ O	< 5
9	CH ₃ CN-CF ₃ CO ₂ H	2a	H ₂ O	< 5
10	CH ₃ CN-CF ₃ CO ₂ H	PhI(OAc) ₂	(CF ₃ CO) ₂ O	23
11	CH ₃ CN-CF ₃ CO ₂ H	PhI (OH) (OTs)	(CF ₃ CO) ₂ O	26
12	CH ₃ CN-CF ₃ CO ₂ H	PhIO	(CF ₃ CO) ₂ O	52

[a] Using 1 (1.0 mmol) and 2a (1.3 mmol) in 4 mL of solvent for 4 h at rt;
[b] 1.5 equiv; [c] GC yield corrected versus the internal standard C₆H₁₁CN; [d] Yield of the isolated product.

Angew. Chem. Int. Ed. 2014, 53, 1-5

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Wiley Online Library

These are not the final page numbers!

Angewandte Communications

formation of **4** was found to be solvent-dependent (entries 1 and 4–6), with a 48% yield achieved using a 1:1 CH₃CN/ CF₃CO₂H mixture. The addition of the trifluoroacetic anhydride (1.5 equiv) led to a 57% yield of **4** after 2 h at room temperature; other additives proved detrimental (entries 7–9). Under the new conditions, the use of other hypervalent iodine reagents was now possible (entries 10–12), likely through the in situ formation of **2a**. Oxidative degradation of **1** accounts for the reaction mass balance.

To probe the reaction scope, the cyclic β -ketoesters 5–7 were transformed into products 11–13 in 2 h at room temperature (Scheme 3, X-Ray structure of 13 shown). Similarly, α -

Scheme 3. The α -iodoarylation of β -dicarbonyl compounds using PIFA.

(2-iodoaryl)-diketones **14–16** were synthesized from the corresponding β -diketones **8–10**.

Particularly efficient was the arylation of α -cyanoketones (Table 2). Thus, the cyclic substrates **17–19** underwent a smooth reaction with PIFA to give a 76–80% yield of

[a] 1.3:1 ratio of **2/17**. Using **17** (1 mmol) in CH₃CN/CF₃COOH (1:1, 4 mL). [b] From *m*-Br-C₆H₄I(O₂CCF₃)₂ (**2**). [c] At 60 °C for 48 h.

20a, 21, and 22 after 6-8 h.^[11] Next, 17 was exposed to eight additional $ArI(O_2CCF_3)_2$ reagents (2b-2i) prepared by a method developed by Zhdankin et al.^[12] The use of the halo derivatives 2b-2e led to the formation of the dihaloaryl cyanoketones 20b (63%), 20c (65%), 20d (71%), and 20e (50%), with **20e** featuring the iodine flanked by a C-Br and a C-C bonds. A 76% yield of the carboxy-substituted 20 f was achieved and the p-NO₂ derivative **20** g was isolated in 68% yield. The transfer of a 2-iodo-3-methylphenyl group took place with a 49% yield (product 20h). The coupling at the two ortho CH sites of the meta-Br iodane 2i took place in a 3:1 ratio, with the minor isomer 20i' (17%) observed as two rotamers (70:30) at -20°C (see the Supporting Information). Interestingly, although the secondary cyanoketones, including benzoylacetonitrile, proved unsuitable, the 2-benzoylpropionitrile, which only differs by a 2-methyl group, gave the expected 23 in 60% yield. Finally, the protocol was used to prepare a 19 g batch of **20 a** (74%, Scheme 4).^[13]

Scheme 4. Gram-scale preparation of **20**a; α -arylation conditions as in Table 2.

Scheme 5. Two possible enolate rearrangement paths leading to 4.

Although a mechanistic study is currently underway, this formal C–H alkylation may arise from a [3,3] shift of an O-enolate **A** (Scheme 5) as seen in a related sulfoxide-mediated α -arylation.^[14] Alternatively, the selectivity could be explained by a [1,3] shift of a C-enolate **B**.

A priori, the [1,3] shift appears less likely. Indeed, while the C-enolates are intermediates in the formation of the iodonium ylides^[15] and can be isolated,^[16] the existence (or intermediacy) of the quaternary analogues (such as B in Scheme 5) is less frequent.^[5b] Furthermore, heating the isolated C-enolates typically leads to the formation of the α -C-O (e.g. C-OTs) bond.^[16] In our hands, the isolated phenyliodonium ylide PhCOC(=IPh)CN, expected to give a C-enolate upon protonation,^[15c] failed to undergo the aryl transfer under the reaction conditions. Thus, we favor a [3,3] shift of an iodonium O-enolate (A, Scheme 5), akin the iodonio-Claisen rearrangement introduced by Ochiai et al. in the 1990s.^[17,18] Despite our efforts, reaction intermediates have so far proven elusive, possibly due to the rearrangement proceeding faster than the I-O-enolate formation.^[19] Not even the o,o-disubstituted 2j allowed for the trapping of the Ienolate, leading instead to non-arylative oxidation processes (Scheme 6A). It should also be noted that the iodine-free species 24 (5%), isolated during the synthesis of 20b, proved

www.angewandte.org

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

• These are not the final page numbers!

Scheme 6. Additional observations in the arylation of 17.

to be the *para*-fluoro regioisomer, rather than the initially assumed *meta* (Scheme 6B); the steps leading to **24** remain to be investigated.

The cyanoketones **20a** and **21** were readily converted to the amides **25** and **26**. Although PIFA was unsuitable for the arylation of the parent cyclohexanone, the arylketone **27** could, nevertheless, be obtained through the decarboxylation of **25** (Scheme 7, top). The substrates also underwent the Suzuki (see the Supporting Information) and Sonogashira coupling reaction (Scheme 7, bottom, products **28–30**).

The reduction of **25** led to the alcohol **31** as a 4:1 *trans/cis* mixture (Scheme 8), with the solid state structures of both **25** and **31-***trans* showing an equatorial *o*-iodophenyl group.^[20] Preliminary tests showed that **31** can be converted to the hydroxy-spiroxindole **32** (X-ray structure shown for *trans*) using a Cu-catalyzed C–N coupling,^[21] with **32-cis** representing the spiroxindole portion of Gelsemine, a synthetically interesting natural product target (Scheme 8).^[22,23]

Scheme 7. Functional group manipulation in the α -(2-iodoaryl) derivatives.

Scheme 8. Some simple transformations of the ketoamide 25.

Angew. Chem. Int. Ed. 2014, 53, 1-5

In summary, the ArI(O_2CCF_3)₂ reagents have been used in the α -arylation of β -dicarbonyls and α -cyanoketones. The aryl transfer takes place with retention of the iodide *ortho* to the newly formed C–C bond. The method is complementary to metal-catalyzed arylations, and could overcome the issues of the aryl loss associated with the use of diaryliodonium salts. In a more general sense, the concept of a reversible formation of an iodonium-based Claisen precursor, shown here with Oenolates, might open the door to the development of a range of new synthetic methods.

Received: June 6, 2014 Revised: July 11, 2014 Published online:

Keywords: α -arylation \cdot C–H functionalization \cdot iodonium-Claisen rearrangement \cdot dehydrogenative C– C coupling \cdot hypervalent iodine

- a) M. Palucki, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 11108–11109; b) J. M. Fox, X. Huang, A. Chieffi, S. L. Buchwald, J. Am. Chem. Soc. 2000, 122, 1360–1370; c) B. C. Hamann, J. F. Hartwig, J. Am. Chem. Soc. 1997, 119, 12382–12383.
- [2] For a review on metal-catalyzed α-arylation, see: a) C. C. C. Johansson, T. J. Colacot, *Angew. Chem. Int. Ed.* **2010**, *49*, 676–707; *Angew. Chem.* **2010**, *122*, 686–718; b) F. Bellina, R. Rossi, *Chem. Rev.* **2010**, *110*, 1082–1146.
- [3] a) F. M. Beringer, P. S. Forgione, J. Org. Chem. 1963, 28, 714–717; b) F. M. Beringer, W. J. Daniel, S. A. Galton, G. Rubin, J. Org. Chem. 1966, 31, 4315–4318; c) C. H. Oh, J. S. Kim, H. H. Jung, J. Org. Chem. 1999, 64, 1338–1340.
- [4] For the related usage of the Ar-Pb and Ar-Bi species, see a) J. T. Pinhey, B. A. Rowe, *Aust. J. Chem.* 1979, *32*, 1561–1566;
 b) D. H. R. Barton, J.-C. Blazejewski, B. Charpiot, D. J. Lester, W. B. Motherwell, M. T. Barros Papoula, *J. Chem. Soc. Chem. Commun.* 1980, 827–829.
- [5] a) M. Ochiai, Y. Kitagawa, M. Toyonari, *Arkivoc* 2003, 43–48;
 b) P. O. Norrby, T. B. Petersen, M. Bielawski, B. Olofsson, *Chem. Eur. J.* 2010, *16*, 8251–8254.
- [6] a) M. Ochiai, Y. Kitagawa, N. Takayama, Y. Takaoka, M. Shiro, J. Am. Chem. Soc. **1999**, 121, 9233–9234; b) V. K. Aggarwal, B. Olofsson, Angew. Chem. Int. Ed. **2005**, 44, 5516–5519; Angew. Chem. **2005**, 117, 5652–5655; c) A. E. Allen, D. W. C. MacMillan, J. Am. Chem. Soc. **2011**, 133, 4260–4263.
- [7] a) E. A. Merritt, B. Olofsson, Angew. Chem. Int. Ed. 2009, 48, 9052–9070; Angew. Chem. 2009, 121, 9214–9234; b) J. Malmgren, S. Santoro, N. Jalalian, F. Himo, B. Olofsson, Chem. Eur. J. 2013, 19, 10334–10342.
- [8] For further reading on hypervalent iodine chemistry, see: V. V. Zhdankin, Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applications of Polyvalent Iodine Compounds, Wiley, Chichester, 2014.
- [9] PhIX₂ are also net 2e⁻ oxidants in the α-arylation using ArH:
 a) Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai, S. Oka, *J. Am. Chem. Soc.* 1994, *116*, 3684–3691; b) T. C. Turner, K. Shibayama, D. L. Boger, *Org. Lett.* 2013, *15*, 1100–1103.
- [10] E. Faggi, R. M. Sebastián, R. Pleixats, A. Vallribera, A. Shafir, A. Rodríguez-Gimeno, C. Ramírez de Arellano, J. Am. Chem. Soc. 2010, 132, 17980–17982.
- [11] The mass balance is made up by the ketone α-oxidation products C-OH and C-O₂CF₃ and those stemming from oxidative ringopening.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers!

- [12] A. A. Zagulyaeva, M. S. Yusubov, V. V. Zhdankin, J. Org. Chem. 2010, 75, 2119–2122.
- [13] For the synthesis of α -cyanoketones: H.-J. Liu, T. W. Ly, C.-L. Tai, J.-D. Wu, J.-K. Liang, J.-C. Guo, N.-W. Tseng, K.-S. Shia, *Tetrahedron* **2003**, *59*, 1209–1226.
- [14] a) X. L. Huang, N. Maulide, J. Am. Chem. Soc. 2011, 133, 8510–8513; b) X. L. Huang, S. Klimczyk, N. Maulide, Synthesis 2012, 175–183; for a related Au-catalyzed process, see c) A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledós, M. Medio-Simón, G. Ujaque, G. Asensio, Org. Lett. 2009, 11, 4906–4909.
- [15] a) E. Malamidou-Xenikaki, S. Spyroudis, *Synlett* 2008, 2725–2740; b) S. R. Goudreau, D. Marcoux, A. B. Charette, *J. Org. Chem.* 2009, *74*, 470–473; c) K. Gondo, T. Kitamura, *Molecules* 2012, *17*, 6625–6632.
- [16] G. F. Koser, A. G. Relenyi, A. N. Kalos, L. Rebrovic, R. H. Wettach, J. Org. Chem. 1982, 47, 2487–2489.
- [17] a) M. Ochiai, T. Ito, Y. Takaoka, Y. Masaki, J. Am. Chem. Soc. 1991, 113, 1319–1323; b) M. Ochiai, T. Ito, J. Org. Chem. 1995, 60, 2274–2275; c) H. R. Khatri, J. L. Zhu, Chem. Eur. J. 2012, 18, 12232–12236.
- [18] The mechanism was also invoked by Porco et al. to explain the formation of the species C: J. L. Zhu, A. R. Germain, J. A. Porco, Angew. Chem. Int. Ed. 2004, 43, 1239–1243; Angew. Chem. 2004, 116, 1259–1263.

- [19] Only the PhI(O₂CCF₃)₂ and the coupling product were detected by NMR during the reaction.
- [20] CCDC 1005725 (13), 1005726 (25), 1005727 (31-trans), 1005728 (32-trans) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/cif.
- [21] For a review on Cu-catalyzed coupling, see: I. P. Beletskaya, A. V. Cheprakov, *Coord. Chem. Rev.* 2004, 248, 2337–2364; for the Cu-catalyzed N-arylation of amides, see A. Klapars, J. C. Antilla, X. H. Huang, S. L. Buchwald, *J. Am. Chem. Soc.* 2001, 123, 7727–7729.
- [22] For strategies in Gelsemine synthesis: H. Lin, S. J. Danishefsky, Angew. Chem. Int. Ed. 2003, 42, 36–51; Angew. Chem. 2003, 115, 38–53.
- [23] In both cases, a competing C-O coupling yielded small amounts (5-15%) of the dihydrobenzofuran 33 (Figure 2, Supporting Information).

These are not the final page numbers!

Communications

Synthetic Methods

Z. Jia, E. Gálvez, R. M. Sebastián, R. Pleixats, Á. Álvarez-Larena, E. Martin,

A. Vallribera,* A. Shafir* ___ ∎∎∎∎-∎∎∎∎

An Alternative to the Classical α -Arylation: The Transfer of an Intact 2-Iodoaryl from ArI(O₂CCF₃)₂

[3,3] Iodonium enolate rearrangement: Activated ketone derivatives, including β -

dicarbonyl and α -cyanoketones, react with Arl(O₂CCF₃)₂ reagents to give an α arylated product with the iodine atom retained *ortho* to the new C–C bond. The -coupling *ortho* to iodine -likely iodonio-Claisen mechanism -complementary to metalcatalyzed arylation

reaction takes place under acidic conditions. This formal C–H functionalization reaction presumably proceeds through a [3,3] rearrangement of an iodonium enolate. The final α -(2-iodoaryl)ketones are versatile synthetic building blocks.