

Journal of Fluorine Chemistry 99 (1999) 9-15

www.elsevier.com/locate/jfluchem

Synthesis and characterization of 2,6-difluorophenyliodine(III) derivatives

Vasilios Padelidakis, Wieland Tyrra, Dieter Naumann^{*}

Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, D-50939 Köln, Germany

Received 29 March 1999; accepted 7 May 1999

Dedicated to Prof. Friedo Huber on the occasion of his 70th birthday

Abstract

 $2,6-F_2C_6H_3IF_2$ was isolated in quantitative yield from the reactions of $2,6-F_2C_6H_3I$ and XeF_2 or F_2/N_2 -mixtures. Ligand exchange using (CF₃CO)₂O gave the corresponding bis(trifluoroacetate) in 84% yield. The reaction of $2,6-F_2C_6H_3I(OCOCF_3)_2$ and $1,3-F_2C_6H_4$ in the presence of CF₃SO₃H selectively gave [I(2,6-F₂C₆H₃)₂][OSO₂CF₃] in 80% yield.

Ligand exchange reactions of 2,6- $F_2C_6H_3IF_2$ and triarylboranes in the presence of stoichiometric amounts of BF_3 ·O(CH₃)₂ gave the corresponding 2,6-diffuorophenyl(aryl)iodine(III) tetrafluoroborates in 45–85% yield.

Ligand exchange of the tetrafluoroborate was studied for some examples using $(CH_3)_3SiOSO_2CF_3$ or $(CH_3)_3SiOCOCF_3$ giving the corresponding 2,6-difluorophenyl(aryl)iodine(III) trifluoromethanesulfonates or trifluoroacetates in nearly quantitative yields.

All compounds were characterized by their NMR and mass spectra and melting and decomposition points. © 1999 Elsevier Science S.A. All rights reserved.

Keywords: Fluorine; Iodine; 2,6-Difluorophenyliodine(III) compounds

1. Introduction

Aryliodine(III) derivatives have been known for more than a century [1] and have been the subject of several reviews [2,3] and monographs [4–6]. Fully fluorinated and partially fluorinated aryliodine(III) compounds have been synthesized by different routes, e.g.:

Ar_fIF₂: oxidative fluorination of fluoroiodobenzenes [7–10]; ligand exchange reactions of IF₃ and Cd(C₆F₅)₂ [11]; fluorination of C₆F₅IO using SF₄ [12].

 $[IAr_f(Ar_f')]X$: oxidative arylation of iodobenzenes using $[XeAr_f]^+$ [13–15]; ligand exchange reactions on aryliodine difluorides [15] and iodine trifluoride [11] using triarylboranes; reaction of $C_6F_5SiF_3$ with $[IF_4][SbF_6]$ in FSO₃H [16]; electrophilic substitutions starting with $I(OCOCF_3)_3$ and a fluorobenzene in the presence of a strong acid, e.g. CF_3SO_3H [17].

Herein we report on the syntheses of a number of new aryliodine(III) compounds with the 2,6-F₂C₆H₃-ligand (Scheme 1).

2. Results and discussion

2.1. Oxidation reactions of $2, 6-F_2C_6H_3I$

2,6- $F_2C_6H_3IF_2$ was easily prepared from 2,6- $F_2C_6H_3I$ either by direct fluorination or reaction with XeF₂. These oxidative fluorinations are comparable to the well-known syntheses of $C_6F_5IF_2$ [7,8].

2,6- $F_2C_6H_3IF_2$ was obtained in quantitative yield as a white solid melting at $164^{\circ}C$ without decomposition and was chosen as starting material for the synthesis of a series of mono- and diaryliodine(III) derivatives.

2.2. Fluorine-trifluoroacetate exchange with $(CF_3CO)_2O$

 $2,6-F_2C_6H_3IF_2$ was converted into $2,6-F_2C_6H_3I(O-COCF_3)_2$ with (CF₃CO)₂O via the well-established method

0022-1139/99/\$ – see front matter O 1999 Elsevier Science S.A. All rights reserved. PII: \$0022-1139(99)00118-9

^{*}Corresponding author. Fax: +49-0221-470-5196.

 $Ar_{f}^{=} = (c_{f}^{-}, 2, 4, 6, F_{3} + c_{6}^{-} + c_{2}^{-}, 2, 6, F_{2} + c_{6}^{-} + a_{3}, 2 - F_{6} + c_{6}^{-} + a_{4}, 4 - F_{6} + F_{6}^{-} + c_{6}^{-} + a_{4}^{-} + c_{6}^{-} + a_{4}^{-} + c_{6}^{-} + a_{4}^{-} + c_{6}^{-} + a_{4}^{-} + a_{4}^{-} + c_{6}^{-} + a_{4}^{-} + a_{4}^{$

Scheme 1. Survey of reactions.

for perfluoroorganoiodine(III) compounds [18]:

$$\begin{array}{l} 2, 6\text{-}F_2\text{C}_6\text{H}_3\text{I}F_2 + 2(\text{C}F_3\text{CO})_2\text{O} \\ \rightarrow 2, 6\text{-}F_2\text{C}_6\text{H}_3\text{I}(\text{OCOC}F_3)_2 + 2\text{C}F_3\text{COF} \end{array}$$

 $2,6-F_2C_6H_3I(OCOCF_3)_2$ was easily separated from volatile CF₃COF and excess (CF₃CO)₂O and isolated in 85% yield as a white solid melting at 151°C.

2.3. Synthesis of diaryliodine trifluoromethanesulfonates via electrophilic aromatic substitution

The reaction of 2,6-difluorophenyliodine bis(trifluoroacetate) and 1,3-F₂C₆H₄ in the presence of trifluoromethanesulfonic acid gave bis(2,6-difluorophenyl)iodine trifluoromethanesulfonate, [I(2,6-F₂C₆H₃)₂][OSO₂CF₃], in 80% yield. The process must be regarded as electrophilic aromatic substitution.

This synthetic approach has to be considered as a combination of two well known reactions described by Umemoto et al. [19] and our group [17]. This method had already been successfully applied to the synthesis of arylxenon(II) derivatives starting from $Xe(OCOCF_3)_2$ and fluorine, trifluoromethyl or nitro substituted benzenes in the presence of CF_3SO_3H or FSO_3H [20,21].

The reaction of 2,6- $F_2C_6H_3I(OCOCF_3)_2$ and 1,3- $F_2C_6H_4$ in the presence of CF_3SO_3H proceeded in CF_3COOH , and $[I(2,6-F_2C_6H_3)_2][OSO_2CF_3]$ was isolated after a reaction

time of 2 days as a pale yellow solid. Exact stoichiometry is necessary to avoid an incomplete reaction or the formation of unidentified by-products as observed using an excess of trifluoromethanesulfonic acid.

2, 6-F₂C₆H₃I(OCOCF₃)₂ + 1, 3-F₂C₆H₄ + CF₃SO₃H
→
$$[I(2, 6-F_2C_6H_3)_2]OSO_2CF_3 + 2CF_3COOH$$

In contrast, the reaction of $Xe(OCOCF_3)_2$ and 1,3-F₂C₆H₄ under similar conditions gave [$Xe(2,4-F_2C_6H_3)$][O-SO₂CF₃] as the major product [20,21]; however, no spectroscopic evidence was found for [I(2,6-F₂C₆H₃)(2,4-F₂C₆H₃)][OSO₂CF₃] in reactions starting with 2,6-F₂C₆H₃I(OCOCF₃)₂. An explanation for this different reaction behaviour cannot be given.

2.4. Synthesis of diaryliodine(III) tetrafluoroborates starting from aryliodine difluorides and triarylboranes

Diaryliodine(III) tetrafluoroborates are accessible from reactions of aryliodine(III) difluorides and triarylboranes in the presence of stoichiometric amounts of BF₃·O(CH₃)₂.

This method was earlier applied for the synthesis of $[I(C_6F_5)_2][BF_4]$ and the non-symmetrical species $[I(C_6F_5)(2,4,6-F_3C_6H_2)][BF_4]$ [14] by analogy to the reactions of XeF₂ and triarylboranes in the presence of BF₃·O(CH₃)₂ to yield arylxenon(II) tetrafluoroborates [13,22–25].

Now we synthesized several compounds of the general formula $[I(2,6-F_2C_6H_3)Ar_f][BF_4]$ (Ar_f=C₆F₅, 2,4,6-F₃C₆H₂, 2,6-F₂C₆H₃, 2-FC₆H₄, 3-FC₆H₄, 4-FC₆H₄) according to

$$\begin{split} &3(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{IF}_2 + B(\text{Ar}_f)_3 + 2\text{BF}_3 \\ &\rightarrow 3[\text{I}(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{Ar}_f][\text{BF}_4] \end{split}$$

These reactions were performed in CH_2Cl_2 to precipitate the insoluble products. The addition of $BF_3 \cdot O(CH_3)_2$ to the reaction mixtures supports the exclusive formation of salts with the tetrafluoroborate anion and avoids the formation of mixed arylfluoroborates. On the other hand the Lewis-acid BF_3 accelerates the reaction probably forming an adduct with 2,6- $F_2C_6H_3IF_2$ with simultaneous weakening of one I– F bond.

The remarkable stability of the diaryliodine(III) tetrafluoroborates is demonstrated by their decomposition points distinctly above 200°C. The high stability might be explained by delocalization of the positive charge on the aromatic ring systems [22].

2.5. Ligand exchange of the tetrafluoroborate anion using trimethylsilylesters of strong acids

 $[I(2,6-F_2C_6H_3)_2][OSO_2CF_3]$ was also synthesized in an exchange reaction of the corresponding tetrafluoroborate, $[I(2,6-F_2C_6H_3)_2][BF_4]$, with $(CH_3)_3SiOSO_2CF_3$ in CH₃CN [26].

In extension of our previous work, trifluoromethanesulfonates and trifluoroacetates were prepared via exchange of the tetrafluoroborate anion using $(CH_3)_3SiOSO_2CF_3$ and $(CH_3)_3SiOCOCF_3$, respectively, with formation of the thermodynamically stable products $(CH_3)_3SiF$ and BF_3 .

These reactions were exemplarily studied for some of the derivatives.

$$\begin{split} & [I(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{Ar}_f'][\text{BF}_4] + (\text{CH}_3)_3\text{SiOSO}_2\text{CF}_3 \\ & \rightarrow [I(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{Ar}_f'][\text{OSO}_2\text{CF}_3] + (\text{CH}_3)_3\text{SiF} + \text{BF}_3 \\ & \text{Ar}_f' = 2,4,6\text{-}F_3\text{C}_6\text{H}_2,4\text{-}\text{FC}_6\text{H}_4 \\ & [I(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{Ar}_f''][\text{BF}_4] + (\text{CH}_3)_3\text{SiOCOCF}_3 \\ & \rightarrow [I(2,6\text{-}F_2\text{C}_6\text{H}_3)\text{Ar}_f''][\text{OCOCF}_3] + (\text{CH}_3)_3\text{SiF} + \text{BF}_3 \\ & \text{Ar}_f'' = 2,6\text{-}F_2\text{C}_6\text{H}_3,2,4,6\text{-}F_3\text{C}_6\text{H}_2 \end{split}$$

The exchange was complete in acetonitrile solution within 2–6 days. The products were isolated as stable pale yellow to white solids after distilling off all volatile components in vacuo.

2.6. Comparison of some properties of the new aryliodine(III) compounds

2.6.1. Thermal stability

All 2,6-difluorophenyliodine(III) compounds synthesized are stable solids. The melting and decomposition points are above 150° C and exhibit some interesting gradations depending on the groups attached to the 2,6-F₂C₆H₃I unit.

In the series of different $[I(2,6-F_2C_6H_3)_2]$ salts thermal stability increases from the tetrafluoroborate (dec. p. 229°C) via the trifluoroacetate (dec. p. 288°C) to the trifluoromethanesulfonate (dec. p. > 350°C).

Within the group of mixed diaryliodine(III) tetrafluoroborates, $[I(2,6-F_2C_6H_3)(C_6F_5)][BF_4]$ is the most stable. The decomposition point of 322°C is about 100°C higher than the decomposition points of the other derivatives (Table 4).

2.6.2. Mass spectra

Some of the effects in thermal stability are consistent with effects observed in the mass spectrometric decay. Comparison of the mass spectra of $2,6-F_2C_6H_3I(OCOCF_3)_2$, [I(2,6- $F_2C_6H_3)_2$][OCOCF₃] and [I(2,6- $F_2C_6H_3)_2$][OSO₂CF₃] exhibits in the case of the monoaryl compound the peak [I(C₆H₃F₂)(OCOCF₃)]⁺ (*m*/*e*=353) as that of the highest mass.

The spectra of all $[I(2,6-F_2C_6H_3)_2]$ derivatives show the peak of the cation $[I(C_6H_3F_2)_2]^+$ (*m*/*e* = 353) and its fragments. In the cases of $[I(2,6-F_2C_6H_3)_2][OCOCF_3]$ and $[I(2,6-F_2C_6H_3)_2][BF_4]$ also fragment peaks of polymer units such as $[C_{24}H_9F_8I]^+$ (*m*/*e* = 576) and $[C_{18}H_7F_6I]^+$ (*m*/*e* = 464) were detected.

Whereas the trifluoromethanesulfonates show an easily explainable fragmentation [26], the decay of all but one

Table 1 NMR chemical shifts and $J({}^{19}F-{}^{13}C)$ of 2,6-F₂C₆H₃I, 2,6-F₂C₆H₃IF₂ and 2,6-F₂C₆H₃I(OCOCF₃)₂ ^a

	2,6-F ₂ C ₆ H ₃ I	2,6-F ₂ C ₆ H ₃ IF ₂	2,6-F ₂ C ₆ H ₃ I (OCOCF ₃) ₂
¹⁹ F: δ(F-2,6)	-92.1	-95.9	-94.3
$\delta(IF_2)$	_	-164.6	_
$\delta(OCOCF_3)$	-	-	-73.6
¹ H: δ (H-3,5)	6.85	7.37	7.34
δ(H-4)	7.28	7.79	7.79
¹³ C: δ (C-1)	71.3	107.9	102.6
${}^{2}J({}^{19}F_{-13}C)$	24	25	Broad
δ(C-2,6)	163.0	160.0	160.9
${}^{1}J({}^{19}F_{-13}C)$	246	255	256
$^{3}J(^{19}\text{F}_{-13}\text{C})$	6	n.r.	n.r.
δ(C-3,5)	111.9	113.3	114.2
$^{2}J(^{19}\text{F}_{13}\text{C})$	25 ^a	23	n.r. ^b
δ(C-4)	131.6	138.6	139.7
${}^{3}J({}^{19}F_{-13}C)$	10	10	10
δ (C=O)	_	-	161.1 ^c
$\delta(CF_3)$	-	-	113.8 ^d

 δ in ppm, J in Hz. Solvents CD₃CN (¹H, ¹³C) and CH₃CN (¹⁹F), external lock (CD₃)₂CO). n.r. = not resolved.

 ${}^{a}{}^{4}J({}^{19}F-{}^{13}C) = 3$ Hz.

^b Signals overlap.

 ${}^{c}{}^{2}J({}^{19}F-{}^{13}C) = 40.2$ Hz.

 ${}^{d}{}^{1}J({}^{19}F-{}^{13}C) = 287.0$ Hz.

derivatives of the general formula $[I(2,6-F_2C_6H_3)Ar_f][BF_4]$ was similar. They decompose under mass spectrometric conditions with formation of fragments in intensities mainly less than 10% which could be interpreted as polyphenylio-dine ions.

Only $[I(2,6-F_2C_6H_3)(C_6F_5)][BF_4]$ showed a fragmentation pattern comparable with the trifluoromethanesulfonates. Besides the cation peak (m/e = 407) the fragments $[C_6F_5I]^+$, $[C_6H_3F_2I]^+$, $[C_6H_5F_3]^+$, $[C_6H_3F_3]^+$ and $[C_6H_3F_2]^+$ were detected. The ion of highest mass was $[I(C_6H_3F_2)(C_6F_5)F]^+$ (m/e = 426).

2.6.3. NMR spectra

A comparison of the NMR chemical shifts of 2,6- $F_2C_6H_3I$, 2,6- $F_2C_6H_3IF_2$ and 2,6- $F_2C_6H_3I(OCOCF_3)_2$ (Table 1) exhibits characteristic alteration with the change of the iodine oxidation state from I to III. At comparable conditions, the F-2,6-resonance is shifted approximately 2–4 ppm to higher field; high-field shifts of ca. 0.5 ppm are found for all proton resonances. Significant low-field shifts are measured for the C-1-atom (up to 36.6 ppm) and the C-4-atom (up to 8.1 ppm); the shifts of the C-2,6- and C-3,5-atoms remain nearly unaffected by the change of oxidation states.

The NMR chemical shifts of the $2,6-F_2C_6H_3$ -group of the diaryl derivatives are neither influenced by different anions nor different fluorophenyl groups attached to the iodine center (Tables 3 and 4). However, the C-1 chemical shifts of $[I(2,6-F_2C_6H_3)Ar_f]^+$ and $2,6-F_2C_6H_3IX_2$ (X = F, OCOCF₃) differ by ca. 17 and 12 ppm, respectively.

3. Experimental

All reactions were carried out in carefully dried reaction vessels using Schlenk-techniques. 2,6- $F_2C_6H_3I$, 1,3- $F_2C_6H_4$ and CF_3SO_3H (freshly distilled) were purchased from ABCR, (CH₃)₃SiOCOCF₃ and (CH₃)₃SiOSO₂CF₃ from Aldrich, BF₃·O(CH₃)₂ from Merck-Schuchardt and used as received. Elemental fluorine, CF₃COOH and (CF₃CO)₂O were received from Solvay Fluor und Derivate as gifts. B(Ar_f)₃ and XeF₂ were prepared according to literature procedures [27] and [28], respectively. All solvents were purified by standard methods [29].

NMR spectra were recorded on Bruker FT-NMR spectrometers AC 200 and AMX 300 operating at 200.1 MHz (300.1 MHz) [¹H], 188,3 MHz (282.4 MHz) [¹⁹F] and 50.3 MHz (75.5 MHz) [¹³C]. CCl_3F [¹⁹F] and $(CH_3)_4Si$ [¹H, ¹³C] were used as external standards.

Mass spectra were run on a modified Varian MAT CH5 spectrometer, DTA measurements on a Mettler TA1 thermoanalyzer.

3.1. Synthesis of $2, 6-F_2C_6H_3IF_2$

3.1.1. Fluorination of $2, 6-F_2C_6H_3I$ with XeF_2

1.0 g (4.1 mmol) 2,6- $F_2C_6H_3I$ were dissolved in 5 ml CH₃CN. A solution of 0.7 g (4.1 mmol) XeF₂ in 5 ml CH₃CN was added dropwise. After stirring the reaction mixture for 24 h at room temperature, the solvent was distilled off in vacuo. 2,6- $F_2C_6H_3IF_2$ was obtained as a white solid in quantitative yield.

3.1.2. Fluorination of $2, 6 - F_2 C_6 H_3 I$ with F_2

4.0 g (16.4 mmol) 2,6- $F_2C_6H_3I$ were suspended in 60 ml CCl₃F. A precooled fluorine-gasflow diluted with nitrogen (1 : 10) was bubbled through the solution. After a few minutes a white solid began to precipitate. The reaction was stopped as soon as elemental fluorine passed through the reaction vessel without further reaction. After distilling off the solvent in vacuo at room temperature 2,6- $F_2C_6H_3IF_2$ was obtained as a white solid in quantitative yield.

m.p. 164°C, dec. 185°C. MS (EI, 20 eV, 100°C; m/e): 278 (5%, $[F_2C_6H_3IF_2]^+=M^+$), 259 (8%, $[F_2C_6H_3IF]^+$), 240 (100%, $[F_2C_6H_3I]^+$), 132 (62%, $[F_3C_6H_3]^+$), 113 (44%, $[F_2C_6H_3]^+$).

NMR data are summarized in Table 1.

3.2. Synthesis of $2, 6 - F_2 C_6 H_3 I(OCOCF_3)_2$

1.4 g (5.0 mmol) 2,6- $F_2C_6H_3IF_2$ was suspended in 10 ml (CF₃CO)₂O. After stirring the reaction mixture for 48 h at room temperature, all volatile components, mainly (CF₃CO)₂O and CF₃COF, were distilled off in vacuo. 2,6- $F_2C_6H_3I(OCOCF_3)_2$ was obtained as a white solid in 85% (1.98 g) yield.

m.p. 151°C, Sublimation: 110°C at 10^{-3} bar. MS (EI, 17 eV, 90°C; *m/e*): 353 (71%, [I(F₂C₆H₃)(OCOCF₃)]⁺), 240

 $(100\%, [F_2C_6H_3I]^+), 226 (53\%, [F_2C_6H_3OCOCF_3]^+ \text{ or } [(F_2C_6H_3)_2]^+), 113 (39\%, [F_2C_6H_3]^+ \text{ or } [CF_3CO_2]^+).$

NMR data are summarized in Table 1.

Elemental analysis for $C_{10}H_3F_8IO_4$ [found (calculated)] I: 26.7 (27.3)%; F: 33.4 (32.6)%.

3.3. Synthesis of $[I(2,6-F_2C_6H_3)_2][OSO_2CF_3]$

1.1 g (2.4 mmol) 2,6- $F_2C_6H_3I(OCOCF_3)_2$ was suspended in 20 ml CF₃COOH at 0°C and 0.22 ml (2.4 mmol) 1,3- $F_2C_6H_4$ were added. After stirring for 1 h and adding 0.21 ml (2.4 mmol) CF₃SO₃H, the reaction mixture was allowed to warm up to room temperature and stirred for an additional 48 h. All volatile compounds were distilled off in vacuo. [I(2,6- $F_2C_6H_3)_2$][OSO₂CF₃] remained as a pale yellow solid in 80% (0.96 g) yield.

The analytical data corresponded with those given in [26].

3.4. Synthesis of $[I(2,6-F_2C_6H_3)(Ar_f)][BF_4]$ $(Ar_f = C_6F_5, 2,4,6-F_3C_6H_2, 2,6-F_2C_6H_3, 2-FC_6H_4, 3-FC_6H_4, 4-FC_6H_4)$

General procedure: 0.83 g (3.0 mmol) 2,6- $F_2C_6H_3IF_2$ were dissolved in 10 ml CH₂Cl₂ at -40°C. A precooled mixture (-40°C) of the corresponding borane (ca. 1.0 mmol) and 0.19 ml (2.07 mmol) BF₃·O(CH₃)₂ in 20 ml CH₂Cl₂ were added dropwise. After 1 h the solution had taken on a brown colour from which a white solid began to precipitate. For completion of the reaction, the mixture was stirred for additional 24 h. The solid was filtered off at -40°C and washed with cold CH₂Cl₂. After drying the residue in vacuo, the diaryliodine tetrafluoroborates were obtained as white solids.

NMR data are summarized in Tables 2 and 3, experimental details, melting and decomposition points in Table 4.

3.4.1. Mass spectra

 $\begin{array}{l} [I(2,6\mbox{-}F_2C_6H_3)_2][BF_4] \ (EI, \ 15 \ eV, \ 190^\circ C; \ \textit{m/e}): \ 686 \ (7\%, \ [C_{30}H_9F_{10}I]^+), \ 574 \ (8\%, \ [C_{24}H_7F_8I]^+), \ 463 \ (8\%, \ [C_{18}H_6F_6I]^+), \ 351 \ (12\%, \ [C_{12}H_4F_4I]^+), \ 239 \ (100\%, \ [C_6H_2F_2I]^+), \ 127 \ (2\%, \ [I]^+), \ 113 \ (24\%, \ [C_6H_3F_2]^+). \end{array}$

 $\begin{array}{l} [I(2,6\mbox{-}F_2C_6H_3)(C_6F_5)][BF_4] \ (EI, \ 17 \ eV, \ 60^\circ C; \ \textit{m/e}): \ 426 \\ (15\%, \ \ [I(C_6H_3F_2)(C_6F_5)F]^+), \ 407 \ \ (31\%, \ \ [I(C_6H_3F_2)-(C_6F_5)]^+), \ 294 \ \ (74\%, \ \ [C_6F_5I]^+), \ 240 \ \ (98\%, \ \ [C_6H_3F_2I]^+), \\ 168 \ (20\%, \ \ [C_6HF_5]^+), \ 132 \ \ (100\%, \ \ [C_6H_3F_3]^+), \ 113 \ \ (11\%, \ \ [C_6H_3F_2]^+). \end{array}$

 $\begin{array}{l} [I(2,6\mbox{-}F_2C_6H_3)(2,4,6\mbox{-}F_3C_6H_2)][BF_4] \ (EI,\ 17\ eV,\ 180^\circC; \\ \textit{\textit{m/e}}:\ 500\ (4\%,\ [C_{18}H_5F_8I]^+),\ 482\ (5\%,\ [C_{18}H_6F_7I]^+),\ 370 \\ (9\%,\ [C_{12}H_4F_5I]^+),\ 352\ (3\%,\ [C_{12}H_5F_4I]^+),\ 258\ (86\%,\ [C_6H_2F_3I]^+),\ 240\ (100\%,\ [C_6H_3F_2I]^+). \end{array}$

[I(2,6- $F_2C_6H_3$)(2- FC_6H_4)][BF₄] (EI, 15 eV, 175°C; *m/e*): 352 (3%, [$C_{12}H_5F_4I$]⁺), 334 (5%, [$C_{12}H_6F_3I$]⁺), 240 (100%, [$C_6H_3F_2I$]⁺), 222 (44%, [C_6HFI]⁺), 114 (11% [$C_6H_4F_2$]⁺), 96 (3%, [C_6H_5F]⁺).

 $\begin{array}{l} [I(2,6\mbox{-}F_2C_6H_3)(3\mbox{-}FC_6H_4)][BF_4] \ (EI, \ 15 \ eV, \ 150^\circ\mbox{C}; \ m/e): \\ 352 \ (2\%, \ [C_{12}H_5F_4I]^+), \ 334 \ (5\%, \ [C_{12}H_6F_3I]^+), \ 240 \ (100\%, \ [C_6H_3F_2I]^+), \ 222 \ (28\%, \ [C_6H_4FI]^+), \ 113 \ (13\%, \ [C_6H_3F_2]^+), \ 95 \ (12\%, \ [C_6H_4F]^+). \end{array}$

 $\begin{array}{l} [I(2,6\mbox{-}F_2C_6H_3)(4\mbox{-}FC_6H_4)][BF_4] \ (EI, \ 15 \ eV, \ 160^\circ\mbox{C}; \ \textit{m/e}): \\ 446 \ (3\%, \ [C_{18}H_8F_5I]^+), \ 352 \ (5\%, \ [C_{12}H_5F_4I]^+), \ 334 \ (5\%, \\ [C_{12}H_6F_3I]^+), \ 240 \ (100\%, \ [C_6H_3F_2I]^+), \ 222 \ (87\%, \\ [C_6H_4FI]^+), \ 114 \ (25\%, \ [C_6H_4F_2]^+), \ 95 \ (24\%, \ [C_6H_4F]^+). \end{array}$

3.5. Synthesis of $[I(2,6-F_2C_6H_3)(2,4,6-$

 $F_3C_6H_2)][OSO_2CF_3]$ and $[I(2,6-F_2C_6H_3)(2-FC_6H_4)][OSO_2CF_3]$

General procedure: The corresponding diaryliodine tetrafluoroborate ($[I(2,6-F_2C_6H_3)(2,4,6-F_3C_6H_2)][BF_4]$ 0.77 g (1.7 mmol); $[I(2,6-F_2C_6H_3)(4-FC_6H_4)][BF_4]$ 0.14 g (0.3 mmol)) was dissolved in 10 ml CH₃CN and stoichiometric amounts of (CH₃)₃SiOSO₂CF₃ dissolved in 10 ml CH₃CN were added dropwise to the solution at -40° C.

Table 2

¹⁹F-NMR chemical shifts of 2,6-difluorophenyl(fluorophenyl)iodine(III) tetrafluoroborates^a

	δ (F-2,6)	$\delta(\text{F-2'})$	$\delta(\text{F-3'})$	$\delta(\text{F-4}')$	$\delta(\text{F-5}')$	$\delta(\text{F-6}')$	$\delta([BF_4]^-)$
$[I(2,6-F_2C_6H_3)(C_6F_5)]^+$	-94.5	-121.6	-156.4	-142.7	-156.4	-121.6	-149.0
$[I(2,6-F_2C_6H_3)(2,4,6-F_3C_6H_2)]^+$	-94.6	-91.6		-95.3		-91.6	-149.5
$[I(2,6-F_2C_6H_3)_2]^+$	-94.9						-150.4
$[I(2,6-F_2C_6H_3)(2-FC_6H_4)]^+$	-95.3	-96.0					-150.0
$[I(2,6-F_2C_6H_3)(3-FC_6H_4)]^+$	-94.9		-106.1				-149.9
$[I(2,6-F_2C_6H_3)(4-FC_6H_4)]^+$	-95.3			-104.1			-150.2

^a Solvent CH₃CN, external lock (CD₃)₂CO, δ in ppm.

able 3
${}^{3}C{}^{1}H$ -NMR chemical shifts of 2.6-difluorophenvl(fluorophenvl)iodine(III) tetrafluoroporates ^a
e (ii) ittiit eitenneur sints of 2,0 untdorophenyi(ituorophenyi)toune(iii) tetuntdoroborues

	δ (C-1)	δ (C-2,6)	δ (C-3,5)	δ (C-4)	$\delta(\text{C-1'})$	$\delta(\text{C-2'})$	$\delta(C-'3)$	$\delta(\text{C-4'})$	$\delta(\text{C-5'})$	$\delta(\text{C-6}')$
$[I(2,6-F_2C_6H_3)(C_6F_5)]^+$	91.2	161.6	114.2	140.1	87.4	147.5	138.6	147.3	138.6	147.5
$[I(2,6-F_2C_6H_3)(2,4,6-F_3C_6H_2)]^+$	90.7	161.7	114.2	139.8	86.2	162.7	103.7	168.9	103.7	162.7
$[I(2,6-F_2C_6H_3)_2]^+$	90.1	161.3	113.8	139.3						
$[I(2,6-F_2C_6H_3)(2-FC_6H_4)]^+$	90.3	161.5	114.1	139.4	100.6	160.6	118.5	137.9	128.9	138.6
$[I(2,6-F_2C_6H_3)(3-FC_6H_4)]^+$	90.4	161.6	114.3	139.4	112.9	124.0	163.3	121.8	134.8	133.0
$[I(2,6-F_2C_6H_3)(4-FC_6H_4)]^+$	90.6	161.5	114.1	139.2	107.6	139.6	120.5	166.1	120.5	139.6

Solvent CD₃CN, δ in ppm.

After a total reaction time of 48 h all volatile compounds were distilled off in vacuo until a pale yellow residue remained. The yields were quantitative. No melting was observed up to the decomposition point of 350°C.

The ¹H- and ¹⁹F-NMR data for the aromatic rings were identical with those of the corresponding tetrafluoroborates. The resonance of the CF₃SO₃ group was detected at -78.8 ppm in the ¹⁹F-NMR spectra and at 121.3 ppm (¹J(¹⁹F-¹³C) = 319 Hz) in the ¹³C-NMR spectra.

3.6. Synthesis of $[I(2,6-F_2C_6H_3)_2][OCOCF_3]$

0.97 g (2.2 mmol) $[I(2,6-F_2C_6H_3)_2][BF_4]$ were suspended in 10 ml CH₃CN at 0°C. A precooled solution of 0.41 ml (2.2 mmol) (CH₃)₃SiOCOCF₃ in 10 ml CH₃CN (0°C) was added dropwise and the mixture was stirred for 6 days at this temperature. After distilling off all volatile components in vacuo at room temperature $[I(2,6-F_2C_6H_3)_2][OCOCF_3]$ was isolated as a white solid in 95% (0.98 g) yield.

Dec. 288°C. MS (EI, 15 eV, 175°C; *m/e*): 576 (4%, $[C_{24}H_9F_8I]^+$), 464 (9%, $[C_{18}H_7F_6I]^+$), 353 (16%, $[C_{12}H_6F_4I]^+$), 240 (100%, $[C_6H_3F_2I]^+$), 226 (4%, $[F_2C_6H_3OCOCF_3]^+$ or $[(F_2C_6H_3)_2]^+$), 113 (8%, $[F_2C_6H_3]^+$ or $[CF_3CO_2]^+$). ¹H-NMR (CD₃CN): δ : 7.80 (H-4), 7.31 (H-3,5). ¹⁹F-NMR (CD₃CN): δ : -75.9 (CF₃), -94.5 (F-2,6).

¹³C{¹⁹F}-NMR (CD₃CN): δ: 161.9 (C-2,6), 157.8 (C=O), 139.8 (C-4), 116.6 (CF₃), 114.3 (C-3,5), 90.6 (C-1).

Elemental analysis for $C_{14}H_6F_7IO_2$: [found (calculated)] I: 27.68 (27.25)%; F, 28.18 (28.54)%.

3.7. Synthesis of [I(2,6-F₂C₆H₃)(2,4,6-F₃C₆H₂)][OCOCF₃]

0.38 g (0.83 mmol) $[I(2,6-F_2C_6H_3)(2,4,6-F_3C_6H_2)][BF_4]$ was dissolved in 5 ml CH₃CN and a solution of 0.14 ml (0.80 mmol) (CH₃)₃SiOCOCF₃ was added slowly at 0°C. After a reaction time of 4 days at room temperature the solvent and other volatile products were distilled off. $[I(2,6-F_2C_6H_3)(2,4,6-F_3C_6H_2)][OCOCF_3]$ was isolated as a white solid.

Dec. >300°C. MS (EI, 20 eV, 175°C; *m/e*): 594 (1%, $[C_{24}H_8F_9I]^+$),500(4%, $[C_{18}H_5F_8I]^+$),482(4%, $[C_{18}H_6F_7I]^+$), 464 (1%, $[C_{18}H_7F_6I]^+$), 388 (2%, $[C_{12}H_3F_6I]^+$), 370 (5%, $[C_{12}H_4F_5I]^+$),352 (2%, $[C_{12}H_5F_4I]^+$),338 (2%, $[C_{18}H_8F_6]^+$), 258 (42%, $[C_6H_2F_3I]^+$), 240 (35%, $[C_6H_3F_2I]^+$), 226 (2%, $[F_2C_6H_3OCOCF_3]^+$ or $[(F_2C_6H_3)_2]^+$), 131 (20%, $[C_6H_2F_3]^+$), 113 (20%, $[F_2C_6H_3]^+$ or $[CF_3CO_2]^+$).

¹⁹F-NMR (CH₃CN): δ : -76.6 (CF₃), -91.9 (F-2,6 in 2,4,6-F₃C₆H₂ group), -94.9 (F-2,6 in 2,6-F₂C₆H₃), -95.6 (F-4 in 2,4,6-F₃C₆H₂ group).

Table 4

Melting points, decomposition points and experimental details for the synthesis of [I(2,6-F₂C₆H₃)Ar_f][BF₄] from 2,6-F₂C₆H₃IF₂ and B(Ar_f)₃/BF₃·O(CH₃)₂^a

Ar _f	C_6F_5	2,4,6-F ₃ C ₆ H ₂	2,6-F ₂ C ₆ H ₃	2-FC ₆ H ₄	$3-FC_6H_4$	4-FC ₆ H ₄
m $(2,6-F_2C_6H_3IF_2)$	0.83 g [2.99]	0.83 g [2.99]	0.83 g [2.99]	0.83 g [2.99]	0.83 g [2.99]	0.83 g [2.99]
$m (B(Ar_f)_3)$	0.51 g [1.00]	0.40 g [0.99]	0.35 g [1.00]	0.30 g [1.01]	0.30 g [1.01]	0.30 g [1.01]
$m (BF_3 \cdot O(CH_3)_2)$	0.19 ml [2.07]	0.19 ml [2.07]	0.19 ml [2.07]	0.19 ml [2.07]	0.19 ml [2.07]	0.19 ml [2.07]
Yield	0.66 g (45%)	0.75 (55%)	1.12 g (85%)	0.88 g (70%)	0.63 g (50%)	0.59 g (47%)
Melting point	272°C			194°C	176°C	167°C
Dec. point	322°C	208°C	229°C	219°C	222°C	225°C

^aAmounts in mmol are given in square brackets. Yields are referenced to 2,6-F₂C₆H₃IF₂.

Acknowledgements

Financial support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- C. Willgerodt, Die organischen Verbindungen mit mehrwertigem Jod, Ferdinand Enke, Stuttgart 1914 and literature cited therein.
- [2] D.F. Banks, Chem. Rev. 66 (1966) 243.
- [3] P.J. Stang, V.V. Zhdankin, Chem. Rev. 96 (1996) 1123.
- [4] G.A. Olah, Halonium Ions, Wiley, New York, 1975, p. 54.
- [5] G.F. Koser, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of Functional Groups, Suppl. D (ch. 18, p. 721; ch. 25, p. 1265), Wiley, New York, 1983.
- [6] A. Varvoglis, The Chemistry of Polycoordinated Iodine, Wiley-VCH, New York, 1992.
- [7] M. Schmeißer, K. Dahmen, P. Sartori, Chem. Ber. 103 (1970) 307.
- [8] I.I. Maletina, V.V. Orda, N.N. Aleinikov, B.L. Korsunskii, L.M. Yagupolskii, Zh. Org. Khim. 12 (1976) 1371.
- [9] H.J. Frohn, J. Helber, J. Fluorine Chem. 16 (1980) 568.
- [10] H.J. Frohn, V.V. Bardin, Z. Naturforsch. 51(b) (1996) 1015.
- [11] H.J. Frohn, K. Schrinner, Z. Anorg. Allg. Chem. 623 (1997) 1847.
- [12] V.V. Lyalin, V.V. Orda, L.A. Alekseeva, L.M. Yagupolskii, Zh. Org. Khim. 6 (1970) 329.

- [13] D. Naumann, W. Tyrra, J. Chem. Soc., Chem. Commun. (1989) 47.
- [14] H. Butler, D. Naumann, W. Tyrra, Eur. J. Solid State Inorg. Chem. 29
- (1992) 739.
- [15] H.J. Frohn, Nachr. Chem. Tech. Lab. 41 (1993) 956.
- [16] H.J. Frohn, M. Giesen, A. Klose, A. Lewin, V.V. Bardin, J. Organomet. Chem. 506 (1996) 155.
- [17] W. Tyrra, H. Butler, D. Naumann, J. Fluorine Chem. 60 (1993) 79.
- [18] D. Naumann, J. Baumanns, J. Fluorine Chem. 8 (1976) 177.
- [19] T. Umemoto, Y. Kuriu, H. Shuyama, O. Miyano, S.-I. Nakayama, J. Fluorine Chem. 31 (1986) 37.
- [20] D. Naumann, W. Tyrra, R. Gnann, D. Pfolk, J. Chem. Soc., Chem. Commun. (1994) 2651.
- [21] D. Naumann, W. Tyrra, R. Gnann, D. Pfolk, T. Gilles, K.-F. Tebbe, Z. Anorg. Allg. Chem. 623 (1997) 1821.
- [22] D. Naumann, H. Butler, R. Gnann, W. Tyrra, Inorg. Chem. 32 (1993) 861.
- [23] H.J. Frohn, S. Jakobs, J. Chem. Soc., Chem. Commun. (1989) 625.
- [24] H.J. Frohn, S. Jakobs, C. Rossbach, Eur. J. Solid State Inorg. Chem. 29 (1992) 729.
- [25] H.J. Frohn, C. Rossbach, Z. Anorg. Allg. Chem. 619 (1993) 1672.
- [26] D. Naumann, R. Gnann, V. Padelidakis, W. Tyrra, J. Fluorine Chem. 72 (1995) 79.
- [27] D. Naumann, H. Butler, R. Gnann, Z. Anorg. Allg. Chem. 618 (1992) 74.
- [28] L.V. Streng, A.V. Streng, Inorg. Chem. 4 (1965) 1370.
- [29] D.D. Perrin, W.L.F. Armarego, Purification of Laboratory Chemicals, 3rd ed., Pergamon Press, Oxford, 1988.