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Abstract: Selective cleavage of the S–S or C–S bonds in sodium
(Z)-allyl thiosulfates in the presence of a Sm/I2-system was
achieved to form the corresponding di(Z-allyl) disulfides or (2E)-
methyl cinnamic esters in moderate to good yields in aqueous
media.
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Recently, there has been a growing interest in metal-
mediated organic reactions in media containing water.1

Such aqueous reactions have a number of advantages over
conventional non-aqueous reactions, such as, simple
operation, environmentally benign process, and no re-
quirements for anhydrous organic solvents, etc. To date,
several metals, such as In, Zn, and Sn, have been widely
applied in aqueous media to conduct various reac-
tions.1b,1d,f Metallic samarium is stable in air and its reduc-
ing power (Sm3+/Sm = –2.41V) is similar to that of
magnesium (Mg2+/Mg = –2.37V) and superior to that of
zinc (Zn2+/Zn = –0.71V). However, the reactions promot-
ed by samarium in aqueous media have been investigated
less.2,3

The Baylis–Hillman reaction has drawn much attention as
a useful carbon–carbon bond-forming reaction in the last
decades.4 The main attraction of this reaction lies in its
atom economy, catalytic process, and the high degree of
functionality present in the products for further transfor-
mations. Up to now, a number of novel reactions based on

Baylis–Hillman adducts have been reported, especially
those that provide good stereoselectivities.4,5 

As part of our continued interest in the conversion of
Baylis–Hillman adducts into trisubstituted alkenes,6 we
have recently described a convenient synthesis of sodium
(Z)-allyl thiosulfates by treatment of Baylis–Hilman ace-
tates with sodium thiosulfate and reported their further
conversion to unsymmetrical diallylsulfides in a one-pot
manner.7 Following on from this we found that the S–S
and C–S bonds in sodium (Z)-allyl thiosulfates could be
selectively cleaved by samarium and a trace amount of I2

in aqueous media depending on the different substituents
(alkyl or aryl group) attached to them, thus affording di(Z-
allyl) disulfides or (2E)-methyl cinnamic esters in moder-
ate to good yields, respectively (Scheme 1).8

Sodium (Z)-allyl thiosulfates 2 were synthesized in almost
quantitative yield via reaction of the Baylis–Hillman ace-
tates 1 with Na2SSO3·5H2O in anhydrous methanol at
room temperature.7,8 Our initial attempt was to obtain di-
allyl disulfides from the in situ generated 2 in a one-pot
strategy by treatment with Sm/I2 in aqueous media3a be-
cause diallyl disulfides are a class of useful and important
building blocks in organic synthesis as well as potential
bioactive compounds.9,10 Indeed, when 2 derived from
alkyl-substituted 111 were used as substrates, the reaction
proceeded smoothly and gave di(Z-allyl) disulfides 3 in
moderate to good yields (Table 1, entry 1–3). Upon for-
mation of 3 the Z configuration of the allylic moiety in 2
was entirely conserved, which was confirmed by NOESY
experiments.12 

Scheme 1 Selective formation of the di(Z-allyl) disulfides or (2E)-methyl cinnamic esters.
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Interestingly, when substrates 2, derived from aryl-substi-
tuted 1, were allowed to react in the same conditions, se-
lective cleavage of the C–S bonds predominated to give
(2E)-methyl cinnamic esters 413,14 in moderate to good
yields, while diallyl disulfides 3 from the cleavage of the
S–S bonds were only obtained in very small amounts
(Table 1, entries 4–9). 

On the basis of previous reports,3c a possible mechanism
for the selective cleavage of the S–S or C–S bonds in 2 is
depicted in Scheme 2. Perhaps the Sm powder was acti-
vated by I2 and aqueous NH4Cl, thus an electron was

transferred to the substrate 2 to form the radical anion 5;
when R was an alkyl group, cleavage of the S–S bond was
preferred to form S-radical intermediate 6, which then
dimerized to afford the di(Z-allyl) disulfide 3; but when R
was an aryl group, cleavage of the C–S bond predominat-
ed to give allyl radical species 7 or 8. Radical 7 was fa-
vored over 8 due to the conjugated effect of the a,b-
double bond with the aromatic ring. Then 7 received an-
other electron from Sm to produce allyl anion intermedi-
ate 9. Here the attached aryl group on the allyl moiety may
be capable of stabilizing the allyl anion, so that the (2E)-
methyl cinnamic ester 4 could be formed by protonation
of the intermediate 9.

In summary, it was found that the Sm and a trace amount
of I2 could be used for the selective cleavage of the S–S or
C–S bonds in sodium (Z)-allyl thiosulfates depending on
the substituents to give the corresponding di(Z-allyl) di-
sulfides or (2E)-methyl cinnamic esters in moderate to
good yields in aqueous media. The notable advantages of
the reaction were its high regioselectivity, simple one-pot
operation, environmentally benign process, and mild
reaction conditions.
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Entry R Time (h)b Yield (%)c

3d,15 4d

1 Et (1a) 3 74 (3a) –e

2 n-C7H15 (1b) 3 82 (3b) –e

3 C6H5CH2CH2 (1c) 3 84 (3c) –e

4 C6H5 (1d) 4 <5 83 (4d)

5 4-CH3C6H4 (1e) 4 <5 85 (4e)

6 4-ClC6H4 (1f) 4 trace 84 (4f)

7 2-ClC6H4 (1g) 4 trace 80 (4g)

8 2-CH3OC6H4 (1h) 4 <7 78 (4h)

9 3,4-OCH2OC6H3 (1j) 4 <5 77 (4i)

a Reagents and conditions: 1 (1 mmol), Na2SSO3·5H2O (1 mmol), 
MeOH (15 mL), r.t., 4–8 h, then Sm (1 mmol), I2 (trace), THF 
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Scheme 2 Possible mechanism for the selective cleavage of the S–S or C–S bonds in 2 mediated by Sm/I2(trace) system.
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