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Abstract: Novel reaction conditions have been developed for the
regioselective reductive ring opening of benzylidene acetals in car-
bohydrate derivatives using triethylsilane and molecular iodine.
The reaction is fast, compatible with most of the functional groups
encountered in the oligosaccharide synthesis, and yields were excel-
lent. The reaction conditions are equally effective in thioglycosides.
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Judicious protection of hydroxyl groups in the polyhy-
droxylated carbohydrate skeleton plays an important role
in the synthesis of complex oligosaccharides and natural
products.1 Although chemistry for the selective protection
and deprotection of carbohydrates has been extensively
studied, there is still a need for improved methodology.
Benzylidene acetals have found extensive application in
oligosaccharide synthesis because of the group’s utility
for the simultaneous protection of two hydroxyl groups
and its removal under acidic or neutral conditions.2 Trans-
formation of a benzylidene acetal to a benzyl or benzoyl
group are useful conversions in the synthesis of oligosac-
charides. The 4,6-O-benzylidene acetal in carbohydrate
derivatives can be regioselectively opened to give either
6-O-benzylated or 4-O-benzylated derivatives depending
on the reducing agent used.2 For the selective removal of
benzylidene acetasl a number of methods are available in
the literature, including NaBH3CN–HCl,3 NaBH3CN–
TFA,4 Et3SiH–TFA,5 Et3SiH–BF3·OEt2

6 for the prepara-
tion of 6-O-benzylated derivatives and AlCl3–LiAlH4,

7

DIBAL-H,8 Me3NBH3–AlCl3,
4 BH3·THF–TMSOTf,9

Bu2BOTf–BH3·THF,10 CoCl2–BH3·THF11 and others12

for the preparation of 4-O-benzylated derivatives. Never-
theless, many of these methods for the preparation of 6-O-
benzylated carbohydrate derivatives have shortcomings
such as formation of byproducts, use of expensive re-
agents, incompatibility with other functional groups, and
harsh reaction conditions. Therefore, development of
mild, efficient, and metal-free methodology for the re-
gioselective ring opening of benzylidene acetals is still
attractive. During the synthesis of complex
oligosaccharides13 we applied Et3SiH–TFA5 or Et3SiH–
BF3·OEt2

6 to the regioselective opening of 4,6-O-ben-
zylidene acetals in sugar derivatives to obtain 6-O-benzy-

lated derivatives. However, in some cases we obtained
poor yields because of the instability of some functional
groups under the reaction conditions. Alternative use of
NaBH3CN–HCl·Et2O requires repeated purification of the
products to remove borate salts, and the Et3SiH–TFA sys-
tem did not work in D-galactose derivatives. Thus we
sought to explore other possible reagent combinations for
the reductive ring opening of benzylidene acetals of D-
glucose and D-galactose derivatives. We envisaged that
use of a Et3SiH and molecular iodine combination could
serve to improve the yield of the products. We disclose
herein convenient reaction conditions for the regioselec-
tive ring opening of 4,6-O-benzylidene acetals of carbo-
hydrate derivatives into 6-O-benzylated derivatives using
a combination of triethylsilane–molecular iodine
(Scheme 1).

Scheme 1 Regioselective ring opening of benzylidene acetal using
triethylsilane and iodine.

In a set of initial experiments, methyl 2,3-di-O-acetyl-4,6-
O-benzylidene-a-D-glucopyranoside (1) was allowed to
stir with triethylsilane and iodine in MeCN at room tem-
perature, varying the quantity of reagents. It was observed
that treatment of compound 1 with 1.5 equiv. of Et3SiH
and 0.2 equiv. of iodine in MeCN could efficiently pro-
duce methyl 2,3-di-O-acetyl-6-O-benzyl-a-D-glucopyra-
noside (14) in 10 min at room temperature. Reducing the
quantity of reagents resulted in an incomplete transforma-
tion even after 5 h. Use of other organic solvents such as
CH2Cl2, THF produced a similar result in the formation of
compound 14. Following these reaction condition, a series
of 4,6-O-benzylidene acetal derivatives derived from D-
glucose and D-galactose was transformed into the corre-
sponding 6-O-benzylated derivatives (Scheme 1,
Table 1). Noteworthy features are the absence of forma-
tion of 4-O-benzylated derivatives and stability of the ma-
jority of the functional groups used for the protection of
hydroxy and amino groups in carbohydrates. Furthermore
benzylidene acetals of thio- and selenoglycosides can also
be regioselectively opened without any side reaction
(Table 1, entries 8, 10 and 12); despite the fact that iodine
has been used for thioglycoside activation.14 The reaction
conditions were equally effective in D-glucose and D-
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galactose derivatives unlike the Et3SiH–TFA combina-
tion,5 which can be used in D-glucose derivatives only. Fi-
nally, stereochemistry at the anomeric center does not
influence the product formation. In order to establish the
significant advantages of the present protocol, a compara-
tive study was also carried out with the existing literature
reported reaction conditions (Table 2) from which it is
clear that the present reaction condition produces higher
yields of the product in shorter time.

In summary, a novel, mild reaction condition has been de-
veloped for the regioselective reductive ring opening of
benzylidene acetals in the carbohydrate backbone using
triethylsilane and molecular iodine. This straightforward
reaction is rapid and high yielding and can be scaled-up.
Use of readily available reagents, without requirement of
heavy metal salts, high boiling solvents or Lewis acids
makes this reaction protocol an attractive alternative to
existing methodology.

Table 1 Regioselective Ring Opening of Benzylidene Acetal of Carbohydrate Derivatives Using Et3SiH and I2 

Entry Substratesa Productsa Time (min) Yield (%)

1
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Typical Experimental Conditions
To a solution of compound 1 (1 mmol) in MeCN (5 mL) were added
triethylsilane (1.5 mmol) and iodine (0.2 mmol) at 0–5 °C, and the
reaction mixture was allowed to stir at the same temperature for the
appropriate time (Table 1). After completion of reaction (TLC), the
reaction mixture was diluted with CH2Cl2 (20 mL). The organic lay-
er was successively washed with sat. NaHCO3 and H2O, dried
(Na2SO4), and concentrated under reduced pressure. The crude
product was purified using hexane–EtOAc (4:1) as eluent to furnish
pure compound 14 (95%).23

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Table 2 Comparison of Reaction Conditions for the Preparation of 6-O-Benzyl Carbohydrate Derivatives

Substrate Product Reagent Time (min) Yield (%)
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To aid assignments, data were taken after acetylation of the 
products.
4-Methoxyphenyl 2,3,4-Tri-O-acetyl-6-O-benzyl-b-D-
galactopyranoside (Acetylated 22)
1H NMR (500 MHz, CDCl3): d = 7.25–7.17 (m, 5 H, ArH), 
6.87 (d, J = 9.0 Hz, 2 H, ArH), 6.70 (d, J = 9.0 Hz, 2 H, 
ArH), 5.40 (d, J = 3.3 Hz, 1 H, H-4), 5.31 (dd, J = 7.9 Hz 
each, 1 H, H-2), 4.99 (dd, J = 10.4, 3.4 Hz, 1 H, H-3), 4.83 
(d, J = 7.9 Hz, 1 H, H-1), 4.48 (d, J = 11.9 Hz, 1 H, PhCH2a), 
4.36 (d, J = 11.9 Hz, 1 H, PhCH2b), 3.87–3.84 (m, 1 H, H-5), 
3.68 (s, 3 H, OCH3), 3.52–3.44 (m, 2 H, H-6a,b), 2.01, 1.99, 
1.93 (3 s, 9 H, 3 COCH3). 

13C NMR (125 MHz, CDCl3): d = 
170.3, 170.1, 169.5 (3 COCH3), 156.0–114.9 (ArC), 101.1 
(C-1), 73.9, 72.9, 71.5, 69.4, 67.9, 67.8, 55.8, 21.1, 21.0, 
20.9 (3 COCH3). ESI-MS (C26H30O10): m/z = 525.1 [M + 
Na]+.
Phenyl 2,3,4-Tri-O-acetyl-6-O-benzyl-1-seleno-b-D-
glucopyranoside (Acetylated 25)
1H NMR (500 MHz, CDCl3): d = 7.59–7.21 (m, 10 H, ArH), 
5.15 (t, J = 9.2 Hz, 1 H, H-3), 5.01 (t, J = 9.8 Hz, 1 H, H-2), 
4.97 (t, J = 9.2 Hz, 1 H, H-4), 4.88 (d, J = 9.9 Hz, 1 H, H-1), 
4.53–4.46 (2 d, J = 11.8 Hz, 2 H, PhCH2), 3.67–3.63 (m, 1 
H, H-5), 3.56–3.54 (m, 2 H, H-6a,b), 2.14, 2.05, 1.96 (3 s, 9 
H, 3 COCH3). 

13C NMR (125 MHz, CDCl3): d = 170.4, 
169.6, 169.4 (3 COCH3), 138.2–127.6 (ArC), 81.4 (C-1), 
78.9, 74.4, 73.9, 71.3, 69.4 (2 C), 21.1, 20.9 (2 C) (3 
COCH3). ESI-MS (C25H28O8Se): m/z = 559.1 [M + Na]+.
Methyl (2,3,4-Tri-O-acetyl-6-O-benzyl-b-D-
glucopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-a-D-
glucopyranoside (Acetylated 26)
1H NMR (500 MHz, CDCl3): d = 7.33–7.24 (m, 5 H, ArH), 
5.43 (t, J = 10.0 Hz each, 1 H, H-3A), 5.16 (t, J = 9.4 Hz 
each, 1 H, H-4A), 5.03 (t, J = 9.5 Hz each, 1 H, H-3B), 4.96 
(dd, J = 7.9 Hz each, 1 H, H-2B), 4.90 (t, J = 9.4 Hz each, 1 
H, H-4B), 4.88 (d, J = 3.6 Hz, 1 H, H-1A), 4.82 (dd, J = 10.1, 
3.6 Hz, 1 H, H-2A), 4.55 (d, J = 11.9 Hz, 1 H, PhCH2a), 4.52 
(d, J = 7.9 Hz, 1 H, H-1B), 4.48 (d, J = 11.9 Hz, 1 H, 
PhCH2b), 3.94–3.89 (m, 2 H, H-6abA), 3.65–3.61 (m, 1 H, H-
5B), 3.55–3.51 (m, 3 H, H-5A, H-6a,bB), 3.37 (s, 3 H, OCH3), 
2.06, 2.03, 1.98, 1.89 (4 s, 18 H, 6 COCH3). 

13C NMR (125 
MHz, CDCl3): d = 170.4, 170.1, 170.0, 169.7, 169.6, 169.4 
(6 COCH3), 137.9–128.1 (ArC), 101.2 (C-1B), 96.8 (C-1A), 
73.9, 73.7, 73.3, 71.6, 71.2, 70.6, 69.7, 69.4, 69.2, 68.5, 68.3, 
55.5 (OCH3), 21.1 (2 C), 21.0 (2 C), 20.9 (2 C). ESI-MS 
(C30H40O16): m/z = 679.2 [M + Na]+.
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