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Abstract: Sequential oxidation of the condensation products be-
tween alkyl 2,2’-oligopyridyl carboxylates and 6-methyl pyridine
homologues with m-CPBA, then iodine affords the corresponding
mixed a-diketones. These compounds are readily transformed into
the respective mixed bis-oligopyridyl pyrazines, a class of com-
pounds of interest for supramolecular chemistry.
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The supramolecular chemistry of substances incorporat-
ing the pyrazine ring is limited to a handful of oligohetero-
cyclic compounds.1,2 The arrangement of that ring’s donor
atoms and p-electron system, as well as the presence of p-
stacking effects orthogonal to the ring plane,3 make com-
pounds which contain it and their metallosupramolecular
complexes attractive candidates for electronic delocaliza-
tion studies. We are interested in the preparation, charac-
terization and supramolecular chemistry of oligo-2,2’-
pyridyloligopyrazines having the general formula 1.4-6

The 2,3-disubstitution pattern about the pyrazine ring dic-
tates that the steric interaction of appended groups will
also contribute to their topology and supramolecular
chemistry. In view of this multi-faceted behaviour, the un-
der-representation of such compounds from the literature
is possibly due to the paucity of methods for their prepa-
ration. 

Simpler substances serving as both model substances and
eminent retrosynthetic candidates are 2,3-bis(2,2’-oli-
gopyridyl)pyrazines 2, bearing dislike oligopyridyl sub-
stituents. In analogy to our earlier synthesis of some
symmetrical oligopyridyl pyrazines,5 we reasoned that ac-
cess to the non-symmetrical compounds could be gained
through the corresponding a-diketones 3. We have al-
ready described a simple preparation of one such com-
pound based on the mixed benzoin condensation of
appropriate aldehydes.4 However, the anticipated chro-
matographic separation of larger bis-oligopyridyl precur-
sors constitutes a drawback to this method’s extension to
larger homologues. Thus, we sought a preparatory method
by which two arbitrary oligopyridyl fragments are cou-
pled to afford a crude reaction mixture containing a single
bis-oligopyridyl product and in which the aforementioned
junction can later be transformed into a pyrazine ring.

Our approach used the Claisen-type condensation of oli-
gopyridyl-6-carboxylate esters with appropriate active
hydrogen compounds. The ester starting materials were
prepared by treatment of the oligopyridyl-N-oxides 4a–b7

with excess trimethylsilyl cyanide and benzoyl chloride
according to Fife’s procedure8 to afford nitriles 5a–b
(Scheme 1).9 Basic methanolysis of 5a–c,10 followed by
acidic hydrolysis of the intermediate methyl imidates
gave esters 6a–c in good overall yields.11 This simple pro-
cedure is superior to the known preparations of related ni-
triles and related esters in terms of yields and number of
synthetic steps.12

Scheme 1  Preparation of Tautomeric 1,2-Bis(2,2’-oligopirydyl)etha-
nones 8

Slow addition of the esters 6a–d to solutions of the 6-me-
thyl oligopyridine derivatives 7a–d and 2 equivalents of
base in Et2O or 1,2-dimethoxyethane (DME) at low tem-
perature furnished the keto-enol tautomeric condensation
products 8a–g after work-up and column chromatography
(Scheme 1 and Table 1). The use of sterically hindered
lithium tetramethylpiperidide (LTMP) instead of lithium
diisopropylamide (LDA) was in some cases necessary to
prevent reaction of the base with the esters. Products con-
taining unsubstituted oligopyridyl ring systems (e.g., 8a–
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d) could be recrystallized and characterized as pure, crys-
talline materials.13 Hot solutions of those chromatograph-
ically pure derivatives containing methyl substituents
(8e–g) invariably precipitated poorly-soluble dark-red co-
loured films, which according to 1H NMR spectroscopic
analysis, consisted of polymeric materials. In the case of
8f, no crystalline material could be isolated. Thus, these
three compounds were employed without further purifica-
tion in the following reaction step.

The oxidation of 8 to the a-diketones 3 was the key step
to this synthetic pathway. Here, we sought an alternative
reaction sequence to the classical selenium dioxide
method14 which would provide the products in more reli-
able yields. This was possible by treatment of 8 with 1
equivalent of m-CPBA in a mixture of dichloromethane
and aqueous sodium bicarbonate solution, giving the non-
symmetrical 1,2-dihydroxyolefins (not shown) already
containing various amounts of 3. Complete oxidation of
this material was achieved using a solution of 1 equivalent
of iodine per dihydroxyolefin, and afforded clean 3 after
work-up and column chromatography (Scheme 2).15

Scheme 2  Synthesis of Pyrazine Target Molecules 2

The preference of 8 for a novel reactivity mode analogous
to the Rubottom oxidation of silyl enol ethers,16 as op-
posed to that in the Baeyer-Villiger reaction,17 is illustrat-
ed by the absence of ester side products from the crude
dihydroxyolefin reaction mixtures according to 1H NMR
spectroscopic analysis. Other oxidizing reagents gave
only poorly characterizable mixtures.18 The position of
the tautomeric equilibria in 8 did not exert any clear influ-
ence on the isolated yields of 3. Except for compound 3e,
all a-diketones were obtained as pure, crystalline solids.
Although 3f could be recrystallized following column
chromatography, significant material loss due to partial
decomposition on silica gel resulted in its being employed
in a synthetically pure state for the next reaction step.

Condensation of 3a–g with 1,2-diaminoethane, followed
by chloranil oxidation in xylene under reflux afforded the
pyrazine derivatives 2a–g after column chromatography
on deactivated alumina/CH2Cl2 - EtOAc and/or silica gel/
Et2HN - hexanes (Scheme 2).19 The variation in isolated
yields (Table 2) for these compounds partially reflects the
instability of some precursors (8e–g) and the low solubil-
ity of a few of the products (e.g., 2b–c; solubility of 2c:
less than 1 mg/mL). However, all pyrazine derivatives 2
were stable materials whose identity and purity was attest-
ed to by either satisfactory analytical data or the combina-
tion of clean spectra and high resolution mass
spectroscopy.

Some properties of compounds 2a–g deserve preliminary
comment. Inspection of molecular models shows that the
minimization of dipole-dipole interactions within the sep-
arate oligopyridyl chains,20 as well as steric effects both
within and between them, would result in a double-helical
twisting of the oligopyridyl units about one another. Proof
of this is seen in the 1H NMR spectrum of e.g., bipyridyl
pyridyl 2a (see Ref.19). On the terminal pyridyl substituent
in the bipyridyl fragment, H-3"’ absorbs at an abnormally
high field position. NOE effects observed between H-3"’
and H-3"/H-6" of the solitary pyridine ring leads us to as-
cribe this to edge-on-surface shielding effects between the
two terminal pyridine rings.21

This phenomenon, the origins of the comparatively low
solubility and high melting point of symmetrical deriva-
tive 2c, and the scope and limitations of this reaction se-
quence will be addressed in upcoming papers.

Table 1  Condensation of Esters 6a-d with 6-Methylpyridine Derivatives
7a-d Affording Ethanones 8
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