Month 2014 18-Crown-6 Catalyzed Microwave-mediated Synthesis of Symmetric Bis-Heterocyclic Compounds under Solvent-free Condition

Rathnasamy Rishikesan,^a Kamalakannan Prabakaran,^b Rajamani Murugesan,^{c*} Ramaswamy Venkataraman,^a Pakkath Karuvalam Ranjith,^d Sivasubramanian Arvind,^e and Sathiah Thennarasu^{f*}

^aDepartment of Chemistry, PG and Research Centre, Sri Paramakalyani College, Alwarkurichi, Tirunelveli, 627412, Tamil Nadu, India

^bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India ^cDepartment of Chemistry, T.D.M.N.S. College T. Kallikulam, Tirunelveli, 627113, Tamil Nadu, India ^dSchool of Chemical Sciences, Kannur University, Kannur, 670567, Kerala, India

^eDepartment of Chemistry, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613401, Tamil Nadu. India

^fOrganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Chennai, 600020, Tamil Nadu, India *E-mail: rmuru2006@yahoo.co.in; thennarasu@gmail.com

Received October 4, 2013

DOI 10.1002/jhet.2162

An efficient, solvent-free and 18-crown-6 catalyzed method for the synthesis of *N*-alkyl-4-(4-(5-(2-(alkyl-amino)thiazol-4-yl)pyridin-3-yl)phenyl)thiazol-2-amine, *N*-alkyl-4-(5-(2-alkyamino)thiazol-4-yl)pyridine-3-yl) thiazol-2-amine, and 4,4'-bis-{2-[amino]-4-thiazolyl}biphenyl bis-heterocyclic derivatives via microwave accelerated cyclization is presented.

J. Heterocyclic Chem., 00, 00 (2014).

INTRODUCTION

Thiazole derivatives are prominent heterocyclic compounds in medicinal chemistry as well as in pharmaceutical research [1,2]. Typically, 2-aminothiazole heterocyclic compounds have shown a wide variety of pharmacological properties such as antibacterial [3], anti-inflammatory [4], antitumor [5], antimicrobial [6], antithrombotic activities [7], and have been used to treat conditions like HIV infections [8] and schizophrenia [9]. The structure activity studies on 2-aminothiazoles have proved their remarkable potential in counteracting tauinduced cytotoxicity in a human neuronal cell line model [10]. 2-aminothiazole derivatives have also shown high affinity for the neuropeptide Y5 (NPY5) receptor, useful for the treatment of eating disorders such as obesity and hyperphagia [11]. Besides, thiazoles are also synthetic intermediates and common substructures in numerous biologically active natural products [12]. Aminothiazole analogs are known to be ligands of estrogen receptors [13], adenosine receptor antagonists [14], and as schistosomicidal and anthelmintic drugs [15].

The pervasiveness and eminence of 2-aminothiazole moiety have led to the development of many synthetic approaches [16–21]. Generally, 2-aminothiazoles are prepared by Hantzsch's cyclocondensation of α -halo

ketones with mono substituted thioureas [22], or by modified Hantzsch's methodologies via the reaction of *in situ* generated α - λ^3 -iodanyl ketones with thioureas [23,24]. Aminothiazoles are also prepared by the reaction of α -thiocyanato carbonyl compounds with aromatic or aliphatic amine hydrochlorides [25]. The Kodomari's group has reported the synthesis of 2-aminothiazoles from α -bromo ketones using the supported reagents KSCN/SiO₂–RNH₃OAc/ Al₂O₃ [26]. Recently, Meshram *et al.* have reported the synthesis of 2-aminothiazoles by the reaction of α haloketone carbonyls with ammonium thiocyanate in the presence of *N*-methylimidazole [27]. Despite these procedures, novel and widely applicable green methodologies for the synthesis of 2-aminothiazole derivatives are still in demand.

Bis-heterocyclic compounds offer enhanced pharmacological utility especially when two pharmacologically active heterocyclic moieties are present in the same molecule. In this report, we describe solvent-free routes for the synthesis of bis-heterocyclic compounds containing 2-aminothiazole moiety. One of the key intermediates 3, 5-diacetyl pyridine was prepared using Stille coupling method. 3-acetyl-5-(4-acetylphenyl)pyridine was prepared using Mayura-Suzuki coupling. Consequently, three diacetyl derivatives were converted into the corresponding

Vol 000

bis(α -bromo ketones) and utilized for the efficient synthesis of novel bis-heterocyclic compounds using 18-crown-6 phase transfer catalyst and microwave irradiation under solvent-free conditions [28].

RESULTS AND DISCUSSION

Considering the synthetic utility of α -bromo ketones in cross aldol condensations, enaminoketones, Favorskii rearrangements, and a variety of heterocyclic compounds, we set out to synthesize three $bis(\alpha$ -bromo ketones) bridged by a pyridine, pyridin-3-yl-phenyl or biphenyl system. In the first part of the study, the synthesis of one of the key substrates, 3,5-diacetyl pyridine, was prepared by Stille coupling [29-31] of 3-bromo-5-acetyl pyridine (1a) with ethoxyethene-tributyltin in 1,4-dioxane at 80° C. The resultant intermediate 1-(3-(1-ethoxyethyl)pyridyl) ethanone was quenched in aq. 1.5 N HCl to obtain 3,5diacetyl pyridine (3a) in good yield as depicted in Scheme 1. The other diacetyl substrate 3-acetyl-5-(4acetylphenyl)pyridine (3b) was prepared from 4bromoacetophenone in two steps using Mayura-Suzuki coupling method [32,33] as depicted in Scheme 2. The first step was the preparation of 1-(4-(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)phenyl)ethanone (2b) using 4,4,5,5tetramethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)-1,3,2-dioxaborolane, Pd(dppf)₂Cl₂, and potassium acetate in 1,4-dioxane. In the second step, 2b was coupled with 1-(5-bromopyridin-3-yl)ethanone (1a) using $Pd(PPh_3)_4$ catalyst and Na₂CO₃ in 1,4-dioxane/water 1:1 mixture to obtain the diacetyl compound 3b. The 4,4-diacetylbiphenyl

3c was purchased from Sigma-Aldrich, USA. The controlled α -bromination of the diketo compounds **3a–c** was achieved using Br₂ and 40% HBr in acetic acid, which afforded the corresponding bis(α -bromo ketones) **4a–c** in high yield (Scheme 3).

Having synthesized the bis(α -bromo ketone) intermediates **4a–c**, we then focused on their synthetic utility as building blocks for the construction of bis-heterocyclic compounds as outlined in Scheme 4. Various substituted arylthiourea derivatives, **5a–h** were chosen for cyclization with bis(α -bromo ketone) intermediates **4a–c** as the amino and mercapto groups in the thiourea moiety serve as nucleophilic centers [34]. In an attempt to minimize the

Scheme 3. Synthesis of Bis(α-bromo ketone) 4a-c.

Scheme 4. Synthesis of Bis-heterocyclic compounds.

Scheme 1. Synthesis of 3,5-Diacetyl pyridine 3a.

Scheme 2. Synthesis of 3-Acetyl-5-(4-acetylphenyl)pyridine, 3b.

Journal of Heterocyclic Chemistry DOI 10.1002/jhet

18-Crown-6 Catalyzed Microwave-mediated Synthesis of Symmetric Bis-Heterocyclic Compounds under Solvent-free Condition

useof organic solvents, solvent-free microwave accelerated reaction conditions in the presence of a catalyst were optimized. For this purpose, the efficiency of different catalysts at room temperature was screened and the results are described in Table 1. The cyclization reaction in water or ethanol solvent without any catalyst showed a lower yield (Entries 1 and 2, Table 1). As it is clear from Table 1, when ethanol is used as the solvent, the phase transfer catalysts TBAF and 18-crown-6 provide better yields under microwave irradiation (2–3 min) conditions.

 Table 1

 Cyclization of bromoethanones, 4, with 1-(2-fluorophenyl)thiourea, 5.^a

Entry	Bis-α-bromo ketone	Catalyst 10 mol%	Solvent	LC–MS purity ^b (area %)
1 2 3 4 5 6 7 8	4a 4a 4a 4a 4a 4a 4a	No catalyst No catalyst Imidazole DMAP DABCO Et ₃ N DIPEA TP A E	water Ethanol Ethanol Ethanol Ethanol Ethanol Ethanol	61% 67% 65% 69% 66% 64% 62% 80%
8 9 10 11	4a 4a 4b 4c	18-crown-6 18-crown-6 18-crown-6	Ethanol Ethanol Ethanol	80% 83% 84% 89%

^aReaction condition: bis- α -bromo ketone, **4** (1 mmol), 1-(2-fluoro phenyl) thiourea, **5** (2 mmol), with or without catalyst in the solvent indicated and agitated at room temperature for 12 h. ^bLC–MS purity.

Further optimization of the reaction conditions was carried out using 1-(2-fluorophenyl)thiourea 2 with and without solvent, and the results are summarized in Table 2. As seen in Table 2, the cyclization reaction proceeds in the presence and absence of solvents, and the best yields are obtained only under solvent-free condition and in the presence of the phase transfer catalyst 18-Crown-6.

Having optimized a solvent-free reaction condition, we set out to synthesize three different series of bis-heterocyclic compounds viz., *N*-alkyl-4-(5-(2-alkyamino)thiazol-4-yl)pyridine-3-yl)thiazol-2-amine (**6a–h**), *N*-alkyl-4-(4-(5-(2-(alkyl-amino) thiazol-4-yl)pyridin-3-yl)phenyl)thiazol-2-amine (**7a–e**), and 4,4'-bis-{2-[amino]-4-thiazolyl}biphenyl (**8a–l**) derivatives as depicted in Scheme 5. In almost all the

Entry	Bis-α-bromo ketone	Catalyst	Solvent	Time (in min)	LC-MS purity ^b (area %)
1	4a	No catalyst	Water	2	81%
2	4a	No catalyst	Ethanol	1	79%
3	4a	No catalyst	Ethanol	2	81%
4	4a	Imidazole	Ethanol	2	74%
5	4a	DMAP	Ethanol	2	83%
6	4a	DABCO	Ethanol	2	89%
7	4a	Et ₃ N	Ethanol	2	75%
8	4a	DIPEA	Ethanol	2	78%
9	4a	TBAF	Ethanol	2	85%
10	4a	Basic alumina	Ethanol	3	85%
11	4a	18-crown-6	Ethanol	2	90%
12	4a	Imidazole	Water	2	81%
13	4a	DMAP	Water	2	78%
14	4a	DABCO	Water	2	86%
15	4a	Et ₃ N	Water	2	79%
16	4a	DIPEA	Water	2	83%
17	4a	TBAF	Water	2	90%
18	4a	Basic alumina	Water	3	82%
19	4a	18-crown-6	Water	2	80%
20	4a	18-crown-6	Solvent-free	2	99%
21	4b	18-crown-6	Solvent-free	2	99%
22	4c	18-crown-6	Solvent-free	2	98%

 Table 2

 Cyclization of bromoethanones, 1, with 1-(2-fluorophenyl)thiourea, 2.^a

^aReaction condition: bis- α -bromo ketone, 4 (1 mmol), 1-(2-fluoro phenyl) thiourea, 5 (2 mmol), with or without catalyst and/or solvent. Microwave irradiation (120 W) at 100°C for 3 min.

^bLC–MS purity.

	Ta	ble 3				
Condensation reaction	of 4a	with	various	aryl	thioureas,	5 .ª

Entry	Substituted thiourea 5	Product, 6	Yield ^b (%)
1	F H N NH₂ S	$ \begin{array}{c} $	82
2	F N NH2 S		84
3	Br NH2 S	Br Br Br Br Br Br Br N Br N Br N HN N N N	88
4	CI N NH2 S		80
5	F ₃ C H NH ₂ S	$ \begin{array}{c} $	91
6	F_3C H NH_2 CF_3	$F_{3}C \xrightarrow{CF_{3}} \begin{array}{c} F_{3}C \\ F_{3}C \xrightarrow{F_{3}C} \\ HN \xrightarrow{S} \begin{array}{c} 6f \\ N \end{array} \begin{array}{c} S \\ N \end{array} \begin{array}{c} F_{3}C \\ F_{3}C \xrightarrow{CF_{3}} \\ CF_{3} \end{array} \begin{array}{c} CF_{3} \\ CF_{3} \\ CF_{3} \end{array} \begin{array}{c} CF_{3} \\ CF_{3} \\ CF_{3} \\ CF_{3} \end{array} \begin{array}{c} CF_{3} \\ CF_$	90
7			92
8	$\mathbf{N} = \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N} \mathbf{N}$		83

^aReaction condition: bis- α -bromo ketone, **4**a (1 mmol), substituted thiourea, **5** (2 mmol), 18-crown-6 (10 mol%), microwave irradiation (120 W) at 100°C for 3 min; ^bIsolated yield.

18-Crown-6 Catalyzed Microwave-mediated Synthesis of Symmetric Bis-Heterocyclic Compounds under Solvent-free Condition

Condensation reaction of $4c$ with various substituted thiourea, 5. ^a						
Entry	Substituted thiourea 5	Product, 8	Yield ^b (%)			
1	H₂N _↓ NH₂ S	$\begin{array}{c} H_2N \searrow N \\ S \swarrow \\ \end{array} \xrightarrow{ 8a } N_{\cong} N_{\mathbb{S}} \\ \overset{N_{\cong}}{\overset{N_2}} N H_2 \\ \overset{S}{\overset{N_2}} \end{array}$	86			
2	,H ,N N S NH₂ S		80			
3	∽∽ ^H NH₂ S	$ \begin{array}{c} H \\ N \\ S \end{array} \\ N \\ S \end{array} \\ \begin{array}{c} 8c \\ N \\ S \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \end{array} $ \\ \begin{array}{c} N \\ S \end{array} \\ \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\	82			
4	$\bigvee_{\substack{N_{\mathbb{Y}}}}^{H}_{\substack{N_{2}}\\S}^{NH_{2}}$	$\begin{array}{c} H \\ \searrow N \\ S \\ \end{array} \xrightarrow{8d} \\ \searrow N \\ S \\ \end{array} \xrightarrow{8d} \\ S \\ \end{array} \xrightarrow{N} \\ S \\ \end{array} \xrightarrow{N} \\ S \\ \end{array} \xrightarrow{N} \\ \end{array} \xrightarrow{N} \\ $	80			
5		$ \begin{array}{c} H \\ N \\ S \end{array} \\ \end{array} \\ \begin{array}{c} 8e \\ S \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} N \\ S \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \\ \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \end{array} \\ \begin{array}{c} N \\ S \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\	86			
6	F H NH2 S	$ \begin{array}{c} F \\ H \\ S \\ S$	82			
7	Br NH ₂ S	Br H S S S S S S S S S S S S S S S S S S	90			
8	CI N NH2 S	$ \begin{array}{c} CI \\ \\ N \\ S \end{array} \\ \\ \\ S \end{array} \\ \begin{array}{c} 8h \\ N \\ S \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	84			
9	F ₃ C S	$F_{3}C \xrightarrow{H}_{N \to N} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{N}_{S} \xrightarrow{V}_{S} \xrightarrow{V} \xrightarrow{V}_{S} \xrightarrow{V} \xrightarrow{V}_{S} \xrightarrow{V} \xrightarrow{V}_{S} $	92			
10	CI Br Br	Br N N N N H Br	88			
11	F ₃ C F ₃ C F ₃ C F ₃	$F_{3}C$ S $F_{3}C$ N H N N N H CF_{3}	90			
12	F S NH ₂	F S S S S S S S S S S S S S S S S S S S	86			

Table 5	
indensation reaction of 4c with various substituted thiourea	5 a

^aReaction condition: bis- α -bromo ketone, **4c** (1 mmol), substituted thiourea, **5** (2 mmol), 18-crown-6 (10 mol%) microwave irradiation (120 W) at100°C for 3 min. ^bIsolated yield. cases, very good yields were obtained in less than 3 min under solvent-free microwave irradiation condition as summarized in Tables 3, 4, and 5. All the compounds were characterized using NMR, mass, and elemental analyses.

CONCLUSION

In conclusion, we have presented 18-crown-6 catalyzed, microwave-mediated solvent-free reaction condition for the efficient synthesis of three classes of bis-heterocyclic compounds viz. *N*-alkyl-4-(4-(5-(2-(alkyl-amino)thiazol-4-yl)pyridin-3-yl)phenyl)thiazol-2-amine, *N*-alkyl-4-(5-(2-alkyamino)thiazol-4-yl)pyridine-3-yl)thiazol-2-amine, and 4,4'-bis-{2-[amino]-4-thiazolyl}biphenyl derivatives. In addition, a three-step protocol for the preparation of symmetric bis(α -bromo ketones) bridged by a pyridine or pyridin-3-yl-phenyl system, is also presented. The biological and photophysical properties of these compounds are being explored.

EXPERIMENTAL

All the reagents were purchased from Sigma-Aldrich and used without further purification. The ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker Spectrospin Avance DPX400 spectrometer. Mass spectra were obtained using Agilent mass spectrometry 1200 series. Microwave irradiation was performed in a Biotage microwave oven operating at 20 kHz with the output power set at 120 W. The China Health and Nutrition Survey analysis was done on a Vario Micro elemental analyser.

General procedure for the synthesis of 2-Aminothiazole derivatives. A mixture of bis- α -bromo ketone (4a or 4b or 4c, 1.0 mmol), *N*-substituted thiourea 5 (2.0 mmol), and 18-crown-6 (catalyst, 10 mol%) was taken in 8 mL vials and irradiated in a Biotage Microwave Oven at 100°C for 2–3 min. The reaction progress was monitored by TLC. Upon completion of the reaction, the reaction mixture was cooled to ambient temperature and quenched with water, and the solid obtained was filtered off, dried under reduced pressure, and then crystallized in methanol or methanol-DMSO mixture to obtain pure bis-2-aminothiazole derivatives (6a–h, 7a–e, 8a–l). All the compounds were characterized using ¹H-NMR, ¹³C-NMR, LC–MS, and elemental analysis techniques, and the analytical data are given below.

N-(2-*F*luorophenyl)-4-(5-(2-(2-fluorophenylamino)thiazol-4-yl)pyridin-3-yl)thiazol-2-amine (6a). Yellow solid; yield: 82%; ¹H-NMR (DMSO-d₆): δ = 7.43–7.47 (t, 2H, 2-fluoro-phenyl), 7.57–7.59 (m, 2H, 2-fluoro-phenyl), 7.94 (s, 2H, thiazole), 7.97–7.99 (m, 2H, phenyl), 8.49 (s, 2H, pyridyl), 9.20–9.21 (bs, 3H, pyridyl, phenyl), 10.74 (s, 2H, NH-proton). ¹³C-NMR (DMSO-d₆): δ = 109.15, 118.17, 121.65, 122.86, 129.78, 132.03, 133.00, 134.96, 139.64, 141.43, 144.96, 164.28, 167.79. LC–MS (ESI) *m*/*z*: 464.0 (M+1) for C₂₃H₁₅F₂N₅S₂ requires 463.53. Elemental analysis, calculated for C₂₃H₁₅F₂N₅S₂: C, 59.60; H, 3.26; F, 8.20; N, 15.11; S, 13.84%. Found: C, 59.84; H, 3.33; N, 15.30; S, 13.94%.

N-(3-Fluorophenyl)-4-(5-(2-(3-fluorophenylamino)thiazol-4-yl)pyridin-3-yl)thiazol-2-amine (6b). Yellowish brown solid; yield: 84%; ¹H-NMR (DMSO-d₆): δ =6.78–6.82 (m, 2H,

phenyl), 7.32–7.38 (m, 2H, phenyl), 7.43–7.45 (d, 2H, J=8.4 Hz, phenyl), 7.77–7.80 (d, 2H, 3.6 Hz, phenyl), 7.98 (s, 2H, thiazole), 9.21 (m, 3H, pyridyl), 10.75 (s, 2H, NH-proton). ¹³C-NMR (DMSO-d₆): δ =104.17, 104.44, 108.25, 108.46, 109.50, 113.46, 131.01, 131.11, 133.00, 135.38, 139.94, 142.81, 142.93, 145.15, 161.85, 164.14, 164.25. LC–MS (ESI) *m*/*z*: 464.0 (M + 1) for C₂₃H₁₅F₂N₅S₂ requires 463.53. Elemental analysis, calculated for C₂₃H₁₅F₂N₅S₂: C, 59.60; H, 3.26; F, 8.20; N, 15.11; S, 13.84%. Found: C, 59.86; H, 3.31; N, 15.28; S, 13.94%.

N-(3-Bromo-5-fluorophenyl)-4-(5-(2-(3-bromo-5-fluorophenylamino)thiazol-4-yl)pyridin-3-yl)thiazol-2-amine (6c). Yellowish brown solid; yield: 88%; ¹H-NMR (DMSO-d₆): δ = 7.14–7.17 (m, 2H, 3-bromo-phenyl), 7.26–7.30 (t, 2H, *J* = 8.0 Hz 3bromo-phenyl), 7.70–7.73 (m, 2H, 3-bromo-phenyl), 7.98 (s, 2H, thiazole), 8.06–8.07 (s, 2H, pyridyl), 9.18–9.21 (m, 3H, pyridyl, phenyl), 10.73 (s, 2H, NH-proton). ¹³C-NMR (DMSOd₆): δ = 109.72, 116.39, 119.84, 122.39, 124.53, 131.45, 133.12, 135.69, 139.40, 142.69, 144.92, 164.04. LC–MS (ESI) *m/z*: 583.9 (M-1) for C₂₃H₁₅Br₂N₅S₂ requires 585.34. Elemental analysis, calculated for C₂₃H₁₅Br₂N₅S₂: C, 47.19; H, 2.58; Br, 27.30; N, 11.96; S, 10.96%. Found: C, 47.28; H, 2.65; N, 12.00; S, 11.07%.

N-(*3*-*Chlorophenyl*)-*4*-(*5*-(*2*-(*3*-*chlorophenylamino*)*thiazol*-*4*-*yl*)*pyridin*-*3*-*yl*)*thiazol*-2-*amine* (*6d*). Yellow solid; yield: 80%; ¹H-NMR (DMSO-d₆): δ =7.31–7.35 (m, 2H, 3-*Chlorophenyl*), 7.70–7.73 (m, 2H, 3-*chlorophenyl*), 7.89 (s, 2H, thiazole), 7.99–8.04 (m, 3H, 3-*Chlorophenyl*), 7.89 (s, 2H, thiazole), 7.99–8.04 (m, 3H, 3-*Chlorophenyl*), 9.29 (s, 2H, pyridyl), 8.79–8.84 (m, 2H, 3-*Chlorophenyl*), 9.29 (s, 2H, pyridyl), 10.69 (s, 2H, NH-proton). ¹³C-NMR (DMSO-d₆): δ =108.84, 116.59, 119.84, 122.39, 124.53, 131.45, 133.12, 135.69, 139.41, 142.69, 144.93, 164.04. LC–MS (ESI) *m/z*: 498.0 (M+2) for C₂₃H₁₅Cl₂N₅S₂ requires 496.43. Elemental analysis, calculated for C₂₃H₁₅Cl₂N₅S₂: C, 55.65; H, 3.05; Cl, 14.28; N, 14.11; S, 12.92%. Found: C, 55.73; H, 3.12; N, 14.20; S, 13.00%.

N-(3-(Trifluoromethyl)phenyl)-4-(5-(2-(3-(trifluoromethyl) phenylamino)thiazol-4-yl)pyridin-3-yl)thiazol-2-amine (6e). Yellow solid; yield: 91%; ¹H-NMR (DMSO-d₆): δ = 7.30–7.32 (d, 2H, J = 7.6 Hz, 3-CF₃- phenyl), 7.55–7.59 (t, 2H, J = 8.0 Hz, phenyl), 7.77 (s, 2H, 3-CF₃-phenyl), 7.89-7.91 (d, 2H, J = 9.6 Hz, phenyl), 8.36 (s, 2H, thiazole), 8.88 (s, 1H, pyridyl), 9.122-9.12 (d, 2H, J=2.0Hz, pyridyl), 10.81 (s, 2H, NHproton). ¹³C-NMR (DMSO-d₆): $\delta = 104.44$, 108.25, 108.46, 109.36, 109.62, 113.46, 118.13, 121.03, 123.31, 126.02, 130.37, 130.67, 131.09, 132.78, 133.08, 139.70, 140.27, 141.84, 142.80, 145.07, 145.25, 164.02, 164.14. LC-MS (ESI) m/z: 564.0 (M+1) for C₂₃H₁₅F₆N₅S₂ requires 563.54. Elemental analysis, calculated for C₂₃H₁₅F₆N₅S₂: C, 53.28; H, 2.68; F, 20.23; N, 12.43; S, 11.38%. Found: C, 53.35; H, 2.73; N, 12.42; S, 11.45%.

N-(3,5-*Bis*(*trifluoromethyl*)*phenyl*)-4-(5-(2-(3,5-*bis*(*trifluoromethyl*)*phenylamino*)*thiazol*-4-*yl*)*pyridin*-3-*yl*)*thiazol*-2-*amine* (*6f*). Yellow solid; yield: 90%; ¹H-NMR (DMSO-d₆): δ = 7.57 (s, 2H), 7.85 (s, 2H), 8.43 (s, 4H), 8.94 (s, 1H), 9.11–9.12 (m, 2H, pyridyl), 11.18 (s, 2H, NH-proton). ¹³C-NMR (DMSO-d₆): δ = 104.44, 113.46, 118.14, 121.04, 123.31, 126.02, 130.37, 130.67, 131.09, 132.78, 133.08, 139.70, 140.27, 141.84, 142.81, 145.07, 145.25, 164.02, 164.14. LC−MS (ESI) *m/z*: 700.0 (M + 1) for C₂₇H₁₃F₁₂N₅S₂ requires 699.54. Elemental analysis, calculated for C₂₇H₁₃F₁₂N₅S₂: C, 46.36; H, 1.87; F, 32.59; N, 10.01; S, 9.17%. Found: C, 46.35; H, 1.94; N, 10.08; S, 9.20%.

N-(*Methylbenzoate*)-4-(5-(2-((*methylbenzoate*)*amino*)*thiazol*-4-*yl*)*pyridin-3-yl*)*thiazol-2-amine* (6g). Brown solid; yield: 92%; ¹H-NMR (DMSO-d₆): $\delta = 3.82$ (s, 6H, methyl ester), 7.42–7.46 (t, 2H, phenyl), 7.54–7.56 (d, 2H, J = 8.0 Hz, phenyl), 7.91–7.94 (m, 2H, phenyl), 7.98 (s, 2H, thiazole), 8.61-8.62 (d, 2H, J = 1.6 Hz, pyridyl), 9.18–9.22 (m, 3H, pyridyl, phenyl), 10.77 (s, 2H, NH-proton). ¹³C-NMR (DMSO-d₆): $\delta = 52.62$, 109.20, 117.95, 121.87, 122.49, 129.87, 130.82, 132.95, 135.07, 139.78, 141.54, 145.07, 164.06, 166.66. LC–MS (ESI) *m*/*z*: 544.0 (M+1) for C₂₇H₂₁N₅O₄S₂ requires 543.62. Elemental analysis, calculated for C₂₇H₂₁N₅O₄S₂: C, 59.65; H, 3.89; N, 12.88; O, 11.77; S, 11.80%. Found: C, 59.71; H, 3.90; N, 12.89; S, 11.87%.

N-(4-(5-(2-(*Pyridin-4-ylamino*)*thiazol-4-yl*)*pyridin-3-yl*)*thiazol-2-yl*)*pyridin-4-amine* (*6h*). Yellowish brown solid; yield: 83%; ¹H-NMR (DMSO-d₆): δ = 7.43–7.47 (t, 2H, *J* = 8.0 Hz, phenyl), 7.57–7.60 (m, 2H, phenyl), 7.94 (s, 2H, thiazole), 7.97–8.00 (m, 2H, phenyl), 8.49–8.50 (bs, 2H, phenyl), 9.20–9.21 (3H, pyridyl, phenyl), 10.75 (s, 2H, NH-proton). ¹³C-NMR (DMSO-d₆) δ : 109.15, 118.17, 121.65, 122.87, 129.78, 132.03, 133.00, 134.97, 139.64, 141.44, 144.96, 164.27, 167.79. LC–MS (ESI) *m*/*z*: 430.0 (M+1) for C₂₁H₁₅N₇S₂: cquires 429.52. Elemental analysis, calculated for C₂₁H₁₅N₇S₂: C, 58.72; H, 3.52; N, 22.83; S, 14.93%. Found: C, 58.71; H, 3.57; N, 22.89; S, 15.00%.

N-(2-Fluorophenyl)-4-(5-(4-(2-(2-fluorophenylamino)thiazol-4-yl)phenyl)pyridin-3-yl)thiazol-2-amine (7a). Yellowish brown solid; yield: 86%; ¹H-NMR (DMSO-d₆): δ = 6.94–6.98 (m, 2H, phenyl), 7.44–7.50 (m, 4H, phenyl), 7.66 (s, 1H, thiazole), 8.04–8.06 (m, 2H, phenyl), 8.12–8.13 (m, 3H, phenyl, thiazole), 8.16–8.26 (m, 2H, phenyl), 9.17–9.25 (m, 3H, pyridyl), 10.73 (s, 1H, NH-proton), 10.90 (s, 1H, NHproton).¹³C-NMR (DMSO-d₆) δ : 105.79, 117.82, 117.94, 126.85, 128.34, 129.86, 129.96, 130.85, 133.52, 136.15, 141.56, 141.91, 149.56, 163.32, 164.23, 166.66. LC–MS (ESI) *m/z*: 540.0 (M+1) for C₂₉H₁₉F₂N₅S₂ requires 539.62. Elemental analysis, calculated for C₂₉H₁₉F₂N₅S₂: C, 64.55; H, 3.55; F, 7.04; N, 12.98; S, 11.88%. Found: C, 64.66; H, 3.59; N, 13.02; S, 12.00%.

N-(*Acetyl*)-4-(5-(4-(2-(*acetylamino*)*thiazol*-4-*yl*)*phenyl*)*pyridin*-3-*yl*)*thiazol*-2-*amine* (7*b*). Yellowish brown solid; yield: 82%; ¹H-NMR (DMSO-d₆): δ =2.19–2.21 (bs, 6H, acetyl), 7.82 (s, 1H, thiazole), 7.99–8.14 (m, 4H, phenyl), 8.31 (s, 1H, thiazole), 9.18–9.25 (m, 3H, pyridyl), 12.28 (s, 1H, NHproton), 12.43 (s, 1H, NH-proton). ¹³C-NMR (DMSO-d₆): δ =24.08, 113.42, 116.36, 116.59, 119.67, 120.15, 120.23, 121.90, 121.96, 122.23, 126.70, 127.00, 130.58, 132.09, 132.34, 133.23, 141.44, 144.38, 148.41, 156.98, 159.39, 162.48, 162.52. LC–MS (ESI) *m/z*: 436.2 (M+1) for C₂₁H₁₇N₅O₂S₂: cquires 435.52. Elemental analysis, calculated for C₂₁H₁₇N₅O₂S₂: C, 57.91; H, 3.93; N, 16.08; O, 7.35; S, 14.72%. Found: C, 58.00; H, 4.00; N, 16.10; S, 14.80%.

N-(4-(5-(4-(2-(*Pyridin-4-ylamino*)thiazol-4-yl)phenyl)pyridin-3-yl)thiazol-2-yl)pyridin-4-amine (7c). Yellow solid; yield: 84%; ¹H-NMR (DMSO-d₆): δ = 7.48–7.52 (m, 2H, phenyl), 7.56–7.61 (m, 3H, phenyl, thiazole), 7.96–8.11 (m, 5H, phenyl, thiazole), 8.18–8.20 (m, 2H, phenyl), 8.41–8.50 (m, 2H, phenyl), 9.23–9.26 (m, 3H, pyridyl), 10.57 (s, 1H, NH-proton), 10.76 (s, 1H, NH-proton). ¹³C-NMR (DMSO-d₆): δ = 110.42, 113.36, 113.59, 116.67, 117.15, 117.23, 130.58, 132.09, 132.34, 133.23, 141.44, 144.38, 148.41, 156.88, 159.39, 162.48, 162.58. LC–MS (ESI) *m/z*: 506.5 (M+1) for C₂₇H₁₉N₇S₂: C, 64.14; H, 3.79; N, 19.39; S, 12.68%. Found: C, 64.07; H, 3.81; N, 19.40; S, 12.77%.

N-(3,5-*Bis*(*trifluoromethyl*)*phenyl*)-4-(5-(4-(2-(3,5-*bis*(*trifluoromethyl*)*phenylamino*)*thiazol*-4-*yl*)*phenyl*) *pyridin*-3-*yl*)*thiazol*-2*amine* (7*d*). Yellowish brown solid; yield: 90%; ¹H-NMR (DMSO-d₆): δ =7.64–7.65 (m, 2H, phenyl), 7.74 (s, 1H, thiazole), 7.98–8.03 (m, 3H, phenyl, thiazole), 8.10–8.12 (m, 2H, phenyl), 8.50 (m, 4H, phenyl), 8.87 (s, 1H, pyridyl), 9.10–9.11 (m, 1H, pyridyl), 9.20 (s, 1H, pyridyl), 11.13 (s, 1H, NH-proton), 11.24 (s, 1H, NH-proton).¹³C-NMR (DMSO-d₆): δ =102.20, 109.21, 117.91, 121.88, 122.46, 129.87, 130.88, 132.95, 135.07, 139.78, 141.55, 145.07, 164.16, 166.66. LC– MS (ESI) *m/z*: 776.0 (M+1) for C₃₃H₁₇F₁₂N₅S₂ requires 775.63. Elemental analysis, calculated for C₃₃H₁₇F₁₂N₅S₂: C, 51.10; H, 2.21; F, 29.39; N, 9.03; S, 8.27%. Found: C, 51.24; H, 2.27; N, 9.10; S, 8.35%.

N-(3(*Methybenzoate*))-4-(4-(5-(2-(*phenylamino*)*thiazol*-4-*yl*) *pyridin*-3-*yl*)*methybenzoate*) *thiazol*-2-*amine* (7*e*). White solid; yield: 91%; ¹H-NMR (DMSO-d₆): δ = 3.85 (s, 3H, methyl ester), 3.91 (s, 3H, methyl ester), 7.50–7.63 (m, 5H, phenyl, thiazole), 7.86–7.93 (m, 2H, phenyl), 8.05–8.10 (m, 3H, phenyl, thiazole), 8.19–8.21 (m, 2H, phenyl), 8.70–8.75 (m, 2H, phenyl), 9.12 (s, 1H, pyridyl), 9.19 (s, 1H, pyridyl), 9.25 (s, 1H, pyridyl), 10.61 (s, 1H, NH-proton), 10.77 (s, 1H, NH-proton). ¹³C-NMR (DMSO-d₆): δ = 52.73, 105.79, 117.82, 121.68, 122.03, 122.24, 122.62, 128.34, 129.86, 129.96, 130.85, 133.52, 136.15, 141.91, 149.52, 163.32, 164.13, 166.76. LC–MS (ESI) *m*/*z*: 620.0 (M+1) for C₃₃H₂₅N₅O₄S₂ requires 619.71. Elemental analysis, calculated for C₃₃H₂₅N₅O₄S₂: C, 63.96; H, 4.07; N, 11.30; O, 10.33; S, 10.35%. Found: C, 64.07; H, 4.07; N, 11.37; S, 10.37%.

4,4'-Bis-{2-[amino]-4-thiazolyl}biphenyl (8a). White solid; yield: 86 %; ¹H-NMR (DMSO-d₆) δ : 5.56 (s, 2H, -NH₂ proton, exchanged with water), 7.09 (s, 1H, thiazole), 7.96–7.98 (d, 2H, J=8.4 Hz, biphenyl), 8.12–8.14 (d, 2H, J=8.4 Hz, biphenyl); ¹³C-NMR (DMSO-d₆) δ : 103.57, 126.85, 126.95, 127.62, 127.77, 127.96, 128.08, 128.26, 128.69, 128.84, 129.05, 129.90, 134.60, 139.24, 140.02, 140.50, 167.84, 170.77; LC–MS (ESI) *m/z*: 351.0 (M+1) for C₁₈H₁₄N₄S₂: C, 61.69; H, 4.03; N, 15.99; S, 18.30%. Found: C, 61.73; H, 3.97; N, 16.05; S, 18.25%.

4,4'-Bis-{2-[Methyl-amino]-4-thiazolyl}biphenyl (8b). White solid; yield: 80%; ¹H-NMR (DMSO-d₆) δ : 3.02 (s, 6H, methyl), 7.28 (s, 2H, thiazole), 7.84–7.86 (dd, 4H, J = 8.8 Hz, biphenyl), 7.89–7.91 (dd, 4H, J = 8.4 Hz, biphenyl), 8.82 (s, 2H, –NH); ¹³C-NMR (DMSO-d₆) δ : 27.37, 101.36, 121.02, 125.30, 126.17, 128.03, 129.12, 142.74, 153.77, 165.39; LC–MS (ESI) *m*/*z*: 379.4 (M+1) for C₂₀H₁₈N₄S₂ requires 378.51. Elemental analysis, calculated for C₂₀H₁₈N₄S₂: C, 63.46; H, 4.79; N, 14.80; S, 16.94%. Found: C, 63.51; H, 4.74; N, 14.85; S, 16.89%.

4,4'-Bis-{2-[propyl-amino]-4-thiazolyl}biphenyl (8c). White solid; yield: 82%; ¹H-NMR (DMSO-d₆) δ : 0.93 (t, 3H, J=7.6 Hz, *n*-propyl), 1.62 (m, 2H, *n*-propyl), 3.22 (q, 2H, J=6.8 Hz, *n*-propyl), 7.11 (s, 1H, thiazole), 7.68–7.71 (t, 1H, J=8.0 Hz, -NH), 7.71–7.73 (dd, 2H, J=8.4 Hz, biphenyl), 7.91–7.93 (dd, 2H, J=8.4 Hz, biphenyl); ¹³C-NMR (DMSO-d₆) δ : 11.59, 25.37, 51.03, 101.36, 121.02, 125.30, 126.17, 128.03, 129.12, 142.74, 153.77, 165.39; LC–MS (ESI) *m/z*: 435.2 (M+1) for C₂₄H₂₆N₄S₂: C, 66.32; H, 6.03; N, 12.89; S, 14.76%. Found: C, 66.37; H, 5.97; N, 12.84; S, 14.81%.

4,4'-Bis-{2-[isopropyl-amino]-4-thiazoly]}biphenyl (8d). White solid; yield: 80%; ¹H-NMR (DMSO-d₆) δ : 1.24–1.25 (d, 12H, J=6.4 Hz, isopropyl) 3.9 (m, 2H, isopropyl), 7.17 (s, 2H, thiazole), 7.78–7.80 (d, 4H, J=8.4 Hz, biphenyl), 7.88–7.90 (d, 4H, J=8.4 Hz, biphenyl); ¹³C-NMR (DMSO-d₆) δ : 24.59, 50.99, 101.01, 120.48, 124.89, 134.87, 142.10, 153.98, 166.41; LC–MS (ESI) *m/z*: 435.2 (M+1) for C₂₄H₂₆N₄S₂ requires 434.62. Elemental analysis, calculated for C₂₄H₂₆N₄S₂: C, 66.32; H, 6.03; N, 12.89; S, 14.76%. Found: C, 66.36; H, 5.97; N, 12.85; S, 14.82%.

4,4'-Bis-{2-[phenyl-amino]-4-thiazolyl}biphenyl (8e). White solid; yield: 86%; ¹H-NMR (DMSO-d₆) δ : 6.97–7.01 (m, 2H, phenyl), 7.36–7.38 (m, 4H, phenyl), 7.40–7.43 (s, 2H, thiazole), 7.76–7.78 (d, 4H, J=8.4 Hz, phenyl), 7.82–7.84 (dd, 4H, J=8.4 Hz, biphenyl), 8.03–8.05 (dd, 4H, J=8.4 Hz, biphenyl), 10.32 (s, 2H, –NH); ¹³C-NMR (DMSO-d₆) δ : 103.67, 117.37, 117.70, 121.74, 122.32, 126.74, 126.88, 127.06, 127.16, 127.32, 127.92, 128.94, 129.50, 129.58, 139.08, 141.05, 141.68, 150.13, 162.40, 163.66; LC–MS (ESI) m/z: 503.0 (M + 1) for C₃₀H₂₂N₄S₂: C, 71.68; H, 4.41; N, 11.15; S, 12.76%. Found: C, 71.73; H, 4.36; N, 11.11; S, 12.80%.

4,4'-Bis-{2-[2-fluorophenylamino]-4-thiazolyl}biphenyl (8f). White solid; yield: 82%; ¹H-NMR (DMSO-d₆) δ : 6.44–6.49 (m, 2H, fluorophenyl), 7.01–7.31 (m, 4H, fluorophenyl), 7.47 (s, 2H, thiazole), 7.81–7.83 (d, 4H, J=8.4 Hz, biphenyl), 8.01–8.04 (d, 4H, J=8.4 Hz, biphenyl), 8.01–8.04 (d, 4H, J=8.4 Hz, biphenyl), 8.03–8.67 (t, 2H, J=8.4 Hz, fluorophenyl), 10.13 (s, 2H, –NH); ¹³C-NMR (DMSO-d₆) δ : 104.90, 105.04, 115.51, 115.69, 120.35, 122.69, 125.20, 122.70, 126.88, 127.15, 127.32, 128.90, 129.47, 129.58, 132.97, 134.01, 139.07, 139.76, 149.78, 150.98, 153.41, 162.48, 163.79; LC–MS (ESI) *m/z*: 539.0 (M+1) for C₃₀H₂₀F₂N₄S₂: requires 538.63. Elemental analysis, calculated for C₃₀H₂₀F₂N₄S₂: C, 66.90; H, 3.74; F, 7.05; N, 10.40; S, 11.91%. Found: C, 66.97; H, 3.70; N, 10.39; S, 11.95%.

4,4'-Bis-f2-f3-bromo-phenyl-amino]-4-thiazolyl}biphenyl (8g). White solid; yield: 90%; ¹H-NMR (DMSO-d₆) δ : 7.15–7.17 (m, 2H, phenyl), 7.31–7.35 (m, 2H, phenyl), 7.51 (s, 2H, thiazole), 7.66–7.68 (m, 2H, phenyl), 7.84–7.87 (dd, 4H, J = 8.4 Hz, biphenyl), 8.02–8.04 (dd, 4H, J = 8.4 Hz, biphenyl), 8.14–8.15 (m, 2H, phenyl), 10.53 (s, 2H, –NH); ¹³C-NMR (DMSO-d₆) δ : 104.44, 104.58, 116.11, 116.41, 119.59, 119.88, 122.37, 124.08, 124.66, 126.67, 126.89, 127.07, 127.19, 127.36, 128.87, 131.38, 132.92, 133.97, 134.18, 138.89, 139.10, 139.74, 142.48, 143.12, 147.19, 150.15, 161.85, 163.08; LC–MS (ESI) *m/z*: 661.0 (M+1) for C₃₀H₂₀Br₂N₄S₂: c, 54.56; H, 3.05; Br, 24.20; N, 8.48; S, 9.71%. Found: C, 54.61; H, 3.00; N, 8.45; S, 9.74%.

4.4'-Bis-{2-{3-chloro-phenyl-amino}-4-thiazolyl}biphenyl (8h). White solid; yield: 84%; ¹H-NMR (DMSO-d₆) δ : 7.02–7.04 (m, 2H, phenyl), 7.37–7.41 (m, 2H, phenyl), 7.51 (s, 2H, thiazole), 7.61–7.63 (m, 2H, phenyl), 7.84–7.86 (dd, 4H, J=8.4 Hz, biphenyl), 8.01–8.02 (dd, 4H, J=8.4 Hz, biphenyl), 10.55 (s, 2H, -NH); ¹³C-NMR (DMSO-d₆) δ : 104.46, 115.77, 116.71, 121.19, 126.67, 127.19, 131.07, 133.84, 133.95, 139.08, 142.99, 150.10, 163.13; LC–MS (ESI) *m/z*: 572.0 (M+1) for C₃₀H₂₀Cl₂N₄S₂ requires 571.54. Elemental analysis, calculated for C₃₀H₂₀Cl₂N₄S₂: C, 63.04; H, 3.53; Cl, 12.41; N, 9.80; S, 11.22%. Found: C, 63.10; H, 3.48; N, 9.76; S, 11.26%.

4,4'-Bis-{2-[3-(trifluoromethyl)-phenyl-amino]-4-thiazolyl} biphenyl (8i). White solid; yield: 92%; ¹H-NMR (DMSO-d₆) δ : 7.31–7.33 (d, 2H, J=8Hz, phenyl), 7.54 (s, 2H, thiazole), 7.59–7.62 (t, 2H, J=8.0Hz, phenyl), 7.85–7.90 (m, 6H, biphenyl and phenyl), 8.03–8.05 (dd, 4H, J=8.4Hz, biphenyl), 8.41(s, 2H, phenyl) 10.71 (s, 2H, -NH); ¹³C-NMR (DMSO-d₆) δ : 105.13, 105.49, 108.30, 109.63, 113.54, 127.42, 131.02, 131.12, 133.24, 140.56, 140.95, 141.84, 142.79, 142.90, 144.73, 161.83, 164.25; LC–MS (ESI) *m/z*: 638.9 (M+1) for C₃₂H₂₀F₆N₄S₂ requires 638.65. Elemental analysis, calculated for C₃₂H₂₀F₆N₄S₂: C, 60.18; H, 3.16; F, 17.85; N, 8.77; S, 10.04%. Found: C, 60.25; H, 3.14; N, 8.74; S, 10.09%.

4,4'-Bis-{2-[5-bromo-3-fluoro-phenyl-amino]-4-thiazolyl} biphenyl (8j). White solid; yield: 88%; ¹H-NMR (DMSOd₆) δ : 7.47–7.51 (4H, phenyl, thiazole), 7.58–7.62 (m, 2H, phenyl), 7.80–7.82 (dd, 4H, J=2.4Hz, phenyl), 8.02–8.04 (dd, 4H, J=8.4Hz, biphenyl), 8.66–8.70 (m, 2H, phenyl), 10.26–10.27 (s, 2H, -NH); ¹³C-NMR (DMSO-d₆) δ : 92.96, 112.85, 112.94, 118.74, 118.96, 121.40, 126.86, 127.03, 127.30, 128.13, 128.43, 133.10, 139.55, 146.85, 150.64, 153.11, 161.97; LC–MS (ESI) *m/z*: 730.2 (M+1) for C₃₀H₁₈Br₂Cl₂N₄S₂ requires 729.33. Elemental analysis, calculated for C₃₀H₁₈Br₂Cl₂N₄S₂: C, 49.40; H, 2.49; Br, 21.91; Cl, 9.72; N, 7.68; S, 8.79%. Found: C, 49.51; H, 2.46; N, 7.66; S, 8.84%.

4,4'-Bis-{2-[3,5-Bis(trifluoromethyl)phenyl-amino]-4-thiazolyl} biphenyl (8k). White solid; yield: 90%; ¹H-NMR (DMSO-d₆) δ : 7.63–7.64 (m, 4H, phenyl, thiazole), 7.88–8.15 (m, 8H, biphenyl), 8.49 (s, 4H, phenyl), 11.08 (s, 2H, –NH); ¹³C-NMR (DMSO-d₆) δ : 104.16, 104.43, 108.28, 108.49, 109.65, 113.52, 127.41, 131.02, 131.12, 133.23, 140.55, 140.95, 141.83, 142.79, 142.90, 144.71, 161.82, 164.15; LC–MS (ESI) *m/z*: 775.0 (M+1) for C₃₄H₁₈F₁₂N₄S₂ requires 774.64. Elemental analysis, calculated for C₃₄H₁₈F₁₂N₄S₂: C, 52.72; H, 2.34; F, 29.43; N, 7.23; S, 8.28%. Found: C, 52.79; H, 2.30; N, 7.21; S, 8.26%.

4,4'-Bis-{2-[4-Fluoro-benzylamino]-4-thiazolyl}biphenyl (81). White solid; yield: 86%; ¹H-NMR (DMSO-d₆) δ : 4.57 (s, 4H, benzylic), 7.19–7.23 (m, 6H, fluorophenyl, thiazole), 7.46–7.50 (m, 4H, fluoro phenyl), 7.77–7.80 (dd, 4H, J=8.4 Hz, biphenyl), 7.89–7.91 (dd, 4H, J=8.4 Hz, biphenyl), 8.72–8.85 (bs, 2H, –NH); ¹³C-NMR (DMSO-d₆) δ : 48.25, 103.05, 115.48, 115.64, 115.85, 126.80, 127.11, 127.24, 127.78, 128.93, 130.04, 130.12, 130.24, 130.32, 131.40, 134.07, 135.36, 139.56, 146.70, 160.82, 163.23, 166.90, 169.34; LC–MS (ESI) *m*/*z*: 567.0 (M + 1) for C₃₂H₂₄F₂N₄S₂: c, 67.82; H, 4.27; F, 6.71; N, 9.89; S, 11.32%. Found: C, 67.88; H, 4.25; N, 9.91; S, 11.36%.

Acknowledgment. The authors wish to express their gratitude to the Sophisticated Analytical Instruments Facility (SAIF), Indian Institute of Science, Bangalore, for supporting in NMR and LC–MS analyses.

REFERENCES AND NOTES

[1] Gorczynski, J. M.; Leal, M. R.; Mooberry, L. S.; Bushweller, H. J.; Brown, L. M. J Bioorg Med Chem 2004, 12, 1029.

[2] Tsuji, K.; Ishikawa, H. Bioorg Med Chem Lett 1994, 4, 1601.

[3] More, P. G.; Bhalvankar, R. B. J Indian Chem Soc 2006, 83, 113.

[4] Bekhit, A. A.; Fahmy, H. T. Y.; Rostom, S. A.; Bekhit, A. E. D. Eur J Med Chem 2010, 45, 6027.

[5] Komar, Y.; Green, R.; Wise, D.; Worting, L. L. J Med Chem 1988, 23, 501.

[6] Sivakumar, A.; Martinez, R.; Canney, J. D.; Eidem, T.; Dunman, M. P.; Abou-Gharbia, M. Bioorg Med Chem Lett 2012, 22, 7719.

[7] Badorc, A.; Borders, M.-F.; de Cointet, P.; Savi, P.; Bernat, A.; Lale, A.; Petitou, M.; Maffrand, J.-P.; Herbert, J.-M. J Med Chem 1997, 40, 3393.

[8] Venkatachalam, T. K.; Sudbeck, E. A.; Mao, C.; Uckum, F. M. Bioorg Med Chem Lett 2001, 11, 523.

[9] Jaen, J. C.; Wise, L. D.; Caprathe, B. W.; Tecle, H.; Bergmeier, S.; Humblet, C. C.; Heffiner, T. G.; Meltzner, L. T.; Pugsley, T. A. J Med Chem 1990, 33, 311.

[10] Mathivanan, P.; Coate, H.; Mahesh, D.; Jimenez, N. H.; Reinhard, J. E.; Jubian, J. V.; Marzabadi, R. M.; Chandrasena, G.; Wolinski, C. T.; Walker, W. M.; Andersen, K. Bioorg Med Chem Lett 2011, 21, 6500.

[11] Parker, E.; Van Heek, M.; Stamford, A. Eur J Pharmacol 2002, 440, 173.

[12] De Souza, M. V. N. J Sulfur Chem 2005, 26, 429.

[13] Fink, B. A.; Mortensen, D. S.; Stauffer, S. R.; Aron, Z. D.; Katzenellenbogen, J. A. Chem Biol 1999, 6, 205.

[14] Van Muijlwijk-Koezen, J. E.; Timmerman, H.; Vollinga, R. C.; Von DrabbeKunzel, J. F.; De Groote, S.; Ijzerman, A. P. J Med Chem 2001, 44, 749.

[15] Metzger, J. V. Comprehensive Heterocyclic Chemistry I; Pergamon: New York, 1984; Vol 6, pp 328.

[16] Golankiewicz, B.; Januszczyk, P.; Gdaniec, M.; Kosturkiewicz, Z. Tetrahedron 1985, 41, 5989.

[17] Corrao, S. L.; Macielag, M. J.; Turchi, I. J Org Chem 1990, 55, 4484

- [18] Burger, K.; Hoess, E.; Geith, K. Synthesis 1990, 4, 357.
- [19] Thompson, M. J.; Heal, W.; Chen, B. Tetrahedron Lett 2006, 47, 2361.
- [20] Li, Y.; Giulianotti, M.; Houghten, A. R. Tetrahedron Lett 2010, 51, 5637.

[21] Hameed, S.; Akhtar, T. Current Org Chem 2011, 15, 694.

[22] Hantzsch, A.; Weber, J. H. Ber Dtsch Chem Ges 1887, 20, 3118.

[23] Ochiai, E.; Kashida, Y. J Pharm Soc Jpn 1942, 62, 97.

- [24] Ochiai, E.; Haginiwa, J. J Pharm Soc Jpn 1947, 67, 138.
- [25] Lagoja, I.; Pannecouque, C.; Griffioen, G.; Wera, S.; Rojasdelaparra, M. V.; Van Aerschot, A. Eur J Med Chem 2011, 43, 386.

[26] Aoyama, T.; Murata, S.; Arai, I.; Araki, N.; Takido, T.; Suzuki, Y.; Kodomari, M. Tetrahedron 2006, 62, 3201.

[27] Meshram, H. M.; Thakur, B. P.; MadhuBabu, B.; Bangade, M. V. Tetrahedron Lett 2012, 53, 5265.

[28] Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9925.

[29] Mitchell, T. N. Synthesis 1992, 9, 803.

[30] Huang, C.-W.; Shanmugasundaram, M.; Chang, H.-M.; Cheng, C.-H. Tetrahedron 2003, 59, 3635.

[31] Lerebours, R.; Camacho-Soto, A.; Wolf, C. J Org Chem 2005, 70, 8601.

[32] Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett 1979, 36, 3437.

[33] Miyaura, N.; Suzuki, A. Chem Rev 1995, 95, 2457.

[34] Combellas, C.; Dellerue, S.; Mathey, G.; Thiébault, A. Tetrahedron Lett 1997, 38, 539.