Mild hydrolysis or alcoholysis of amides. Ti(IV) catalyzed conversion of primary carboxamides to carboxylic acids or esters^{1,2}

LAWRENCE E. FISHER,³ JOAN M. CAROON, S. RUSSELL STABLER, SCOTT LUNDBERG, SHAHID ZAIDI,

CAROLE M. SORENSEN, MARK L. SPARACINO, AND JOSEPH M. MUCHOWSKI

Syntex Research, 3401 Hillview Avenue, P.O. Box 10850, Palo Alto, CA 94304, U.S.A.

Received May 21, 1993

This paper is dedicated to Professor David B. MacLean

LAWRENCE E. FISHER, JOAN M. CAROON, S. RUSSELL STABLER, SCOTT LUNDBERG, SHAHID ZAIDI, CAROLE M. SORENSEN, MARK L. SPARACINO, and JOSEPH M. MUCHOWSKI. Can. J. Chem. 72, 142 (1994).

Reaction of primary amides (e.g., 1a or 6–13) or O-methylhydroxamates (1b and 1c) with a catalytic amount of TiCl₄ and one equivalent of aqueous HCl converts these compounds in good yields to carboxylic esters (when an alcohol is used as solvent) or to carboxylic acids (when 9:1 dioxane: H_2O is used as solvent). These conversions are chemoselective for primary amides: mono- and dialkyl amides are not affected by the reaction conditions. The hydrolysis conditions described do not compromise the stereochemical integrity of an adjacent chiral center. This is exemplified by the hydrolysis of naproxen amide (34) to naproxen (33) without detectable racemization as determined by chiral HPLC.

LAWRENCE E. FISHER, JOAN M. CAROON, S. RUSSELL STABLER, SCOTT LUNDBERG, SHAHID ZAIDI, CAROLE M. SORENSEN, MARK L. SPARACINO et JOSEPH M. MUCHOWSKI. Can. J. Chem. 72, 142 (1994).

La réaction des amides primaires (par exemple 1a ou 6-13) ou des O-méthylhydroxamates (1b ou 1c) avec une quantité catalytique de TiCl₄ et un équivalent de HCl aqueux permet de transformer ces composés, avec d'excellents rendements, en esters carboxyliques (lorsqu'on utilise un alcool comme solvant) ou en acides carboxyliques (lorsqu'on utilise un mélange 9:1 dioxane : eau comme solvant). Ces transformations sont chémosélectives pour les amides primaires; les mono- et dialkyl amides ne sont pas affectés par les conditions des réactions. Les conditions d'hydrolyse décrites ne compromettent pas l'intégrité stéréochimique d'un centre chiral adjacent. Pour démontrer cette assertion, on présente comme exemple l'hydrolyse de la naproxenamide (34) en naproxen (33) qui, d'après une CLHP chirale, se fait sans racémisation détectable.

[Traduit par la rédaction]

We have shown that the *O*-methyl hydroxamic acid moiety is an efficient, easy to prepare *ortho*lithiation directing group for aryl and toluyl systems (1).⁴ In addition, we demonstrated that reduction of the O-methyl hydroxamic acids to carboxamides could be efficiently accomplished with two equivalents of titanium(III) chloride in alcoholic solution (2). With aqueous (but not anhydrous) titanium(III) chloride it was noted that after prolonged reaction times some of the carboxamide was converted into the carboxylic ester corresponding to the alcohol used. Since Ti(III) chloride had no effect on the primary amide it was assumed that Ti(IV), formed as a consequence of the reduction of the hydroxamate, was the agent responsible for promoting the alcoholysis of the amide. Not only was this supposition found to be correct, it was also shown that the alcoholysis was catalytic in Ti(IV).⁵ This paper describes optimized conditions for effecting the Ti(IV) catalyzed conversion of primary amides (1a, 6-13) to the corresponding carboxylic acids or esters. Also described herein are conditions for the Ti(IV) catalyzed alcoholysis and hydrolysis of Omethylphenylacetohydroxamate (1b) and O-methylbenzylhydroxamate (1c).

Depending on whether an aqueous or alcoholic solvent is used, treatment of N-unsubstituted carboxamides with a catalytic amount of titanium(IV) chloride and one equivalent of aqueous hydrochloric acid converts this class of compounds into the corresponding carboxylic acids or esters. Thus, heating the carboxamide in a solution of the appropriate alcohol containing 10 mol% aqueous TiCl₄ and one molar equivalent of hydrochloric acid gave the corresponding esters in good yields (Table 1; refs. 2–15). The carboxylic acids were obtained when 10% aqueous dioxane was used as the solvent (Table 2; refs. 2–20). Not surprisingly, ester-amides 11 and 12 were both hydrolyzed completely to diacids when subjected to the aqueous hydrolysis conditions. Treatment of O-methylhydroxamates 1b and 1c with TiCl₄ also resulted in alcoholysis (in alcohol with one molar equivalent of hydrochloric acid, Table 1) or hydrolysis (in 10% aqueous dioxane, Table 2). Although these reactions did proceed in the absence of added aqueous hydrochloric acid, addition of one molar equivalent of aqueous HCl increased the rate considerably. Neither of these reactions proceeded appreciably, however, in the absence of Ti(IV).

Titanium(IV) alkoxides also catalyze the transformation of primary carboxamides to esters. For example, $Ti(OMe)_4$, $Ti(OEt)_4$, and $Ti(OiPr)_4$, in the appropriate alcohol as solvent, catalyze the conversion of 1a to the methyl, ethyl, and isopropyl esters 2, 3, and 4, respectively. These results would suggest that the Ti(IV) species involved in the alcoholysis reaction probably is not TiCl₄, but rather some intermediate $Ti(Cl)_r(OR)_r$ complex. The Lewis acids boron trifluoride etherate, tin(IV) chloride, and silicon(IV) chloride (12) also catalyze these transformations, although with less efficiency than titanium(IV) chloride (Table 1).

N-Alkyl and N,N-dialkyl carboxamides are not affected under the conditions that transform unsubstituted carboxamides to esters or acids. For example, when monoethyl amide 35a or diethyl amide 35b are subjected to the reaction conditions that successfully converted 1 to 2 or 3, they were recovered quanti-

¹Dedicated to Professor David MacLean in recognition of his contributions to the fields of Natural Products and Organic Chemistry.

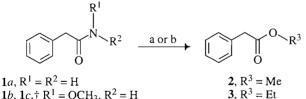
²Contribution No. 879 from the Syntex Institute of Organic Chemistry. ³Author to whom correspondence may be addressed.

⁴Titanium trichloride has also been shown to reduce N-oxides and oximes (2b) and nitro groups (2c).

⁵A 1 M solution of TiCl₄ in either toluene or CH₂Cl₂ was used (Aldrich).

 $*R^1 = OCH_3$ for entries

1a, 1b and H for all others


Reacta	nt R	Ref. ^a	Reagent	Solvent ^b	Time (h)	Product	\mathbb{R}^2	Yield (%)	MP (°C)(Sol)	Lit MP (°C)	Ref. ^c
1 a	CH ₂ C ₆ H ₅	2, 3	TiCl ₄	MeOH	3	2	CH ₃	86	218-220 (MeOH)	220	3, 10
1 a	CH ₂ C ₆ H ₅	2, 3	TiCl	EtOH	17	3	C ₂ H ₅	92	224-226 (EtOH)	226	3
1 a	CH ₂ C ₆ H ₅	2, 3	TiCl₄	i-PrOH	22	4	i-Č ₃ H ₇	87	BP 62 (0.3 Torr)	BP 65 (0.3 Torr)	3, 10
1 b	$CH_2C_6H_5$	2, 3	TiCl₄	MeOH	16	2	CH ₃	91	218-220 (MeOH)	220	3
1 b	$CH_2C_6H_5$	2, 3	TiCl ₄	EtOH	3	3	$C_2 H_5$	85	224-226 (EtOH)	226	11
1c	Ċ ₆ H ₅	2, 3	TiCl₄	EtOH	48	14	C_2H_5	81	BP 210	BP 212	4
6	$\tilde{C_6H_5}$	4	TiCl₄	EtOH	36	14	$\tilde{C_2H_5}$	78	BP 210	BP 212	4
7	C-Č ₆ H ₁₁	5	TiCl ₄	MeOH	26	15	ČH ₃	$< 10^{d}$	—	_	
8	C_4H_9		TiCl ₄	EtOH	25	16	C_2H_5	$< 10^{d}$	—		-
9	$CH(C_6H_5)_2$	6	TiCl ₄	EtOH	40	17	C_2H_5	52	56 (hex– Et_2O)	58	12
10	$C_{15}H_{31}$	7	TiCl ₄	EtOH	12	18	C_2H_5	74	28-30 (pentane)	26–28	7
11	4-CH ₃ O ₂ CC ₆ H ₄	8	TiCl ₄	EtOH	14	19	C_2H_5	76	BP 139–140	BP 140-142	13
12	$C_2H_5O_2C(CH_2)_3$	9	TiCl ₄	EtOH	10	20	C_2H_5	90	BP 214	BP 230	14
13	4-CH ₃ OC ₆ H ₄	8	TiCl ₄	EtOH	11	21	C_2H_5	69	BP 262	BP 269	15
1 a	CH ₂ C ₆ H ₅		TiCl ₄	EtOH	12	3	C_2H_5	93			
1 a	$CH_2C_6H_5$		SiCl ₄	MeOH	16	2	CH ₃	49			
1 a	$CH_2C_6H_5$		SnCl ₄	MeOH	14	2	CH_3	41			
1 a	$CH_2C_6H_5$		BF ₃ -OEt ₂	EtOH	10	2	C_2H_5	38			
1 a	$CH_2C_6H_5$		$Ti(OCH_3)_4$	MeOH	15	3	CH_3	73			
1 a	$CH_2C_6H_5$		Ti(OEt) ₄	EtOH	17	2	C_2H_5	81			
1 a	$CH_2C_6H_5$		Ti(Oi-Pr) ₄	i-PrOH	19	4	i-C ₃ H ₇	79			

^aPreparation of reactant.

^bReactions were performed under refluxing conditions.

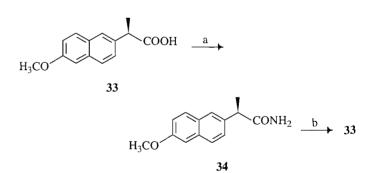
^cPhysical properties citation.

^dProducts are quite volatile.

1b, $1c, \dagger R^1 = OCH_3, R^2 = H$ 3, $R^3 = Et$ 35a, $R^1 = Et, R^2 = H$ 4, $R^3 = iPr$ 35b, $R^1 = R^2 = Et$ 5, $R^3 = H$

†See entry 1c, Table 1.

a. TiCl₄ (10 mol%), molar equiv. HCl, 1 molar equiv. H₂O, solvent, reflux


 b. Ti(OR)₄ (10 mol%), 1 molar equiv. HCl, 1 molar equiv. H₂O, solvent, reflux

For entries **35***a* and *b*, only starting amide was recovered after prolonged treatment using reaction conditions "a"

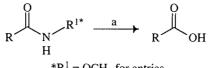
SCHEME 1

tatively, even after prolonged (>48 h) reaction times (Scheme 1). 6

Traditional methods to hydrolyze primary carboxamides usually require strongly basic or acidic conditions (21b, c). Under these conditions, a chiral center adjacent to the carbonyl group

a. 1. $(ClCO)_2$, EtOAc, NaHCO₃, 2. NH₄OH b. TiCl₄ (10 mol%), 1 molar equiv. HCl, 9:1 dioxane: H₂O, reflux

SCHEME 2


can be racemized. TiCl₄ catalyzed hydrolysis of naproxen amide (**34**) (synthesized from naproxen (**33**) via the acid chloride (22) to naproxen (**33**) (Scheme 2) occurred without detectable racemization, as determined by HPLC. This implies that the mechanism of hydrolysis does not involve enolization of the carbonyl group.

In conclusion, this study has shown that catalytic $TiCl_4$ and $Ti(OR)_4$ in the presence of aqueous HCl efficiently converts unsubstituted carboxamides to esters or acids. Two *O*-methyl hydroxamic acids are also shown to be converted to esters or acids by these conditions. Further, the hydrolysis reaction is

143

 $^{^{6}}$ A mild three-step method for tertiary amide hydrolysis has been reported (21*a*).

TABLE 2. TiCl₄ catalyzed amide hydrolysis

 $*R^1 = OCH_3$ for entries

1b, 1c and H for all others

Reactant	R	Ref. ^b	Reagent	Solvent	Time (h)	Product	Yield ^c (%)	MP (°C)(Sol)	Lit. MP (°C)	Ref. ^d
1 a	CH ₂ C ₆ H ₅	2, 3	 TiCl ₄	9:1 Diox.:H ₂ O	20	25	87	74–76 (Tol)	76	16
$\mathbf{\overline{1}}b$	$CH_2C_6H_5$	2, 3	TiCl₄	9:1 Diox.:H ₂ O	17	25	91	74–76 (Tol)	76	16
1 <i>c</i>	Ċ ₆ H ₅	2, 3	TiCl₄	9:1 Diox.: H_2O	24	26	79	28-31 (EtOAc)	30-32	5
6	C ₆ H ₅	4	TiCl	9:1 Diox.: H_2O	15	27	85	119–120 (H ₂ O)	121-122	17
7	C_6H_{11}	5	TiCl	9:1 Diox.: H_2O	19	26	86	29-32 (EtOÅc)	30-32	5
9	$CH(C_6H_5)_2$	6	TiCl	9:1 Diox.:H ₂ O	24	28	92	143-146 (EtOAc)	147149	12
10	C ₁₅ H ₃₁	7	TiCl ₄	9:1 Diox.:H ₂ O	22	29	87	63-63 (Hex)	63-64	7
11	4-CH ₃ O ₂ CC ₆ H ₄	8	TiCl₄	9:1 Diox.:H ₂ O	21	30 ^e	78	>285	>300	18
12	$C_2H_5O_2\tilde{C}(CH_2)_3$	9	TiCl ₄	9:1 Diox.:H ₂ O	20	31 ^f	90	88-89 (acetone)	95–96	19
13	4-CH ₃ OC ₆ H ₄	10	TiCl ₄	9:1 Diox.:H ₂ O	19	32	93	180-184 (EtOAc)	183	20

^aAll reactions carried out in the following manner: approximately 1 molar in substrate in a mixture of 9:1 dioxane: H_2O , approximately 0.1 molar equiv. TiCL₄, approximately 1 molar equiv. aqueous HCl. This mixture was heated under reflux for the time specified in Table 2.

^bPreparation of reactant.

Isolated yields.

^dPhyscial properties citation.

^eTerephthalic acid.

^fGlutaric acid.

mild enough to leave adjacent chirality uncompromised, presenting an advantage over traditional, more vigorous, hydrolysis methods.

Experimental section

Melting points are uncorrected. All compounds reported are known and referenced where they appear in the tables. Determinations of enantiomeric purity were performed by analysis by direct HPLC using a Spectra-Physics 8800 ternary pump, Spectra-Physics SP8780 autosampler, and a Spectra Physics Spectra 100 variable wavelength detector connected to a Chiral-AGP column. The following conditions were used: column: Chiral AGP, 100×4.0 mm, 5 µm; mobile phase: 99.5% 4 mM NaH₂PO₄ + Na₂HPO₄ pH 7.0, 0.5% 2-PrOH; low rate: 0.8 mL/min; temperature: ambient; detection: 262 nm (22).

Optical rotations were measured on a JASCO DIP-360 instrument.

General method for the syntheses of primary carboxamides or O-methylphenylacetohydroxamate (Ib) or methylbenzylhydroxamate (Ic)

To a stirred solution of carboxylic acid in methylene chloride (CH_2Cl_2) at 0°C was added oxalyl chloride (2 molar equiv.) and *N*,*N*-dimethylformamide (DMF, 1 drop). The mixture was allowed to warm to room temperature and subsequently the CH_2Cl_2 was removed in vacuo. The residue was dissolved in CH_2Cl_2 , cooled to 0°C, and treated with either NH₄OH (excess, to give the primary amide) or methoxylamine hydrochloride (1 equiv., and Et₃N, 2 equiv., to give the *O*-methyl hydroxamic acid). The reaction mixture was allowed to warm to room temperature and was shaken with 1 M HCl. The organic layer was separated and dried with Na₂SO₄, filtered, and the solvent was removed in vacuo to give the product.

General method for the titanium(IV) chloride mediated alcoholysis of primary carboxamides or Omethylphenylacethydroxamate (1b) or methylbenzylhydroxamate (1c)

To a solution of carboxamide or *O*-methyl hydroxamic acid (1 equiv.) in the appropriate alcohol (approximately 1 M in substrate) was

added aqueous TiCl₄ (0.1 molar equiv.) and aqueous HCl (1 molar equiv.). The reaction mixture was then brought to reflux for the specified amount of time (Table 1). After being allowed to cool to room temperature, the reaction mixture was poured onto ice–H₂O and brought to neutrality with 1 M NaOH. Extraction with ethyl acetate (EtOAc), removal of water with Na₂SO₄, filtration again, and finally removal of solvent in vacuo gave the ester. If necessary, the product was recrystallized from the appropriate solvent.

General method for the titanium(IV) chloride mediated conversion of primary carboxamides or Omethylphenylacethydroxamate (1b) or methylbenzylhydroxamate (1c) to carboxylic acids

To a solution of carboxamide or *O*-methyl hydroxamic acid (1 equiv.) in 9:1 dioxane: $H_2O(approximately 1 M in substrate)$ was added aqueous TiCl₄ (0.1 molar equiv.) and aqueous HCl (1 molar equiv.). The reaction mixture was then brought to reflux for the specified amount of time (Table 2). After being cooled to room temperature, the reaction mixture was poured onto ice- H_2O . Extraction with EtOAc, removal of water with Na₂SO₄, filtration again, and finally removal of solvent in vacuo gave the acid. If necessary, the product was recrystallized from the appropriate solvent.

General method for the Lewis acid mediated alcoholysis of primary carboxamides

To a solution of carboxamide (1 equiv.) in EtOH (approximately 1 M in amide) was added SiCl₄, SnCl₄, or BF₃_Et₂O (0.1 molar equiv.). To this mixture was added aqueous HCl (1 molar equiv.). The reaction mixture was then brought to reflux for the specified amount of time (Table 1). After being allowed to cool to room temperature, the reaction mixture was poured onto ice–H₂O and brought to neutrality with 1 M NaOH. Extraction with EtOAc, removal of water with Na₂SO₄, filtration again, and finally removal of solvent in vacuo gave the ester. If necessary, the product was recrystallized from the appropriate solvent.

General method for the Ti(OR)₄ mediated alcoholysis of primary carboxamides

To a solution of carboxamide (1 equiv.) in EtOH (approximately 1

M in amide) was added Ti(OMe)₄, Ti(OEt)₄, or Ti(OiPr)₄ (0.1 molar equiv.). To this mixture was added aqueous HCl (1 molar equiv.). The reaction mixture was then brought to the temperature specified for each entry in Table 1 for the specified amount of time. After being allowed to cool to room temperature, the reaction mixture was poured onto ice–H₂O and brought to neutrality with 1 M NaOH. Extraction with EtOAc, removal of water with Na₂SO₄, filtration, and finally removal of solvent in vacuo gave the ester. If necessary, the product was recrystallized from the appropriate solvent.

6-Methoxy- α -methyl-2-naphthaleneacetamide (34)

To a stirred solution of 6-methoxy- α -methyl-2-naphthaleneacetic acid (33) (27.4 g, 0.12 mol) in EtOAc (400 mL) and aqueous NaHCO₃ (400 mL of a 1 M solution) at 0°C was added oxalyl chloride (20.7 mL, 0.24 mol). The reaction mixture was allowed to warm to room temperature. The layers were allowed to separate and the organic layer was dried with Na₂SO₄, filtered, and evaporated in vacuo. The residue was redissolved in CH₂Cl₂ (450 mL), cooled to 0°C, and treated dropwise with NH₄OH (50 mL of a 37% aqueous solution). The reaction mixture was allowed to warm to room temperature and was carefully acidified with HCl (1 M) to pH 4. The organic layer was separated and dried with Na₂SO₄, filtered, and the solvent was removed in vacuo to give crude **34**. Recrystallization (acetone–hexane) gave crystalline **34** (26.1 g, 95%); mp 173–176°C (acetone–hexane) (lit. (22) mp 172–175°C); $[\alpha]^{25}D + 20$ (c 1, CHCl₃) (lit. (22) $[\alpha]^{25}D + 20.2$ (c 1, CHCl₃).

6-Methoxy- α -methyl-2-naphthaleneacetic acid (naproxen) (33)

To a solution of **34** (2.3 g, 0.01 mol) in 9:1 dioxane:H₂O (10 mL) was added aqueous TiCl₄ (1 mL, 1 M in TiCl₄, in CH₂Cl₂ or toluene) and aqueous HCl (1 mL of a 1 M solution). The reaction mixture was then brought to reflux for 15 h. After cooling to room temperature, the reaction mixture was poured onto ice-H₂O. Extraction with EtOAc, removal of water with Na₂SO₄, filtration again, and finally removal of solvent in vacuo gave the acid **33** as a solid that was crystallized from acetone–hexane (2.21 g, 96%; mp 153–155°C (acetone–hexane) (lit. (22) mp 154–155°C); $[\alpha]^{32}$ D +66 (c 1, CHCl₃) (lit. (22) $[\alpha]^{25}$ D + 66 (c 1, CHCl₃). Serially increasing injections of **33** (0.2–0.5 mg) dissolved in the mobile phase (1–5 μ L) showed that **33** was 99.0% (S)-6-methoxy- α -methyl-2-naphthaleneacetic acid (22). This is compared to a USP batch that was shown to be 99.2% (S)-6-methoxy- α -methyl-2-naphthaleneacetic acid.

- L.E. Fisher, J.M. Caroon, Jahangir, S.R. Stabler, S. Lundberg, and J.M. Muchowski. J. Org. Chem. 58, 3643 (1993).
- (a) P.G. Mattingly and M.J. Miller. J. Org. Chem. 45, 410 (1980);
 (b) G.H. Timms and E. Wildsmith. Tetrahedron Lett. 195 (1971);
 (c) J.E. McMurry and J. Melton. J. Org. Chem. 38, 4367 (1973);
 J.E. McMurry. Acc. Chem. Res. 281 (1974).
- 3. B. Radszewski. Ber. Dtsch. Chem. Ges. 2, 207 (1869).
- 4. J.H. Hall and M.R. Gisler. J. Org. Chem. 42, 1133 (1977).
- 5. O. Aschan. Liebigs Ann. Chem. 271, 231 (1892).
- 6. A.N. Meldrum and W.E.S. Turner. J. Chem. Soc. 97, 1605 (1910).
- 7. F. Krafft and B. Stauffer. Ber. Dtsch. Chem. Ges. 15, 1728 (1882).
- 8. E. Dyer and H. Scott. J. Am. Chem. Soc. 79, 672 (1957).
- 9. W.J. Bailey and W.G. Carpenter. J. Org. Chem. **29**, 1252 (1964). 10. M.F. Semmelhack, B.P. Chong, R.D. Stauffer, T.D. Rogerson, A.
- Chong, and L.D. Jones. J. Am. Chem. Soc. 97, 2507 (1975).
- 11. G.G. Smith, L. Mutter, and G.P. Todd. J. Org. Chem. 42, 44 (1977).
- L. Hellerman, M.L. Cohn, and R.E. Hoen. J. Am. Chem. Soc. 50, 1716 (1928).
- 13. E.M. Panov, K. Frybakova, and K.A. Kocheshkov. J. Org. Chem. USSR (Engl. Transl.), 8, 2408 (1972).
- 14. C.K. Ingold. J. Chem. Soc. 119, 329 (1921).
- D. Kahovec and I. Kohlrausch. Z. Phys. Chem. abt. B: 38, 119 (1937).
- H. Thoms and R. Beckstroem. Ber. Dtsch. Chem. Ges. 34, 1021 (1901).
- 17. P. Schorygin. Ber. Dtsch. Chem. Ges. 41, 2723 (1908).
- 18. A. Baeyer. Liebigs Ann. Chem. 245, 103 (1888).
- H. Simon, G. Heubach, W. Bitterlich, and H. Gleinig. Chem. Ber. 98, 3692 (1965).
- J. Mirov, E. Zavarini, and J.G. Bicho. J. Pharm. Sci. 51, 1131 (1962).
- (a) M.P. Sibi, K. Shankaran, B.I. Alo, W.R. Hahn, and V. Snieckus. Tetrahedron Lett. 2933 (1987); (b) C. O'Connor. Q. Rev. Chem. Soc. 24, 553, and references therein; (c) R.H. DeWolfe and R.C. Newcomb. J. Org. Chem. 36, 3870 (1971), and references therein.
- 22. J.F. Fried and I.J. Harrison. U.S. Patent 3,978,124 (1976).