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Abstract—In order to capture and identify key molecules that regulate the release of Ca2+ from the sarcoplasmic reticulum (SR) of
skeletal muscle, we designed specific photoaffinity probes based on the structural modification of dantrolene. Thus, GIF-0082 and
GIF-0276 possessing azido- and trifluoromethyldiazirinyl-benzyl groups, respectively, at the hydantoin moiety were found to have a
highly selective inhibitory effect on physiological Ca2+ release (PCR) without affecting Ca2+-induced Ca2+ release (CICR). Suc-
cessful realization of the sharp discrimination between PCR and CICR has led to the creation of [125I]GIF-0082 and [125I]GIF-0276,
which were synthesized by substituting a stannyl group with 125I in the corresponding phenylstannane precursors.
# 2002 Published by Elsevier Science Ltd.

Muscle contraction is provoked by the release of Ca2+

into the cytoplasm from sarcoplasmic reticulum (SR),
the intracellular Ca2+ store.1 In skeletal muscle, physio-
logical Ca2+ release (PCR) from SR is controlled by the
ryanodine receptor (RyR1), a Ca2+-releasing channel
on the SR membrane, whose function is directed by the
signal from the dihydropyridine receptor (DHPR), a
voltage sensor in the cell membrane.1,2 However, the
precise molecular mechanism by which Ca2+ is released,
in particular the question of whether the signal from
DHPR is transmitted to RyR1 directly or via unde-
termined molecules, remains unclear.3,4 The possibility
that proteins may act as regulatory molecules in such a
bioprocess is still under debate.3,4 RyR1 not only plays
a role as a PCR channel but also can facilitate Ca2+-
induced Ca2+ release (CICR), although the physio-
logical significance of the CICR process is not clear in
skeletal muscle.2,3 Accordingly, an agent which acts

specifically on PCR or CICR would be useful to eluci-
date the process by which Ca2+ is released. Therefore,
we have designed specific photoaffinity probes5 capable
of discriminating PCR from CICR by the structural
modification of dantrolene (1).

Compound 1, which is used clinically in the treatment of
malignant hyperthermia,6,7 inhibits abnormal Ca2+

release from SR8 and inhibits both PCR and CICR in
normal skeletal muscle.3,9 Our goal was to design spe-
cific photoaffinity probes by introducing a photoreactive
functional group either to the phenyl ring or the
hydantoin moiety of 1. Derivatives 2, 3, and 4, with
azido, benzoyl, and 3-trifluoromethyl-3H-diazirin-3-yl
groups on the phenyl ring, respectively, were either
ineffective or non-selective.10,11 On the other hand, the
hydantoin derivatives, GIF-0082 (5) and GIF-0276 (6),
exhibited a specific inhibitory effect on PCR without
affecting CICR, as shown in Figure 1.9,12,13 Here, three
substituents, a photoreactive group, an iodo group
(introduced as a latent 125I group), and a methylene
group, were placed to satisfy meta configurations with
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one another to avoid unnecessary interactions with
neighboring functional groups.

GIF-0082 (5) was obtained by alkylation of 1 with ben-
zyl bromide 7, derived from commercial 3,5-dini-
trobenzyl alcohol (8) (Scheme 1).12 Thus, the partial
reduction of one of the nitro groups of 8 by SnCl2 under
acidic conditions resulted in 9. The amino group of 9
was converted to an iodo group by in situ diazo-iodo-
dediazotization to give 10.14 The remaining nitro group
of 10 was changed to an azido group by reduction with
SnCl2 in ethanol followed by diazo-azidodediazotiza-
tion to give 12. Bromination of the benzyl alcohol 12 by
the conventional method using CBr4/PPh3 produced the
benzyl bromide 7 and, finally, the coupling of 1 with 7 in
DMF gave the desired 5.12 Similarly, the diazirinyl-type

probe GIF-0276 (6) was prepared from 1 and known
benzyl bromide 1315 (Scheme 2).12

A conspicuous biological property of 5 and 6 led to the
syntheses of the corresponding 125I-labeled compounds,
[125I]GIF-0082 ([125I]-5) and [125I]GIF-0276 ([125I]-6).
Since it is better to introduce a radioisotope as late as
possible, we planned to apply conventional radio-
iododestannylation16 at the final stage of the synthesis.
Thus, the iodo derivatives, 5 and 6, were once converted
to the corresponding stannanes, 14 and 15, respectively,
by palladium(0)-catalyzed stannylation with bis(tri-n-
butyltin) (Scheme 3).12 The resulting stannyl precursor
underwent radioiododestannylation16,17 by mixing
about a 600-fold excess of stannanes with commercial
10mCi Na125I solution (Perkin–ElmerTM, NEZ-033A)
in the presence of Chloramine-T (�150-fold excess)
followed by standing at room temperature overnight.
An extractive work up with EtOAc followed by pur-
ification by silica-gel column chromatography produced
the desired [125I]-5 and [125I]-6 in 61–97 and 31% radio-
chemical yields, respectively, based on Na125I.18

Thus, based on the molecular design and biological
evaluation, we succeeded in developing specific photo-
reactive inhibitors for the PCR process, which is
involved in the excitation–contraction (E–C) coupling1,2

in skeletal muscle. The use of these probes for photo-
affinity labeling, and for capturing novel molecules and
determining their structures and functions, will be
reported in due course.19

Figure 1. Effects of dantrolene (1), GIF-0082 (5), and GIF-0276 (6) on
twitch contraction (open column) and CICR rate (filled column) of
mouse skeletal muscle. For the methods of biological evaluation, see
ref 9. The number of experiments (n), indicated in the column, of
compounds 1 and 5 for twitch contraction were increased from that
reported in ref 9b.

Scheme 1. Synthesis of GIF-0082 (5): (a) SnCl2, concd. HCl, EtOH,
0�C to rt, 22 h, 57%; (b) NaNO2, AcOH–H2O (9:1), 0 �C; then NaI,
15min, 67%; (c) SnCl2, EtOH, 70 �C, 2.5 h, 91%; (d) NaNO2, AcOH–
H2O (9:1), 0 �C; then NaN3, 15min, 95%; (e) CBr4, PPh3, CH2Cl2, rt,
2 h, 95%; (f) 1, DMF, rt, 14.5 h, 85%.

Scheme 2. Synthesis of GIF-0276 (6): (a) DMF, rt, 14.5 h, 67%.
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