One-Pot Preparations of (**Dichloroiodo**)arenes from Some Arenes

Piotr Luliński, Nicolas Obeid, and Lech Skulski*

Chair and Laboratory of Organic Chemistry, Faculty of Pharmacy, Medical University, Banacha 1, PL 02-097 Warsaw, Poland

(Received May 21, 2001)

Arenes (ArH) were substituted with some transient I^{3+} species, generated in situ in appropriate, *anhydrous* I₂/NaIO₄ or NaIO₃/AcOH/Ac₂O/concd H₂SO₄ mixtures, to form soluble organoiodine(III) intermediates, ArISO₄. Next, excess concd hydrochloric acid was added to precipitate out the title ArICl₂, and isolated in 46–88% optimized crude yields.

(Dichloroiodo)arenes (ArICl₂) have been finding growing importance in organic synthesis as moderate and selective chlorinating and/or oxidizing agents. Moreover, they may be converted to other important hypervalent iodine reagents, e.g. ArIO, ArIO₂, ArI(OAc)₂, diaryliodonium salts, etc.^{1,2}

ArICl₂, yellow crystalline compounds, are light- and heatsensitive and often unstable to be storaged; some more stable ArICl₂, e.g. PhICl₂, may be stored in a cooler for a few days. They do not usually give satisfactory microanalyses, and their melting/decomposition points are uncertain, depending upon the purity of their freshly prepared batches, the time elapsed since their preparation, and the rate of heating.^{1–3} In 1886 Willgerodt³ developed the most common method up to now for preparing ArICl₂, by passing a stream of Cl₂ through solutions of ArI in CHCl₃. Recently, Japanese industrial chemists⁴ repeatedly produced PhICl₂ from PhI (in 94% crude yield) on a 20 kg scale using the classic Willgerodt method.³

In order to avoid any hazardous use of gaseous Cl_2 to afford $ArICl_2$ from ArI, a number of various either *two-phase* (CCl_4 / concd aq HCl) or monophasic *liquid-phase* methods were reported.^{1,2} A full account of all those methods is given in our latest review (Ref. 2, pp. 1346–1352).

However, all former methods¹⁻⁴ demanded the application of *costly* iodoarenes (ArI) as the starting substrates, to be subsequently chlorinated at their iodine atoms. In this paper we present a quite novel, one-pot (two-stage) method for preparing eleven ArICl₂ from the corresponding **arenes** (ArH), used by us as the starting substrates (Table 1). ArH were at first, oxidatively substituted in *anhydrous* I₂/NaIO₄ or NaIO₃/ AcOH/Ac₂O/concd H₂SO₄, mixtures (vide infra) with some transient *iodine(III)* species, I³⁺, to form in situ the respective organoiodine(III) intermediates, ArISO₄ (Scheme 1).

ArH +
$$\mathbf{I}^{3+} \xrightarrow{-H^+} \operatorname{ArI}^{2+} \xrightarrow{H_2SO_4} \operatorname{ArISO_4}$$

Scheme 1.

Next, excess concd (36%) hydrochloric acid was added to the resulting (final) reaction mixtures, containing soluble $ArISO_4$ intermediates, to precipitate out the corresponding $ArICl_2$, isolated in 46–88% crude yields (Scheme 2).

ArISO₄ (not isolated) + 2 HCl \longrightarrow \downarrow ArICl₂ + H₂SO₄ Scheme 2.

Table 1. Yields (possibly optimized) and Melting Points (with decomposition) of Crude (Dichloroiodo)arenes Prepared from Arenes, as well as Four Variable Reactions Parameters (cf. Ref. 5)

Substrate, ArH	Product, ArICl ₂ ^{a)}	Yield/%	Oxidant	Concd H ₂ SO ₄ ^{b)}	Time/h; Temp/°C ^{c)}	Mp/°C	Lit, mp/°C
PhH	PhICl ₂	88	NaIO ₄	1.07 mL; 20 mmol	2, r.t.	112-113	$111 - 112^{8}$
PhH	PhICl ₂	87	NaIO ₃	4.26 mL; 80 mmol	2, r.t.	111-112	$111 - 112^{8}$
PhF	4-FC ₆ H ₄ ICl ₂	70	NaIO ₄	2.13 mL; 40 mmol	2, r.t.	105-106	$106 - 107^8$
PhCl	4-CIC ₆ H ₄ ICl ₂	70	NaIO ₄	2.13 mL; 40 mmol	2, r.t.	110-112	$110 - 112^{8}$
PhBr	4-BrC ₆ H ₄ ICl ₂	75	NaIO ₄	2.13 mL; 40 mmol	2, r.t.	119-122	123–124 ⁷
PhBr	4-BrC ₆ H ₄ ICl ₂	63	NaIO ₃	4.26 mL; 80 mmol	2, r.t.	123-126	$123 - 124^7$
PhI	4-IC ₆ H ₄ ICl ₂	81	NaIO ₄	3.20 mL; 60 mmol	2, r.t.	126-129	136–138 ⁷
PhCO ₂ H	3-HO ₂ CC ₆ H ₄ ICl ₂	86	NaIO ₄	4.26 mL; 80 mmol	3, r.t.	185-186	$183 - 185^8$
PhCO ₂ H	3-HO ₂ CC ₆ H ₄ ICl ₂	80	NaIO ₃	5.33 mL; 100 mmol	2, r.t.	183–185	$183 - 185^8$
PhCO ₂ Me	3-MeO ₂ CC ₆ H ₄ ICl ₂	69	NaIO ₄	4.26 mL; 80 mmol	3, r.t.	117-118	$108 - 110^8$
PhCO ₂ Me	3-MeO ₂ CC ₆ H ₄ ICl ₂	64	NaIO ₃	5.33 mL; 100 mmol	2, r.t.	117-118	$108 - 110^8$
PhCO ₂ Et	3-EtO ₂ CC ₆ H ₄ ICl ₂	74	NaIO ₄	4.26 mL; 80 mmol	3, r.t.	102-103	$98 - 100^8$
PhCF ₃	3-F ₃ CC ₆ H ₄ ICl ₂	57	NaIO ₄	7.99 mL; 150 mmol	1, r.t.; 3, 65	85-87	81-8310
PhOMe	4-MeOC ₆ H ₄ ICl ₂	57	NaIO ₄	0.27 mL; 5 mmol	0.5, r.t.; 2, 60	75–76	75–76 ⁸
$1,3-Cl_2C_6H_4$	$2,4-Cl_2C_6H_3ICl_2$	46	NaIO ₄	4.26 mL; 80 mmol	2, r.t.	93–95	96–98 ⁸

a) Satisfactory homogeneities of the crude $ArICl_2$ were checked with TLC, after their reduction to the corresponding iodoarenes. b) The amount of concd H_2SO_4 added dropwise to each of the cooled and stirred reaction mixtures. c) Time of stirring the individual reaction mixture at given temperature to complete the iodination reaction, *after* the addition of concd H_2SO_4 . To explain the present method, it is necessary to recall our former paper;⁵ alternatively, see our review,² p. 1337, where the supposed structures of the I^{3+} species and ArISO₄ intermediates are also shown and explained. In our former work,⁵ we oxidatively substituted halobenzenes and deactivated arenes in *anhydrous* liquid systems, $I_2/NaIO_4$ or NaIO₃/AcOH/Ac₂O/concd H₂SO₄, in which the said transient species, I^{3+} , played a predominant role in electrophilic substitutions of the reacted arenes, ArH. These species were generated there as Scheme 3.

$$2 I_2 + 3 I(VII) \longrightarrow 7 I^{3+}$$

(stoichiometry with NaIO₄ used as oxidant);

$$I_2 + 3 I(V) \longrightarrow 5 I^{3+}$$

(stoichiometry with NaIO₃ used as oxidant); Scheme 3.

Next, the said strongly electrophilic I^{3+} species readily substituted ArH (Scheme 1). After pouring the resulting reaction mixtures into excess aq. Na₂SO₃ solutions, the corresponding *iodoarenes* were afforded: ArISO₄ + Na₂SO₃ + H₂O \rightarrow ArI + Na₂SO₄ + H₂SO₄. Alternatively, the same resulting reaction mixtures were reacted upon with excess aq ammonium acetate solutions to afford *(diacetoxyiodo)arenes*:^{2,6} ArISO₄ + 2AcONH₄ \rightarrow ArI(OAc)₂ + (NH₄)₂SO₄. Consequently, in the present work we added excess concd (36%) hydrochloric acid to the same resulting (final) reaction mixtures to precipitate out the corresponding *(dichloroiodo)arenes*, ArICl₂ (Scheme 2). For more details see Experimental and Table 1.

Our novel, *environmentally benign* method for the preparation of crude ArICl₂ from the respective *arenes* (Table 1) avoids the hazardous application of gaseous Cl₂ and chlorinated solvents, and the use of *costly* iodoarenes, previously applied as starting substrates for preparing ArICl₂. Strongly acidic wastes obtained in the present method, after their neutralization and dilution, did *not* contain any toxic by-products, in contrast to many former methods.^{1,2} Thus, our present method would be particularly suitable for *large-scale preparations* of, for example, (dichloroiodo)benzene; cf. Ref. 4. Of course, only those isomeric RC₆H₄ICl₂ may predominantly be obtained from the monosubstituted benzenes, RC₆H₅, which are formed in agreement with common orientation rules in the electrophilic substitutions of the used RC₆H₅ (Table 1) by the said strongly electrophilic **I**³⁺ transient species (Scheme 1).

Experimental

The melting/decomposition points of crude ArICl₂ (Table 1) were uncorrected and were determined as previously described.^{7,8} All commercial reagents and solvents (Aldrich) were purified or dried, if necessary, prior to use. Diiodine was *finely powdered* in order to facilitate its dissolution in the reaction mixtures.

Optimized Procedures for the Preparation of ArICl₂ from Arenes, ArH. NaIO₄ (1.41 g, 6.6 mmol; 10% excess) [or: NaIO₃ (1.43 g, 7.2 mmol; 20% excess)] and I₂ (1.12 g, 4.4 mmol; 10%

excess) [or: I₂ (0.61 g, 2.4 mmol; 20% excess), when NaIO₃ was used as an oxidant] were suspended in a stirred mixture of glacial AcOH (10 mL) with Ac₂O (5 mL) cooled to 5 °C. Varied quantities (see Table 1) of concd (98%) H₂SO₄ were very slowly added dropwise with vigorous stirring while keeping the temperature below 10 °C. An appropriate arene (14 mmol; 0% excess) [or: arene (10 mmol; 0% excess), when NaIO₃ was used as an oxidant] was added portionwise or dropwise with stirring. Then, the notably individualized reaction conditions shown in Table 1 [i. e. the differentiated times of a further stirring at given temperatures to complete the iodinating reactions] were applied for each of the arenes iodinated (cf. Ref. 5). Dark-brown initial reaction mixtures faded to be finally yellowish. The resulting reaction mixtures, containing optimized quantities of the respective ArISO₄ intermediates, were cooled to ca. 5 °C, and concd (36%) hydrochloric acid (15 mL, ca. 170 mmol) was added with stirring while keeping the temperature at 5-10 °C. After ca. 30 min, the resulting suspensions were poured into stirred ice-water (ca. 300 g). After 15 min, yellow precipitates were collected by filtration, washed well with icecold water, until the filtrates were neutral, then with a little CCl₄, and air-dried⁹ in the dark. Their melting points (Table 1) were taken immediately in the way explained in Refs. 7 and 8. The crude yields (Table 1) were calculated from the total amounts of the arenes, used in strictly stoichiometric quantities (0% excess). Iodometric titrations³ indicated that the freshly prepared crude ArICl₂ had 90-96% purity.

Note. Exceptionally, PhI (3.14 g, 15.4 mmol; 10% excess) was oxidatively iodinated, but with strictly stoichiometric quantities of NaIO₄ (1.28 g, 6.0 mmol; 0% excess) and I₂ (1.02 g, 4.0 mmol; 0% excess); see Table 1 for the other reaction parameters. The crude yield for $4\text{-IC}_6\text{H}_4\text{IC}_2$ (Table 1) was calculated from the total amount of the *diiodine* consumed.

References

1 a) A. Varvoglis, "The Organic Chemistry of Polycoordinated Iodine," VCH, Weinheim (1992). b) P. J. Stang and V. V. Zhdankin, *Chem. Rev.*, **96**, 1123 (1996). c) A. Varvoglis, "Hypervalent Iodine in Organic Synthesis," Academic, San Diego (1997).

2 L. Skulski, "Organic Iodine(I, III, and V) Chemistry: 10 Years of Development at the Medical University of Warsaw, Poland," *Molecules*, **5**, 1131 (2000). Avail. at URL: http://www. mdpi.org/molecules/papers.51201331.pdf

3 C. Willgerodt, "Die organische Verbindungen mit mehrwertigem Jod," Enke Verlag, Stuttgart (1914).

4 A. Zanka, H. Takeuchi, and A. Kubota, *Org. Process Res. Dev.*, **2**, 270 (1998).

5 P. Luliński and L. Skulski, *Bull. Chem. Soc. Jpn.*, **73**, 951 (2000).

6 P. Kaźmierczak and L. Skulski, Synthesis, 1998, 1721.

7 B. Krassowska-Świebocka, G. Prokopienko, and L. Skulski, *Synlett*, **1999**, 1409.

8 a) P. Kaźmierczak, L. Skulski, and N. Obeid, *J. Chem. Res.*, *Synop.*, **1999**, 64. b) N. Obeid and L. Skulski, *Pol. J. Chem.*, **74**, 1609 (2000).

9 By drying the crude $ArICl_2$ in a vacuum dessicator, the chlorine percentage was lowered: $ArICl_2 \rightarrow ArI + Cl_2$.

10 A. S. Dnieprovskii, V. A. Shkurov, and T. I. Temnikova, *Zh. Org. Khim.*, **13**, 2587 (1977).