

Facile One-Pot Transformation of Phenols into o-Cyanophenols

Yuhta Nakai,^[a] Katsuhiko Moriyama,^[a] and Hideo Togo*^[a]

Keywords: Synthetic methods / Aromatic substitution / Iodine / Phenols / Cyanides

The treatment of phenols with paraformaldehyde in the presence of MgCl₂ and Et₃N in THF at 80 °C, followed by reaction with molecular iodine and aq. ammonia at room temperature provided the corresponding o-cyanophenols in moderate to good yields. The present reaction is a one-pot

transformation of phenols into o-cyanophenols using much less expensive reagents than are typically used; the reaction is free of both transition-metals and cyanide. The utility of this reaction was highlighted during our preparation of Febuxostat from *p*-bromophenol.

Introduction

Aromatic nitriles are important building blocks for pharmaceuticals and functional materials. Citalopram hydrobromide (for treatment of alcohol dependency), Periciazine (an *anti*-psychotic drug), Fadrozole (an oncolytic drug), Letrozole (a breast cancer therapy), Bicalutamide (a prostate cancer and breast cancer therapy), Cyamemazine (a neuroleptic tranquilizer), Bicalutamid (an anti-androgen, anti-neoplastic drug), and Etravirine (an anti-HIV medication) are pharmaceutically important aromatic nitriles.^[1] Additionally, 4-cyano-4'-pentylbiphenyl is a typical liquid crystal material. Moreover, aromatic nitriles are used for the preparation of aromatic amides, carboxylic acids, amines, amidines, aldehydes, ketones, and nitrogen-containing heterocycles,^[2e-2n] such as tetrazoles, imidazoles, oxazoles, thiazoles, and selenazoles. Generally, aromatic nitriles are prepared by the dehydration of primary aromatic amides using dehydrating reagents such as SOCl₂, P₂O₅, and Ph₃P/CCl₄.^[3] Alternatively, the Sandmeyer reaction of aromatic diazonium salts with CuCN also has been used to generate aromatic nitriles.^[4] Recently, the direct conversion of aromatic bromides into the corresponding aromatic nitriles with CuCN at high temperature (Rosenmundvon Braun reaction).^[5] and with Pd catalyst and metal cyanide at high temperature^[1c,6] has been actively studied. Examples include the use of CuCN in DMF at refluxing temperature,^[5,6a] $Pd(OAc)_2 \cdot K_4[Fe(CN)_6]$ at 120 °C,^[6b] $Pd\cdot(binaphthyl)P(tBu)_2\cdot Zn(CN)_2\cdot Zn$ 80-95 °C,^[6c] at Zn(CN)₂·Pd₂(dba)₃at100 °C,^[6d] and Pd/C·CuI·K₄[Fe(CN)₆]-·3H₂O at 130–140 °C.^[6e] However, those reactions require toxic metal cyanides and/or expensive rare metals, such as palladium, at high temperature. As metal-cyanide-free methods, we recently reported the reaction of aryl bromides with *n*BuLi or Mg and subsequently DMF, followed by reaction with molecular iodine and aq. ammonia to generate the corresponding aromatic nitriles in good yields.^[7] Additionally, the reaction of electron-rich aromatics with POCl₃ and DMF, followed by reaction with molecular iodine and aq. ammonia has been found to afford aromatic nitriles in good yields.^[8] These reactions are very useful as they can be carried out under mild reaction conditions, such as at room temperature, using less toxic commercially available reagents. Consequently, these methods have been adopted for the industrial preparation of aromatic nitriles. However, these reaction conditions cannot transform phenols into o-cyanophenols. For example, when p-cresol was treated with POCl₃ (2.2 equiv.) and DMF (4.0 equiv.) at 100 °C for 2 h, tolyl formate was obtained in 84% yield; further treatment with molecular iodine and ag. ammonia gave a mixture of p-cresol, 2-iodo-4-methylphenol, and 2,6diiodo-4-methylphenol, as shown in Scheme 1. Thus, our previous method using POCl₃/DMF and subsequent molecular iodine and aq. ammonia^[8] cannot be employed for the transformation of phenols into o-cycanophenols, efficiently. Skattebøl^[9] reported an interesting method for the o-formylation of phenols using paraformaldehyde, MgCl₂, and

Scheme 1.

[[]a] Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522 Japan E-mail: togo@faculty.chiba-u.jp

http://reaction-2.chem.chiba-u.jp/index.html Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201402817.

FULL PAPER

Et₃N. Recently, a one-pot synthesis of salicylnitriles from phenols by the treatment with paraformaldehyde, MgCl₂, and Et₃N under heating conditions, followed by reaction with IBX (*o*-iodoxybenzoic acid; 45 wt.-%, 2.0 equiv.) and aq. ammonia in methanol, was reported.^[10] This method is very attractive because a cyano group can be introduced to the *o*-position of phenols, without using toxic metal cyanide. However, IBX is explosive and expensive, and therefore, requires that it be used with extreme caution.^[11] Here, as part of our basic study of molecular iodine for organic synthesis,^[12] we would like to report a mild one-pot transformation of phenols into *o*-cyanophenols using paraformaldehyde, MgCl₂, and Et₃N, and subsequent treatment with molecular iodine and aqueous ammonia.

Results and Discussion

Initially, and based on previous reports.^[9] a mixture of p-cresol 1a in DMF, 1,4-dioxane, acetonitrile, or THF solution was placed into a 20 mL screw-capped glass flask. To the mixture containing 1a was added MgCl₂, Et₃N, and paraformaldehyde, and the flask was heated at 80 °C or 60 °C for 8 h to determine the best reaction conditions, as shown in Table 1. 5-Methylsalicylaldehyde 2a was obtained in the highest yield (Table 1, Entry 6) when THF was used as solvent and MgCl₂ was used as Lewis acid, among MgCl₂, MgBr₂, MgSO₄, and Mg(ClO₄)₂ (Table 1, Entries 6-9). On the other hand, treatment of 5-methylsalicylaldehyde and 5-bromosalicylaldehyde with molecular iodine and aq. ammonia at 0 °C to room temperature smoothly afforded 2-cyano-4-methylphenol and 4-bromo-2-cyanophenol in 96% and 95% yields, respectively, as shown in Scheme 2.

Table 1. Transformation of *p*-cresol to 5-methylsalicylaldehyde.

Based on these preliminary studies, the one-pot transformation of various phenols, such as *m*-cresol **1b**, *p*-ethylphenol **1c**, *p*-tert-butylphenol **1d**, *p*-*n*-butylphenol **1e**,

Scheme 2. Transformation of salicylaldehydes to o-cyanophenols.

p-phenylphenol **1f**, *p*-methoxyphenol **1g**, *m*-methoxyphenol **1h**, *p*-*n*-butoxyphenol **1i**, and *p*-phenoxyphenol **1j** was carried out with MgCl₂, Et₃N, and paraformaldehyde in THF at 80 °C, followed by reaction with molecular iodine and aq. ammonia at 0 °C to room temperature to provide corresponding *o*-cyanophenols **3b**–**3j** in moderate to good yields, respectively, as shown in Table 2 (Table 2, Entries 2-10). Furthermore, the same treatment of *p*-thiomethoxyphenol 1k and p-thioethoxyphenol 1l using the same procedure and conditions gave 2-cyano-4-thiomethoxyphenol 3k and 2cvano-4-thioethoxyphenol 31 in moderate yields, respectively, without oxidation of the sulfenyl group. o-Chlorophenol 1m, o-bromophenol 1n, and p-bromophenol 1o could be also transformed into 2-chloro-6-cyanophenol 3m, 2-bromo-6-cyanophenol 3n, and 4-bromo-2-cyanophenol 30 in moderate yields, respectively, using the same procedure and conditions (Table 2, Entries 13–15). Phenol 1p, bearing a vinyl group, could be also transformed into 2cyano-4-allyloxyphenol 3p in moderate yield, without affecting the vinyl group (Table 2, Entry 16). In addition, the same treatment of 2,4-disubstituted phenols, such as 2,4dimethylphenol 1q, 2-tert-butyl-4-methylphenol 1r, 2,4-ditert-butylphenol 1s, 2-chloro-4-phenylphenol 1t, and 2bromo-4-methylphenol 1u, and 2-naphthol 1v with MgCl₂, Et₃N, and paraformaldehyde in THF, followed by reaction with molecular iodine and aq. ammonia provided corresponding 2,4-disubstituted 6-cyanophenols 3q-3u and 1cyano-2-naphthol 3v in moderate to good yields (Table 2, Entries 17-22). Moreover, as a gram-scale transformation, a mixture of *p*-ethylphenol 1c (15 mmol) in THF (60 mL) solution in a 100 mL screw-capped glass flask underwent addition of MgCl₂ (2.0 equiv.), Et₃N (3 equiv.), and paraformaldehyde (3 equiv.). The flask was then warmed to 80 °C for 8 h. Upon completion of reaction heating, the mixture was treated with molecular iodine (1.2 equiv.) and aq. ammonia (20 mL) at 0 °C to room temperature for 6 h to give 2-cyano-4-ethylphenol 3c in 64% yield, as shown in Table 2 (Table 2, Entry 3). Thus, the present reaction can be used for the gram-scale transformation of phenols into o-cyanophenols.

Finally, as a synthetic application of the present reaction, Febuxostat (a xanthine oxidase inhibitor for the treatment of gout and greatly used for medical treatment)^[13] was prepared, as shown in Scheme 3. 4-Bromo-2-cyanophenol **30**, prepared from *p*-bromophenol **10** by the present method, was treated with 1-iodo-2-methylpropane in the presence of K_2CO_3 in acetone to give 4-bromo-2-cyanophenyl isobutyl

OH

Table 2. One-pot transformation of phenols into 2-cyanophenols.

OH

	- r	ξ.	(CH ₂ O) _n (3.0 equiv.), THF, 80 °C, 8 h						
	भू		2) l ₂ (1.2	equiv.), aq. NH	3	R-	<u>ر</u>		
	2 n	1 1mol	– O° 0	r.t., Time ^{2nd} (h)			3		
Entry	Product	Tin	ne ^{2nd} (h)	Yield (%)	Entry	Product	Tim	ne ^{2nd} (h)	Yield (%)
1	Me CN	3a	4	82	12	EtS CN	31	6	66
2	Me CN	3b	4	62	13 ^[a]		3m	2	62
3	Et CN	3c	6	75 (64) ^[b]	14 ^[a]	G Br CN OH	3n	2	65
4	tBu CN OH	3d	6	63	15 ^[a]	Br CN	30	3[q]	62
5	^{nBu} CN OH	3e	6	71	16 📁		3р	6	65
6	Ph CN OH	3f	4	56	17	Me Me Me	3q	6	64
7	MeO CN OH	3g	4	60	18	Me tBu CN OH	3r	8	53
8	MeO CN	3h	4 ^[c]	51	19	tBu tBu tBu	3s	8	55
9	nBuO OH	3i	4	64	20	Ph CI CI	3t	8	65
10	PhOCN OH	3j	4	64	21	Me F OH Br	3u	6	74
11	MeS CN	3k	4	59	22		3v	6	60

1) MgCl₂ (2.0 equiv.), Et₃N (3.0 equiv.)

[a] 2nd step was carried out at 0 °C. [b] *p*-Ethylphenol (15 mmol) was used. [c] *m*-Methoxyphenol. [d] Tetrahydropyran was used as a solvent, instead of tetrahydrofuran in 1st step reaction, and I_2 (2.0 equiv.) was used in 2nd step reaction.

ether **4** in 98% yield. Compound **4** was coupled with *tert*butyl 4-methylthiazole-5-carboxylate in the presence of Ni(OAc)₂ and a base to form compound **5** in 51% yield. Deprotection of the ester group with trifluoroacetic acid provided Febuxostat in 93% yield. A plausible reaction mechanism for the present reaction is shown in Scheme 4. Phenol 1 reacts with formaldehyde through the agency of transition state **B** to form compound **C**. Compound **C** smoothly isomerizes and the oxidation by formaldehyde via transition state **D** occurs to form salicyl-

FULL PAPER

Scheme 3. Synthesis of febuxostat.

aldehyde $2^{[9]}$ Once 2 is formed, it smoothly reacts with ammonia to form imine **E**. Imine **E** smoothly reacts with molecular iodine to form *N*-iodoimine **F**, and rapid HI elimination occurs to give *o*-cyanophenol **3**.

Scheme 4. Plausible reaction pathway and mechanism leading to 2cyanophenols.

Conclusions

Various phenols could be transformed into corresponding *o*-cyanophenols in moderate to good yields in a one-pot manner, using MgCl₂, Et₃N, and paraformaldehyde in THF, followed by reaction with molecular iodine and aq. ammonia. The present reaction could be carried out under mild reaction conditions and using less expensive reagents that are typically associated with such chemistry; no transition metals or cyanide sources are required. Moreover, this chemistry is highly amenable to gram-scale reactions. We believe the present method will be useful for one-pot preparation of o-cyanophenols from phenols, due to the simplicity of the experimental conditions and the use of inexpensive and user-friendly reagents.

Experimental Section

General: ¹H NMR and ¹³C NMR spectra were obtained with JEOL-JNM-ECX400, JEOL-JNM-ECS400, and JEOL-JNM-ECA500 spectrometers. Chemical shifts are expressed in ppm downfield from TMS in δ units. Mass spectra were recorded with JMS-T100GCV, JMS-HX110, and Thermo LTQ Orbitrap XL spectrometers. IR spectra were measured with a JASCO FT/IR-4100 spectrometer. Melting points were determined with a Yamato Melting Point Apparatus Model MP-21. Silica gel 60F₂₅₄ (Merck) was used for TLC and Silica gel 60 (Kanto Kagaku Co.) was used for short column chromatography.

Typical Experimental Procedure for Preparation of o-Cyanophenols: To a solution of *p*-methylphenol **1a** (1.0 mmol, 108.1 mg) in dry THF (10.0 mL) in a 20 mL screw-capped glass flask was added anhydrous magnesium chloride (2.0 mmol, 190.4 mg), triethylamine (3.0 mmol, 303.6 mg), and paraformaldehyde (3.0 mmol, 90.1 mg). The mixture was stirred for 8 h at 80 °C. After cooling to room temperature, aq. ammonia (concentration: 28.0-30.0 M, 10.0 mL), and molecular iodine (1.2 mmol, 304.6 mg) were added to the mixture at 0 °C, and the obtained mixture was stirred for 4 h at room temperature. The reaction mixture was quenched by satd. aq. Na₂SO₃ (15 mL). The obtained mixture was extracted with AcOEt (20 mL \times 3) and then, the organic layer was dried with Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by short column chromatography on silica gel (AcOEt/hexane = 1:9) to afford 2-cyano-4-methylphenol (3a) in 82% yield (109.2 mg).

2-Cyano-4-methylphenol (3a): Yield 109.2 mg (82%); yellow solid; m.p. 92–93 °C. IR (neat): $\tilde{v} = 2234$, 3241 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.29$ (s, 3 H), 6.90 (d, J = 8.5 Hz, 1 H), 7.26–7.28 (m, 2 H) ppm. ¹³C NMR (125 Hz, CDCl₃): $\delta = 20.11$, 99.01, 116.48, 116.52, 130.52, 132.53, 135.64, 156.45 ppm. HRMS (APPI): calcd. for C₈H₈NO [M + H]⁺ 134.0600; found 134.0600.

2-Cyano-5-methylphenol (3b): Yield 82.6 mg (62%); white solid; m.p. 111–113 °C. IR (neat): $\tilde{v} = 2232$, 3235 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.36$ (s, 3 H), 6.80–6.82 (m, 2 H), 7.38 (d, J = 8.2 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 21.87$, 96.50, 116.64, 117.04, 122.12, 132.46, 146.18, 158.34 ppm. HRMS (ESI): calcd. for C₈H₆NO [M – H]⁻ 132.0449; found 132.0450.

2-Cyano-4-ethylphenol (3c): Yield 110.4 mg (75%); white solid; m.p. 88–89 °C. IR (neat): $\tilde{v} = 2235$, 3224 cm^{-1} . ¹H NMR (400 MHz, CDCl₃): $\delta = 1.21$ (t, J = 7.7 Hz, 3 H), 2.59 (q, J = 7.7 Hz, 2 H), 6.92 (d, J = 8.2 Hz, 1 H), 7.28–7.31 (m, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 15.37$, 27.55, 99.06, 116.53, 131.44, 134.56, 136.98, 156.51 ppm. HRMS (ESI): calcd. for C₉H₉NONa [M + Na]⁺ 170.0576; found 170.0573.

4-*tert***-Butyl-2-cyanophenol (3d):** Yield 110.4 mg (63%); white solid; m.p. 119–121 °C. IR (neat): $\tilde{v} = 2230$, 3287 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.29$ (s, 9 H), 6.92 (d, J = 8.7 Hz, 1 H), 7.47–7.52 (m, 2 H) ppm. ¹³C NMR (125 Hz, CDCl₃): $\delta = 31.15$, 34.21, 98.73, 116.28, 116.79, 129.23, 132.25, 144.14, 156.20 ppm. HRMS (ESI): calcd. for C₁₁H₁₃NONa [M + Na]⁺ 198.0889; found 198.0888.

4-Butyl-2-cyanophenol (3e): Yield 124.4 mg (71%); white solid; m.p. 59–61 °C. IR (neat): $\tilde{v} = 2231$, 3285 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 0.92$ (t, J = 7.7 Hz, 3 H), 1.33 (sext, J = 7.7 Hz, 2 H), 1.55 (quin, J = 7.7 Hz, 2 H), 2.55 (t, J = 7.7 Hz, 2 H), 6.02 (br., 1 H), 6.90 (d, J = 7.7 Hz, 1 H), 7.26–7.29 (m, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.54$, 22.07, 33.35, 34.22, 99.05, 116.44, 116.55, 131.96, 135.00, 135.70. 156.43 ppm. HRMS (ESI): calcd. for C₁₁H₁₂NO [M – H]⁻ 174.0919; found 174.0923.

2-Cyano-4-phenylphenol (3f): Yield 109.3 mg (56%); pale yellow solid; m.p. 170–171 °C. IR (neat): $\tilde{v} = 2240$, 3223 cm⁻¹. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 7.09$ (d, J = 8.4 Hz, 1 H), 7.33 (t, J =8.4 Hz, 1 H), 7.43 (t, 2 H, J = 8.4 Hz), 7.63 (d, J = 8.4 Hz, 2 H), 7.80 (dd, J = 8.4, 2.5 Hz, 1 H), 7.90 (d, J = 2.5 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 99.41$, 99.46, 116.71, 126.18, 127.27, 128.93, 130.95, 131.59, 133.00, 138.19, 159.68 ppm. HRMS (ESI): calcd. for C₁₃H₈NO [M – H]⁻ 194.0611; found 194.0610.

2-Cyano-4-methoxyphenol (3g): Yield 89.5 mg (60%); brown solid; m.p. 124–127 °C. IR (neat): $\tilde{v} = 2231$, 3294 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 3.78$ (s, 3 H), 6.90–6.96 (m, 2 H), 7.06 (dd, J = 9.3 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 55.93$, 99.39, 115.27, 116.20, 117.86, 122.34, 152.57, 153.33 ppm. HRMS (ESI): calcd. for C₈H₇NO₂Na [M + Na]⁺ 172.0369; found 172.0366.

2-Cyano-4-iodo-5-methoxyphenol (3h): Yield 140.28 mg (51%); white solid; m.p. 191–195 °C. IR (neat): $\tilde{v} = 2238$, 3138 cm⁻¹. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 3.81$ (s, 3 H), 6.53 (s, 1 H), 7.91 (s, 1 H) ppm. ¹³C NMR (125 Hz, [D₆]DMSO): $\delta = 56.87$, 73.55, 93.45, 99.48, 116.32, 141.95, 162.40, 162.71 ppm. HRMS (ESI): calcd. for C₈H₃INO₂ [M – H]⁻ 273.9370; found 273.9378.

4-Buthoxy-2-cyanophenol (3i): Yield 122.4 mg (64%); yellow solid; m.p. 91–93 °C. IR (neat): $\tilde{v} = 2238$, 3220 cm^{-1} . ¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.6 Hz, 3 H), 1.48 (sext, J = 7.6 Hz, 2 H), 1.75 (quin, J = 6.9 Hz, 2 H), 3.90 (t, J = 6.9 Hz, 2 H), 6.90 (d, J = 9.2 Hz, 1 H), 6.95 (sd, J = 3.0 Hz, 1 H), 7.04 (dd, J = 9.2, 3.0 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 13.77$, 19.14, 31.12, 68.62, 99.32, 116.08, 116.28, 117.80, 122.87, 152.48, 152.86 ppm. HRMS (ESI): calcd. for C₁₁H₁₂NO₂ [M – H]⁻ 190.0874; found 190.0871.

2-Cyano-4-phenoxyphenol (3j): Yield 135.2 mg (64%); yellow solid; m.p. 104–107 °C. IR (neat): $\tilde{v} = 2242$, 3233 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.94$ –6.99 (m, 3 H), 7.11–7.19 (m, 3 H), 7.35 (t, J = 8.1 Hz, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 99.85, 115.70, 118.05, 118.42, 122.04, 123.75, 126.38, 129.98, 150.51, 154.54, 156.9 ppm. HRMS (ESI): calcd. for C₁₃H₈NO₂ [M – H]⁻ 210.0559; found 210.0561.

2-Cyano-4-methylthiophenol (3k): Yield 97.5 mg (59%); brown solid; m.p. 127–130 °C. IR (neat): $\tilde{v} = 2229$, 3299 cm⁻¹. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 2.43$ (s, 3 H), 6.96 (d, J = 8.9 Hz, 1 H), 7.42 (dd, J = 8.9, 2.3 Hz, 1 H), 7.51 (d, J = 2.3 Hz, 1 H), 11.12 (br., 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 16.28$, 99.74, 116.54, 116.97, 127.75, 131.32, 134.34, 158.40 ppm. HRMS (ESI): calcd. for C₈H₆NOS [M – H]⁻ 164.0165; found 164.0168.

2-Cyano-4-ethylthiophenol (31): Yield 118.3 mg (66%); pale brown solid; m.p. 92–93 °C. IR (neat): $\tilde{v} = 2229$, 3299 cm⁻¹. ¹H NMR

(400 MHz, CDCl₃): $\delta = 1.27$ (t, J = 7.4 Hz, 3 H), 2.87 (q, J = 7.4 Hz, 2 H), 6.95 (d, J = 8.7 Hz, 1 H), 7.47–7.51 (m, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 14.37$, 29.32, 100.20, 115.76, 117.30, 128.32, 134.71, 137.74, 157.34 ppm. HRMS (ESI): calcd. for C₁₃H₈NO₂ [M - H]⁻ 210.0559; found 210.0561. HRMS (ESI): calcd. for C₉H₈NOS [M - H]⁻ 178.0327; found 178.0331.

2-Chloro-6-cyanophenol (3m): Yield 95.2 mg (62%); white solid; m.p. 103–105 °C. IR (neat): $\tilde{v} = 2245$, 3251 cm^{-1} . ¹H NMR (400 MHz, CDCl₃): $\delta = 6.35$ (br., 1 H), 6.97 (t, J = 8.0 Hz, 1 H), 7.48 (dd, J = 8.0, 1.6 Hz, 1 H), 7.57 (dd, J = 8.0, 1.6 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 101.15$, 115.05, 121.13, 121.47, 132.03, 133.77, 153.81 ppm. HRMS (ESI): calcd. for C₇H₃NOCl [M – H]⁻ 151.9903; found 151.9903.

2-Bromo-6-cyanophenol (3n): Yield 128.7 mg (65%); orange solid; m.p. 109–112 °C. IR (neat): $\tilde{v} = 2245$, 3244 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 6.17$ (br., 1 H), 6.91 (t, J = 8.0 Hz, 1 H), 7.53 (dd, J = 8.0, 1.6 Hz, 1 H), 7.71 (dd, J = 8.0, 1.6 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 100.95$, 110.96, 115.06, 121.95, 132.86, 136.77, 154.50 ppm. HRMS (ESI): calcd. for C₇H₃NOBr [M – H]⁻ 195.9398; found 198.9403.

4-Bromo-2-cyanophenol (30): Commercially available; yield 122.8 mg (62%); white solid; m.p. 157–158 °C. IR (neat): $\tilde{v} = 2234$, 3249 cm⁻¹. ¹H NMR (400 MHz, [D₆]DMSO): $\delta = 6.95$ (d, J = 8.9 Hz, 1 H), 7.63 (dd, J = 8.9, 2.6 Hz, 1 H), 7.84 (d, J = 2.6 Hz, 1 H) ppm. ¹³C NMR (125 MHz, [D₆]DMSO): $\delta = 100.91$, 109.71, 115.59, 118.28, 134.99, 137.48, 159.64 ppm.

4-Allyloxy-2-cyanophenol (3p): Yield 113.9 mg (65%); white solid; m.p. 78–80 °C. IR (neat): $\tilde{v} = 2242$, 3210 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 4.49$ (dt, J = 5.3, 1.5 Hz, 2 H), 5.31 (dq, J = 11, 1.4 Hz, 1 H), 5.40 (dq, J = 18, 1.4 Hz, 1 H), 5.78 (br., 1 H), 5.96–6.06 (m, 1 H), 6.91 (d, J = 9.2 Hz, 1 H), 6.97 (s, J = 3.0 Hz, 1 H), 7.08 (dd, J = 9.2, 3.0 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 69.65$, 99.39, 116.14, 116.56, 117.81, 118.23, 123.10, 132.52, 152.26, 152.67 ppm. HRMS (ESI): calcd. for C₁₀H₈NO₂ [M – H]⁻ 174.0555; found 174.0559.

2-Cyano-4,6-dimethylphenol (3q): Yield 121.2 mg (64%); yellow solid; m.p. 107–108 °C. IR (neat): $\tilde{v} = 2232$, 3330 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.24$ (s, 3 H), 2.25 (s, 3 H), 5.25 (br., 1 H), 7.11 (s, 1 H), 7.15 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 15.78$, 20.11, 98.51, 116.85, 125.68, 129.59, 130.26, 136.97, 154.62 ppm. HRMS (ESI): calcd. for C₉H₉NONa [M + Na]⁺ 170.0576; found 170.0577.

6-*tert***-Butyl-2-cyano-4-methylphenol (3r):** Yield 100.3 mg (53%); white solid; m.p. 111–113 °C. IR (neat): $\tilde{v} = 2226$, 3335 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.39$ (s, 9 H), 2.27 (s, 3 H), 7.13 (s, 1 H), 7.27 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 20.52$, 29.29, 34.86, 99.84, 116.95, 129.24, 130.17, 133.37, 137.49, 154.97 ppm. HRMS (ESI): calcd. for C₁₂H₁₅NONa [M + Na]⁺ 212.1046; found 212.1047.

4,6-Di-*tert***-butyl-2-cyanophenol (3s):** Yield 127.3 mg (55%); white solid; m.p. 107–111 °C. IR (neat): $\tilde{v} = 2230$, 3293 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.29$ (s, 9 H), 1.41 (s, 9 H), 5.83 (br., 1 H), 7.30 (d, J = 2.3 Hz, 1 H), 7.52 (d, J = 2.3 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 29.39$, 31.22, 34.42, 35.13, 99.49, 117.24, 125.99, 129.77, 137.01, 143.59, 154.76 ppm. HRMS (ESI): calcd. for C₁₅H₂₀NO [M – H]⁻ 230.1550; found 230.1557.

6-Chloro-4-phenyl-2-cyanophenol (3t): Yield 149.3 mg (65%); white solid; m.p. 120–123 °C. IR (neat): $\tilde{v} = 2240$, 3275 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.37-7.50$ (m, 5 H), 7.68 (d, J = 2.0 Hz, 1 H), 7.78 (d, J = 2.0 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃):

FULL PAPER

 δ = 101.44, 115.09, 121.49, 126.65, 128.28, 129.17, 130.31, 132.26, 135.47, 137.46, 152.84 ppm. HRMS (ESI): calcd. for C₁₃H₇NOCl [M – H]⁻ 228.0222; found 228.0226.

2-Bromo-6-cyano-4-methylphenol (3u): Yield 156.9 mg (74%); orange solid; m.p. 112–113 °C. IR (neat): $\tilde{v} = 2242$, 3210 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.30$ (s, 3 H), 6.09 (br., 1 H), 7.30 (s, 1 H), 7.52 (s, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 19.98$, 100.40, 110.57, 115.26, 131.93, 132.84, 137.30, 152.38 ppm. HRMS (ESI): calcd. for C₈H₅BrNO [M – H]⁻ 209.9560; found 209.9561.

2-Hydroxy-1-naphthonitrile (3v): Yield 101.5 mg (60%); brown solid; m.p. 136–138 °C. IR (neat): $\tilde{v} = 2224$, 3186 cm^{-1.} ¹H NMR (400 MHz, CDCl₃): $\delta = 7.19$ (d, J = 9.2 Hz, 1 H), 7.46 (t, J =7.7 Hz, 1 H), 7.64 (t, J = 7.7 Hz, 1 H), 7.82 (d, J = 8.3 Hz, 1 H), 7.95 (d, J = 9.2 Hz, 1 H), 8.03 (d, J = 8.3 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 92.59$, 115.66, 117.36, 123.93, 125.19, 128.05, 128.56, 129.14, 132.81, 135.33, 159.48 ppm. HRMS (ESI): calcd. for C₁₁H₆NO [M – H]⁻ 168.0455; found 168.0450.

5-Bromo-2-isobutoxybenzonitrile (4): Yield 249.0 mg (98%); yellow oil. IR (neat): $\tilde{v} = 2229 \text{ cm}^{-1}$. ¹H NMR (400 MHz, CDCl₃): $\delta = 1.06$ (d, J = 6.8 Hz, 6 H), 2.16 (sept, J = 6.8 Hz, 1 H), 3.81 (d, J = 6.8 Hz, 2 H), 6.85 (d, J = 9.2 Hz, 1 H), 7.58–7.63 (m, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 18.94$, 28.03, 75.50, 103.70, 111.86, 113.88, 114.86, 135.64, 137.03, 159.94 ppm. HRMS (APPI): calcd. for C₁₁H₁₃NO⁷⁹Br [M]⁺ = 254.0175; found 254.0177.

tert-Butyl 2-(3'-Cyano-4'-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (5): A glass vessel containing a magnetic stirring bar, $Ni(OAc)_2$ ·4H₂O (0.06 mmol, 15.2 mg) and MgSO₄ (0.6 mmol, 72.2 mg) was dried with a heat-gun under vacuum pumping and then filled with argon gas after cooling to room temperature. 2,2'-Bipyridyl (0.06 mmol, 9.4 mg), 5-bromo-2-isobutoxybenzonirile 4 (0.3 mmol, 76.2 mg), tert-butyl 4-methylthiazole-5-carboxylate (0.6 mmol, 119.6 mg), LiOtBu (1.5 mmol, 120.0 mg) and dry dioxane (2.0 mL) were added to the vessel at room temperature, and the mixture was stirred for 40 h under refluxing conditions. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad and washed with AcOEt. The filtrate was concentrated and the residue was purified by preparative TLC (AcOEt/hexane = $1:6 \times 3$) to afford *tert*-butyl 2-(3'-cyano-4'-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (5), yield 57.00 mg (51%); white solid;^[13c] m.p. 109–111 °C. IR (neat): \tilde{v} = 1712, 2224 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 1.09 (d, J = 6.8 Hz, 6 H), 1.59 (s, 9 H), 2.21 (sept, J = 6.8 Hz, 1 H), 2.73 (s, 3 H), 3.89 (d, J = 6.8 Hz, 2 H), 7.00 (d, J = 8.9 Hz, 1 H), 8.08 (dd, J = 8.9, 2.3 Hz, 1 H), 8.17 (d, J = 2.3 Hz, 1 H) ppm. ¹³C NMR $(125 \text{ MHz}, \text{ CDCl}_3)$: $\delta = 17.39, 19.01, 28.13, 28.25, 75.64, 82.50,$ 102.89, 112.54, 115.42, 123.67, 126.14, 131.98, 132.44, 160.14, 161.33, 162.35, 166.51 ppm.

Febxostat: To a solution of 2-(3'-cyano-4'-isobutoxyphenyl)-4methylthiazole-5-carboxylate **5** (0.1 mmol, 37.3 mg) in dry CH₂Cl₂ (1.0 mL) was added CF₃COOH (1.0 mL). The mixture was stirred for 18 h at room temperature. Then, removal of the solvent under reduced pressure, the addition of toluene (1.0 mL × 3) to the residue, removal of toluene under reduced pressure, and final filtration afforded Febuxostat, yield 88.27 mg (93%); white solid;^[13c] m.p. 205–208 °C. IR (ATR) 1688, 2230, 2961 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 1.09 (d, *J* = 6.7 Hz, 2 H), 2.18–2.23 (m, 1 H), 2.79 (s, 3 H), 3.90 (d, *J* = 6.7 Hz, 2 H), 7.02 (d, *J* = 8.9 Hz, 1 H), 8.08 (dd, *J* = 8.9, 2.3 Hz, 1 H), 8.16 (d, *J* = 2.3 Hz, 1 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 17.62, 19.01, 28.12, 75.69, 102.93, 112.62, 115.28, 125.64, 128.18, 128.99, 132.14, 132.68, 162.64, 162.85, 168.50 ppm.

Supporting Information (see footnote on the first page of this article): Copies of ¹H NMR and ¹³C NMR spectra of all *o*-cyanophenols **3**, **4**, **5**, and Febuxostat.

Acknowledgments

Financial support by the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) in the form of a Grantin-Aid for Scientific Research (grant number 25105710) and by Chiba University (Iodine Research Project) is gratefully acknowledged. NMR and MS (HRMS) measurements were performed at Chemical Analysis Centre in Chiba University.

- a) S. R. Sandler, W. Karo, Nitriles (Cyanides), in: Organic Functional Group Preparations (Ed.: H. H. Wasserman), Academic Press, San Diego, USA, **1983**; vol. 12-I, chapter 17; b) M. E. Fabiani, Drug News Perspect. **1999**, 12, 207–215; c) P. Anbarasan, T. Schareina, M. Beller, Chem. Soc. Rev. **2011**, 40, 5049–5067; d) J. Kim, H. J. Kim, S. Chang, Angew. Chem. Int. Ed. **2012**, 51, 11948–11959.
- a) K. Friedrick, K. Wallensfels, The Chemistry of the Cvano [2] Group (Ed.: Z. Rappoport), Wiley-Interscience, New York, 1970; b) M. North, Comprehensive Organic Functional Group Transformation (Eds.: A. R. Katritzky, O. Meth-Cohn, C. W. Rees), Pergamon, Oxford, UK, 1995; c) S.-I. Murahashi, Synthesis from Nitriles with Retention of the Cyano Group, in: Science of Synthesis, vol. 19, p. 345-402, Thieme, Stuttgart, Germany, 2004; d) S. J. Collier, P. Langer, Application of Nitriles as Reagents for Organic Synthesis with Loss of the Nitrile Functionality, in: Science of Synthesis vol. 19, p. 403-425, Thieme, Stuttgart, Germany, 2004, p. 556; e) P. Wipf, Chem. Rev. 1995, 95, 2115-2134; f) P. Wipf, F. Yokokawa, Tetrahedron Lett. 1998, 39, 2223-2226; g) P. C. Ducept, S. P. Marsden, Synlett 2000, 692-694; h) M. Chihiro, H. Nagamoto, I. Takemura, K. Kitano, H. Komatsu, K. Sekiguchi, F. Tabusa, T. Mori, M. Tominaga, Y. Yabuuchi, J. Med. Chem. 1995, 38, 353-358; i) X. Gu, X. Wan, B. Jiang, Bioorg. Med. Chem. Lett. 1999, 9, 569-572; j) D. G. Diana, D. Cutcliffe, D. L. Volkots, J. P. Mallamo, T. R. Bailey, N. Vescio, R. C. Oglesby, T. J. Nitz, J. Wetzel, V. Giranda, D. C. Pevear, F. J. Dutko, J. Med. Chem. 1993, 36, 3240-3250; k) S. J. Wittenberger, B. G. Donner, J. Org. Chem. 1993, 58, 4139-4141; 1) J. Shie, J. Fang, J. Org. Chem. 2003, 68, 1158-1160; m) J. B. Medwid, R. Paul, J. S. Baker, J. A. Brockman, M. T. Du, W. A. Hallett, J. W. Hanifin, R. A. Hardy Jr., M. E. Tarrant, L. W. Torley, S. Wrenn, J. Med. Chem. 1990, 33, 1230-2341; n) I. K. Khanna, R. M. Weier, Y. Yu, X. D. Xu, F. J. Koszyk, P. W. Collins, C. M. Koboldt, A. W. Veenhuizen, W. E. Perkins, J. J. Casler, J. L. Masferrer, Y. Y. Zhang, S. A. Gregory, K. Seibert, P. C. Isakson, J. Med. Chem. 1997, 40, 1634-1647.
- [3] a) Nitriles, Carboxylic Acids and Derivatives, in: Comprehensive Organic Transformation (Ed.: R. C. Larock), 2nd ed., Wiley-VCH, Weinheim, Germany, 1999, p. 1621; b) K. Ouchaou, D. Georgin, F. Taran, Synlett 2010, 2083–2086.
- [4] T. Sandmeyer, Ber. Dtsch. Chem. Ges. 1884, 17, 1633, 2650– 2653.
- [5] a) K. W. Rosenmund, E. Struck, *Ber. Dtsch. Chem. Ges.* 1916, 52, 1749; b) J. von Braun, G. Manz, *Justus Liebigs Ann. Chem.* 1931, 488, 111–126.
- [6] a) W. M. Sharman J. E. Van Lier, in: *Porphyrin Handbook*, vol. 15 (Eds.: E. Kadish, K. M. Smith, R. Guilard), Academic Press, New York, **2003**, p. 1; b) S. A. Weissman, D. Zewge, C. Chen, *J. Org. Chem.* **2005**, *70*, 1508–1510; c) A. Littke, M. Soumeillant, R. F. Kaltenbach III, R. J. Cherney, C. M. Tarby, S. Kiau, *Org. Lett.* **2007**, *9*, 1711–1714; d) Z. Iqbal, A. Lyub-

imtsev, M. Hanack, *Synlett* **2008**, 2287–2290; e) G. Chen, J. Weng, Z. Zheng, X. Zhu, Y. Cai, J. Cai, Y. Wan, *Eur. J. Org. Chem.* **2008**, 3524–3528.

- [7] a) S. Ushijima, H. Togo, *Synlett* 2010, 1562–1566; b) S. Ushijima, K. Moriyama, H. Togo, *Tetrahedron* 2011, 67, 958–964;
 c) G. Ishii, R. Harigae, K. Moriyama, H. Togo, *Tetrahedron* 2013, 69, 1462–1469.
- [8] S. Ushijima, H. Togo, Synlett 2010, 1067–1070; S. Ushijima,
 K. Moriyama, H. Togo, Tetrahedron 2012, 68, 4588–4595.
- [9] N. U. Hofsløkken, L. Skattebøl, Acta Chem. Scand. 1999, 53, 258–262.
- [10] H. F. Anwar, T. V. Hansen, Tetrahedron Lett. 2008, 49, 4443-4445.
- [11] J. B. Plumb, D. J. Harper, C&E News 1990, July 16, 3-4.
- [12] For reviews, see: a) H. Togo, S. Iida, Synlett 2006, 2159–2175;
 b) H. Togo, J. Synth. Org. Chem. 2008, 66, 652–663; c) N. Mori,
 H. Togo, Synlett 2004, 880–882; d) N. Mori, H. Togo, Tetrahedron 2005, 61, 5915–5925; e) M. Ishihara, H. Togo, Synlett 2006, 227–230; f) S. Iida, H. Togo, Synlett 2006, 2633–2635; g)
 M. Ishihara, H. Togo, Tetrahedron 2007, 63, 1474–1480; h) S. Iida, H. Togo, Synlett 2007, 407–410; i) S. Iida, H. Togo, Synlett 2008, 1639–1642; j) S. Iida, R. Ohmura, H. Togo, Tetrahedron

dron 2009, 65, 6257–6262; k) S. Ushijima, H. Togo, *Synlett* 2010, 1067–1070; l) R. Ohmura, M. Takahata, H. Togo, *Tetrahedron Lett.* 2010, 51, 4378–4371; m) Y. Suzuki, Y. Ishiwata, K. Moriyama, H. Togo, *Tetrahedron Lett.* 2010, 51, 5950–5953; n) S. Takahashi, H. Togo, *Heterocycles* 2010, 82, 593–601; o) Y. Suzuki, T. Yoshino, K. Moriyama, H. Togo, *Tetrahedron* 2011, 67, 3809–3814; p) H. Baba, K. Moriyama, H. Togo, *Tetrahedron Lett.* 2011, 52, 4303–4307; q) Y. Suzuki, K. Moriyama, H. Togo, *Tetrahedron 2011*, 67, 7956–7962; r) S. Ushijima, S. Dohi, K. Moriyama, H. Togo, *Tetrahedron* 2012, 68, 1436–1442; s) H. Baba, K. Moriyama, H. Togo, *Synlett* 2012, 23, 1175–1180; t) S. Ushijima, K. Moriyama, H. Togo, *Tetrahedron* 2012, 68, 4701–4709; u) S. Dohi, K. Moriyama, H. Togo, *Tetrahedron* 2012, 68, 6557–6564; v) H. Kikui, K. Moriyama, H. Togo, *Synthesis* 2013, 45, 791–797.

[13] a) K. Okamoto, B. T. Eger, T. Nishuno, S. Kondo, E. F. Pai, T. Nishino, *J. Biol. Chem.* 2003, 278, 1848–1855; b) J. Yamaguci, K. Mutou, K. Amaike, T. Yamamoto, K. Itami, *J. Synth. Org. Chem.* 2013, 71, 576–587; c) J. Canivel, J. Yamaguchi, I. Ban, K. Itami, *Org. Lett.* 2009, 11, 1733–1736.

Received: June 25, 2014 Published Online: August 11, 2014