Efficient synthesis of some new functionalized 3-amino- and 5-aminopyrazoles derivatives

Ehab Abdel-Latif · Abdel-Galil M. Khalil

Received: 14 November 2013/Accepted: 30 January 2014 © Springer Science+Business Media Dordrecht 2014

Abstract Cyanoacetic acid hydrazide derivatives were utilized as key intermediates for the synthesis of some new 3-amino- and 5-aminopyrazole derivatives. Coupling of N'-phenylsulfonyl-2-cyanoacetohydrazide (1) and 1-(2-cyanoacetyl)-4phenyl thiosemicarbazide (4) with different aryl diazonium chlorides afforded the corresponding 5-amino-1-substituted-4-pyrazolin-3-one derivatives 3 and 6, respectively. Treatment of ketene dithioacetal 9 and ketene-N,S-acetal 13 with hydrazine and/or benzenesulfonyl hydrazide furnished the corresponding 3-amino-5-1H-pyrazole-4-carbohydrazide derivatives 10, 11, and 14. The structures of the new synthesized compounds were elucidated and confirmed by elemental analyses and spectral data.

Keywords Hydrazides · Benzenesulphonyl chloride · Carbon disulfide · Ketene dithioacetal · 5-Aminopyrazole

Introduction

Pyrazole and its derivatives are very interesting heterocyclic compounds with wideranging biological activities [1, 2]. In particular, 3-aminopyrazole derivatives have been reported as protein β -sheet stabilizers [3] and are much used as ideal precursors for the synthesis of biologically active fused heterocyclic compounds [4–7]. Some of the 3-aminopyrazole analogues (e.g., H30935) are used as building blocks to more complex moieties, such as potential drug candidates [8–11] and others (e.g., H32918) as selective-based MK2-inhibitors [12]. Moreover, they are used as intermediates in the dyestuff industry [13–17].

E. Abdel-Latif (🖂) · A.-G. M. Khalil

Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt e-mail: ehabattia00@gmx.net

The chemistry of 3(5)-aminopyrazoles has been recently reviewed and has received considerable attention not only from the point of pharmaceutical and medicinal applications but also because of their synthetic importance as versatile precursors for the synthesis of azoloazines [18–21]. A literature survey revealed that the synthetic strategy required to prepare 3(5)-aminopyrazoles involves either the reactions of hydrazine hydrate with each of the α , β -unsaturated nitriles [22–25] and 3-oxoalkanenitriles [26–29], or the reactions of hydrazonyl halides with active methylene nitriles [30]. In the light of these facts, we report here an efficient synthesis of novel substituted 3-amino- and 5-aminopyazole derivatives, which have not previously been reported.

H30935

3-Amino-1-methyl-1*H*-pyrazole

H32918

3-Amino-1-(4-methoxyphenyl)-1*H*-pyrazole

Experimental

The chemicals used for the synthesis of the compounds were obtained from Aldrich and Sigma Chemical without further purification. The solvents used were of analytical grade. Melting points were measured on an electrothermal Gallenkamp melting point apparatus. Elemental analyses were carried out at the Microanalytical Unit, Cairo University, Giza, Egypt; the results were in satisfactory agreement with the calculated values. The IR spectra were recorded in KBr disks on a Mattson 5000 FTIR spectrometer (not all frequencies are reported). The NMR spectra were acquired using a Bruker WP 300 spectrometer at 300 MHz using *TMS* as an internal standard and $CDCl_3$ and/or DMSO-d₆ as solvent. The mass spectra were performed using a Varian MAT 311 mass spectrometer at 70 eV.

Synthesis of N'-phenylsulfonyl-2-cyanoacetohydrazide (1), 1-cyanoacetyl-4-phenylthiosemicarbazide (4) and N'-arylidene-2-cyanoacetohydrazides 7

The starting materials N'-phenylsulfonyl-2-cyanoacetohydrazide (1) [31], 1-cyanoacetyl-4-phenylthiosemicarbazide (4) [35], and N'-arylidene-2-cyanoacetohydrazide derivatives 7 [36] were prepared according to the previous literature.

General synthesis of 5-amino-4-arylazo-1-phenylsulfonyl-4-pyrazolin-3-ones $3\mathbf{a}-\mathbf{c}$ and 5-amino-4-arylazo-1-phenylthiocarbamoyl-4-pyrazolin-3-ones $6\mathbf{a}-\mathbf{c}$

A cold solution of sodium nitrite (5 mmol) in 30 mL of water was added gradually to a cold suspension of desired aromatic amine (5 mmol) in 1.5 mL of concentrated

HCl. The diazonium salt thus obtained was added by continuous stirring to a cold solution of compound 1 and/or compound 4 (5 mmol) in 20 mL of pyridine. The reaction mixture was stirred at 0-5 °C for 2 h and diluted with water. The solid was then filtered, dried, and recrystallized from ethanol to afford the corresponding pyrazoline derivatives 3 and/or 6, respectively.

5-Amino-4-phenylazo-1-phenylsulfonyl-4-pyrazoline-3-one (3a)

Yield 67 %, m.p. 220–221 °C. IR (KBr, cm⁻¹): 3,307, 3,190 (NH₂ and NH), 1,624 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 7.25–7.75 (m, 10H, Ar–H), 8.20 (s, 2H, NH₂), 10.45 (s, 1H, NH). Anal. Calcd. for C₁₅H₁₃N₅O₃S (343.36): C, 52.47; H, 3.82; N, 20.40. Found: C, 52.58; H, 3.76; N, 20.51.

5-Amino-1-phenylsulfonyl-4-(p-tolylazo)-4-pyrazoline-3-one (3b)

Yield 78 %, m.p. 241–241 °C. IR (KBr, cm⁻¹): 3,316, 3,233, 3,193 (NH₂ and NH), 1,629 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 2.40 (s, 3H, CH₃), 7.10–7.85 (m, 9H, Ar–H), 8.78 (s, 2H, NH₂), 11.25 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 21.52, 105.28, 116.88, 122.65, 128.82 (2C), 129.68 (2C), 132.41 (2C), 133.16 (2C), 139.30, 141.08, 142.92, 161.62. MS (*m*/*z*, relative intensity): 358 (M⁺+1, 100). Anal. Calcd. for C₁₆H₁₅N₅O₃S (357.39): C, 53.77; H, 4.23; N, 19.60. Found: C, 53.96; H, 4.29; N, 19.51.

5-Amino-4-(p-anisylazo)-1-phenylsulfonyl-4-pyrazoline-3-one (**3c**)

Yield 58 %, m.p. 234–235 °C. IR (KBr, cm⁻¹): 3,442, 3,335, 3,208 (NH₂ and NH), 1,638 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 3.85 (s, 3H, OCH₃), 6.90 (d, 1H, Ar–H), 7.20–7.75 (m, 7H, Ar–H), 8.55 (s, 2H, NH₂), 10.85 (s, 1H, NH). Anal. Calcd. for C₁₆H₁₅N₅O₄S (373.39): C, 51.47; H, 4.05; N, 18.76. Found: C, 51.39; H, 4.11; N, 18.84.

5-Amino-4-phenylazo-1-phenylthiocarbamoyl-4-pyrazolin-3-one (6a)

Yield 64 %, m.p. 181–182 °C. IR (KBr, cm⁻¹): 3,382, 3,344, 3,268 (NH₂ and NH), 1,634 (C=O). ¹H NMR (CDCl₃/DMSO- d_6 , δ ppm): 6.85.7.60 (m, 10H, Ar–H), 8.85 (s, 2H, NH₂), 10.70 (s, 1H, NH), 12.15 (s, 1H, NH). Anal. Calcd. for C₁₆H₁₄N₆OS (338.39): C, 56.79; H, 4.17; N, 24.84. Found: C, 56.63; H, 4.22; N, 24.76.

5-Amino-1-phenylthiocarbamoyl-4-(p-tolylazo)-4-pyrazolin-3-one (6b)

Yield 71 %, m.p. 208–209 °C. IR (KBr, cm⁻¹): 3,417, 3,366, 3,305, 3,186 (NH₂ and NH), 1,631 (C=O). ¹H NMR (CDCl₃/DMSO- d_{δ} , δ ppm): 2.35 (s, 3H, CH₃), 6.75–7.40 (m, 9H, Ar–H), 9.05 (s, 2H, NH₂), 11.10 (s, 1H, NH), 13.15 (s, 1H, NH). ¹³C NMR (DMSO- d_{δ} , δ ppm): 21.65, 104.05, 118.96, 124.32, 128.37 (2C), 130.23 (2C), 132.69 (2C), 133.52 (2C), 139.75, 141.51, 143.55, 162.14, 184.15. MS (*m*/*z*, relative intensity): 353 (M⁺+1, 100). Anal. Calcd. for C₁₇H₁₆N₆OS (352.41): C, 57.94; H, 4.58; N, 23.85. Found: C, 57.82; H, 4.50; N, 23.77.

5-Amino-4-(p-anisylazo)-1-phenylthiocarbamoyl-4-pyrazolin-3-one (6c)

Yield 66 %, m.p. 214–216 °C. IR (KBr, cm⁻¹): 3,405, 3,374, 3,272, 3,218 (NH₂ and NH), 1,636 (C=O). ¹H NMR (CDCl₃/DMSO- d_6 , δ ppm): 3.90 (s, 3H, OCH₃), 6.80–7.70 (m, 9H, Ar–H), 8.90 (s, 2H, NH₂), 10.80 (s, 1H, NH), 12.65 (s, 1H, NH). Anal. Calcd. for C₁₇H₁₆N₆O₂S (368.41): C, 55.42; H, 4.38; N, 22.8. Found: C, 55.64; H, 4.33; N, 22.70.

General synthesis of N'-arylidene-2-cyano-3,3-bis-(methylthio)acrylohydrazides **9a–c**

To a stirred suspension of finely powdered potassium hydroxide (20 mmol) in dry dimethyl formamide (20 mL) cooled to 0 °C, first the cyanoacetic acid arylidene-hydrazide 7 (10 mmol) and then carbon disulfide (10 mmol) were added gradually. The reaction mixture was stirred at room temperature for 3 h, treated with methyl iodide, and stirred at room temperature for an additional 6 h. Then, it was poured into ice-water; the resulting precipitate was filtered off, dried, and recrystallized from ethanol to give **9**.

N'-Benzylidene-2-cyano-3,3-bis-(methylthio)-acrylohydrazide (9a)

Yield 54 %, m.p. 176–177 °C. IR (KBr, cm⁻¹): 3,163 (NH), 2,111 (C \equiv N), 1,640 (C=O). ¹H NMR (CDCl₃/DMSO- d_6 , δ ppm): 2.45 (s, 3H, SCH₃), 2.55 (s, 3H, SCH₃), 7.25–7.60 (m, 5H, Ar–H), 8.15 (s, 1H, CH=N), 10.65 (s, 1H, NH). Anal. Calcd. for C₁₃H₁₃N₃OS₂ (291.39): C, 53.58; H, 4.50; N, 14.42. Found: C, 53.47; H, 4.53; N, 14.49.

2-Cyano-N'-(p-methylbenzylidene)-3,3-bis-(methylthio)-acrylohydrazide (9b)

Yield 66 %, m.p. 193–194 °C. IR (KBr, cm⁻¹): 3,178 (NH), 2,110 (C \equiv N), 1,638 (C=O). ¹H NMR (DMSO-*d*₆, δ ppm): 2.40 (s, 6H, Ar–CH₃ and SCH₃), 2.55 (s, 3H, SCH₃), 7.20 (d, 2H, Ar–H), 7.50 (d, 2H, Ar–H), 8.20 (s, 1H, CH=N), 11.20 (s, 1H, NH). Anal. Calcd. for C₁₄H₁₅N₃OS₂ (305.42): C, 55.06; H, 4.95; N, 13.76. Found: C, 55.14; H, 4.98; N, 13.68.

2-Cyano-N'-(p-methoxybenzylidene)-3,3-bis-(methylthio)-acrylohydrazide (9c)

Yield 62 %, m.p. 198–200 °C. IR (KBr, cm⁻¹): 3,183 (NH), 2,108 (C = N), 1,641 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 2.45 (s, 3H, SCH₃), 2.55 (s, 3H, SCH₃), 3.85 (s, 3H, OCH₃), 6.90 (d, 2H, Ar–H), 7.50 (d, 2H, Ar–H), 8.20 (s, 1H, CH=N), 11.35 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 16.35 (2C), 55.48, 78.66, 116.66, 126.86 (2C), 130.24 (2C), 132.18, 153.90, 158.62, 163.08, 179.95. MS (*m/z*, relative intensity): 322 (M⁺, 52.4 %). Anal. Calcd. for C₁₄H₁₅N₃O₂S₂ (321.42): C, 52.32; H, 4.70; N, 13.07. Found: C, 52.15; H, 4.76; N, 13.18.

General synthesis of 3-amino-N'-arylidene-5-methylthio-1H-pyrazole-4-carbohydrazides **10a**-c

A mixture of ketene dithioacetal **9** (3 mmol) and hydrazine hydrate 80 % (6 mmol) in ethanol (25 mL) was heated under reflux for 2 h, then left to cool to room temperature and further left overnight. The precipitated solid was filtered off and dried, and then recrystallized from ethanol/DMF mixture (3:1) to yield compounds **10a–c** as yellow crystals.

3-Amino-*N*'-benzylidene-5-methylthio-1*H*-pyrazole-4-carbohydrazide (**10a**)

Yield 67 %, m.p. 223–224 °C. IR (KBr, cm⁻¹): 3,342, 3,227, 3,155 (NH₂ and NH), 1,648 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 2.50 (s, 3H, SCH₃), 7.30–7.70 (m, 5H, Ar–H), 8.10 (s, 2H, NH₂), 8.25 (s, 1H, CH=N), 10.30 (s, 1H, NH), 12.45 (s, 1H, NH). Anal. Calcd. for C₁₂H₁₃N₅OS (275.33): C, 52.35; H, 4.76; N, 25.44. Found: C, 52.56; H, 4.84; N, 25.33.

3-Amino-*N*'-(*p*-methylbenzylidene)-5-methylthio-1*H*-pyrazole-4-carbohydrazide (**10b**)

Yield 73 %, m.p. 246–247 °C. IR (KBr, cm⁻¹): 3,368, 3,212 (NH₂ and NH), 1,652 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 2.40 (s, 3H, CH₃), 2.50 (s, 3H, SCH₃), 7.30–7.60 (m, 4H, Ar–H), 8.05 (s, 2H, NH₂), 8.20 (s, 1H, CH=N), 9.80 (s, 1H, NH), 12.30 (s, 1H, NH). Anal. Calcd. for C₁₃H₁₅N₅OS (289.36): C, 53.96; H, 5.23; N, 24.20. Found: C, 53.84; H, 5.31; N, 24.27.

3-Amino-N'-(p-methoxybenzylidene)-5-methylthio-1H-pyrazole-4-carbohydrazide (**10c**)

Yield 71 %, m.p. 236–237 °C. IR (KBr, cm⁻¹): 3,320, 3,276, 3,192 (NH₂ and NH), 1,650 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 2.50 (s, 3H, SCH₃), 3.90 (s, 3H, OCH₃), 7.00 (d, 2H, Ar–H), 7.60 (d, 2H, Ar–H), 8.05 (s, 2H, NH₂), 8.20 (s, 1H, CH=N), 10.15 (s, 1H, NH), 12.60 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 18.22, 55.95, 88.74, 126.70 (2C), 130.04 (2C), 132.18, 134.48, 151.35, 154.45, 158.14, 163.65. MS (*m*/*z*, relative intensity): 305 (M⁺, 100 %). Anal. Calcd. for C₁₃H₁₅N₅O₂S (305.36): C, 51.13; H, 4.95; N, 22.94. Found: C, 51.29; H, 4.98; N, 23.03.

General synthesis of 3-amino-N'-arylidene-5-methylthio-1-phenylsulfonyl-1H-pyrazole-4-carbohydrazides **11a–c**

To the solution of **9** (3 mmol) in DMF (20 mL), benezenesulfonyl hydrazide (3 mmol) and anhydrous potassium carbonate (0.42 g) were added. The reaction mixture was heated under reflux for 4 h and then left to cool. The reaction mixture was poured onto ice-cold water (100 mL) and the resulting solid was filtered off, dried well, and re-crystallized from ethanol to yield compounds **11a–c** as yellow crystals.

3-Amino-N'-benzylidene-5-methylthio-1-phenylsulfonyl-1H-pyrazole-4-carbohydrazide (**11a**)

Yield 48 %, m.p. 211–212 °C. IR (KBr, cm⁻¹): ,3344, 3,282, 3,191 (NH₂ and NH), 1,642 (C=O). ¹H NMR (CDCl₃, δ ppm): 2.50 (s, 3H, SCH₃), 7.40–7.80 (m, 10H, Ar–H), 8.25 (s, 1H, CH=N), 9.05 (s, 2H, NH₂), 11.15 (s, 1H, NH). Anal. Calcd. for C₁₈H₁₇N₅O₃S₂ (415.49): C, 52.03; H, 4.12; N, 16.86. Found: C, 52.16; H, 4.08; N, 16.91.

3-Amino-*N*'-(*p*-methylbenzylidene)-5-methylthio-1-phenylsulfonyl-1*H*-pyrazole-4-carbohydrazide (**11b**)

Yield 61 %, m.p. 224–225 °C. IR (KBr, cm⁻¹): 3,367, 3,275, 3,182 (NH₂ and NH), 1,650 (C=O). ¹H NMR (CDCl₃/DMSO- d_6 , δ ppm): 2.40 (s, 3H, CH₃), 2.55 (s, 3H, SCH₃), 7.20–7.80 (m, 9H, Ar–H), 8.30 (s, 1H, CH=N), 9.20 (s, 2H, NH₂), 12.05 (s, 1H, NH). Anal. Calcd. for C₁₉H₁₉N₅O₃S₂ (429.52): C, 53.13; H, 4.46; N, 16.31. Found: C, 53.04; H, 4.48; N, 16.36.

3-Amino-*N*'-(*p*-methoxybenzylidene)-5-methylthio-1-phenylsulfonyl-1*H*-pyrazole-4-carbohydrazide (**11c**)

Yield 56 %, m.p. 218–219 °C. IR (KBr, cm⁻¹): 3,411, 3,356, 3,282 (NH₂ and NH), 1,648 (C=O). ¹H NMR (CDCl₃/DMSO- d_6 , δ ppm): 2.55 (s, 3H, SCH₃), 3.85 (s, 3H, OCH₃), 7.00 (d, 2H, Ar–H), 7.40–7.80 (m, 7H, Ar–H), 8.30 (s, 1H, CH = N), 9.30 (s, 2H, NH₂), 12.15 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 18.08, 55.95, 88.46, 123.04, 126.28 (2C), 128.62 (2C), 129.40 (2C), 130.12 (2C), 133.22, 134.82, 138.36, 152.34, 154.50, 158.04, 163.54. MS (*m/z*, relative intensity): 446 (M⁺+1, 67 %). Anal. Calcd. for C₁₉H₁₉N₅O₄S₂ (445.52): C, 51.22; H, 4.30; N, 15.72. Found: C, 51.13; H, 4.34; N, 15.66.

General synthesis of N'-arylidene-2-cyano-3-methylthio-3-phenylaminoacrylohydrazides **13a–c**

To a stirred suspension of finely powdered potassium hydroxide (10 mmol) in dry dimethyl formamide (20 mL), first N'-arylidene-2-cyanoacetohydrazides 7 (10 mmol) and then phenyl isothiocyanate (10 mmol) were added gradually. The reaction mixture was stirred at room temperature for 3 h, treated with methyl iodide (10 mmol), and stirred at room temperature for an additional 6 h. Then, it was poured into ice-water; the resulting precipitate was filtered off, dried, and recrystallized from ethanol to give **13**.

N'-benzylidene-2-cyano-3-methylthio-3-phenylamino-acrylohydrazide (13a)

Yield 58 %, m.p. 162–163 °C. IR (KBr, cm⁻¹): 32,13, 3,144 (2NH), 2,120 (C \equiv N), 1,655 (C=O). ¹H NMR (CDCl₃, δ ppm): 2.50 (s, 3H, SCH₃), 6.70–7.60 (m, 10H, Ar–H), 8.30 (s, 1H, CH=N), 9.20 (s, 1H, NH), 10.25 (s, 1H, NH). Anal. Calcd. for

C₁₈H₁₆N₄OS (336.41): C, 64.26; H, 4.79; N, 16.65. Found: C, 64.36; H, 4.86; N, 16.74.

2-Cyano-*N'*-(*p*-methylbenzylidene)-3-methylthio-3-phenylaminoacrylohydrazide (**13b**)

Yield 65 %, m.p. 155–156 °C. IR (KBr, cm⁻¹): 3,189, 3,152 (2NH), 2,125 (C = N), 1,648 (C=O). ¹H NMR (CDCl₃, δ ppm): 2.40 (s, 3H, Ar–CH₃), 2.50 (s, 3H, SCH₃), 6.80–7.60 (m, 9H, Ar–H), 8.30 (s, 1H, CH=N), 9.30 (s, 1H, NH), 10.45 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 18.78, 21.29, 98.28, 114.92, 126.18 (2C), 128.39 (3C), 129.30 (2C), 130.08 (2C), 132.62, 135.53, 140.59, 155.28, 162.86, 179.74. MS (*m/z*, relative intensity): 351 (M⁺+1, 77 %). Anal. Calcd. for C₁₉H₁₈N₄OS (350.44): C, 65.12; H, 5.18; N, 15.99. Found: C, 65.28; H, 5.23; N, 15.91.

2-Cyano-*N'*-(*p*-methoxybenzylidene)-3-methylthio-3-phenylaminoacrylohydrazide (**13c**)

Yield 54 %, m.p. 180–182 °C. IR (KBr, cm⁻¹): 3,231, 3,177 (2NH), 2,124 (C \equiv N), 1,651 (C=O). ¹H NMR (CDCl₃, δ ppm): 2.50 (s, 3H, SCH₃), 3.90 (s, 3H, OCH₃), 6.80–7.80 (m, 9H, Ar–H), 8.35 (s, 1H, CH=N), 9.35 (s, 1H, NH), 10.30 (s, 1H, NH). Anal. Calcd. for C₁₉H₁₈N₄O₂S (366.44): C, 62.28; H, 4.95; N, 15.29. Found: C, 62.19; H, 4.90; N, 15.37.

General synthesis of 3-amino-N'-arylidene-5-phenylamino-1H-pyrazole-4carbohydrazides **14a**–c

A mixture of ketene-*N*,S-acetal **13** (3 mmol) and hydrazine hydrate 80 % (9 mmol) was heated on a steam bath for 1 h and left to cool. The reaction mixture was triturated with ethanol and the resulting solid was filtered off and recrystallized from ethanol to give compounds **14a–c** as white crystals.

3-Amino-N'-benzylidene-5-phenylamino-1H-pyrazole-4-carbohydrazide (14a)

Yield 76 %, m.p. 272–273 °C. IR (KBr, cm⁻¹): 3,372, 3,311, 3,263, 3,177 (NH₂ and NH), 1,655 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 6.90–7.80 (m, 10H, Ar–H), 8.25 (s, 1H, CH=N), 8.90 (s, 2H, NH₂), 10.20 (s, 1H, NH), 11.05 (s, 1H, NH), 12.50 (s, 1H, NH). Anal. Calcd. for C₁₇H₁₆N₆O (320.35): C, 63.74; H, 5.03; N, 26.23. Found: C, 63.82; H, 5.08; N, 26.18.

3-Amino-*N*'-(*p*-methylbenzylidene)-5-phenylamino-1*H*-pyrazole-4-carbohydrazide (**14b**)

Yield 80 %, m.p. 250–251 °C. IR (KBr, cm⁻¹): 3,358, 3,272, 3,194 (NH₂ and NH), 1,654 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 2.40 (s, 3H, CH₃), 6.90–7.70 (m, 9H, Ar–H), 8.25 (s, 1H, CH=N), 8.85 (s, 2H, NH₂), 9.75 (s, 1H, NH), 10.75 (s, 1H, NH), 12.60 (s, 1H, NH). ¹³C NMR (DMSO- d_6 , δ ppm): 21.54, 97.23, 127.08 (2C), 128.63

(3C), 129.15 (2C), 130.26 (2C), 132.74, 135.96, 141.37, 146.41, 153.40, 156.24, 163.11. MS (m/z, relative intensity): 335 (M⁺+1, 100 %). Anal. Calcd. for C₁₈H₁₈N₆O (334.38): C, 64.66; H, 5.43; N, 25.13. Found: C, 64.47; H, 5.37; N, 25.21.

3-Amino-N'-(*p*-methoxybenzylidene)-5-phenylamino-1*H*-pyrazole-4-carbohydrazide (**14c**)

Yield 74 %, m.p. 285–286 °C. IR (KBr, cm⁻¹): 3,412, 3,283, 3,247, 3,165 (NH₂ and NH), 1,657 (C=O). ¹H NMR (DMSO- d_6 , δ ppm): 3.85 (s, 3H, OCH₃), 6.90–7.80 (m, 9H, Ar–H), 8.20 (s, 1H, CH=N), 9.10 (s, 2H, NH₂), 9.85 (s, 1H, NH), 10.80 (s, 1H, NH), 12.45 (s, 1H, NH). Anal. Calcd. for C₁₈H₁₈N₆O₂ (350.37): C, 61.70; H, 5.18; N, 23.99. Found: C, 61.82; H, 5.22; N, 23.91.

Results and discussion

The N'-phenylsulfonyl-2-cyanoacetohydrazide (1) was prepared by the reaction of 2-cyanoacetohydrazide with benzenesulfonyl chloride according to the literature procedure [31]. Coupling of compound 1 with a variety of aryl diazonium chlorides afforded the corresponding cyanoaceto-N-phenylsulfonyl hydrazide intermediates 2 which underwent intramolecular cyclization to give the 5-amino-4-arylazo-1-phenylsulfonyl-4-pyrazolin-3-ones **3a–c** (Scheme 1).

Scheme 1 Synthetic route to 5-amino-4-arylazo-1-phenylsulfonyl-4-pyrazolin-3-ones 3a-c and their possible tautomeric structures

Pyrazoles **3a–c** can be formulated in four different possible tautomeric structures, namely keto-azo (**A**), keto-hydrazone (**B**), enol-azo (**C**), and enol-hydrazone tautomer (**D**) (Scheme 1). The tautomeric structures (**B**) and (**D**) were excluded from the ¹H NMR spectra of the studied compounds as they lacked signals in the region of $\delta = 13.83-13.92$ ppm assignable to the hydrazone proton (–CH = N– NH–) [32]. The enol-azo form (**C**) was also ruled out due to the presence of the pyrazole-NH signal at 11.27 ppm [33] in ¹H NMR spectra and the absence of an OH group at 3,445 cm⁻¹ in their IR spectra. The ¹³C NMR spectra of **3b** revealed a characteristic peak in the region $\delta = 161.62$ ppm due to a carbonyl carbon and validated tautomeric structure (**A**). It is worth mentioning that the predominant formation of the keto-azo form (A) is also in the line with similar structures reported earlier by Morkovnik and coworkers [34].

Coupling of 1-cyanoacetyl-4-phenyl-thiosemicarbazide (4) [35] with a variety of aryl diazonium chlorides afforded the corresponding 5-amino-4-arylazo-1-phenylthiocarbamoyl-4-pyrazolin-3-ones **6a–c** via intramolecular cyclization of cyanoaceto-*N*-phenylthiocarbamoyl hydrazide intermediates **5** (Scheme 2). Spectral studies indicated the superiority of the keto-azo structure **6** rather than other tautomeric structures. The IR spectrum of the representative example **6b** exhibited absorption bands at 3,417, 3,366, 3,305, and 3,186 cm⁻¹ attributed to NH₂ and NH vibrations, respectively, while the C=O vibration was observed at 1,631 cm⁻¹. Its ¹H NMR spectrum showed the methyl protons as a singlet signal at δ 2.35 ppm. The aromatic protons resonated at δ 6.75–7.40 ppm. The NH₂ protons appeared as a singlet signal at δ 9.05, and the protons of the NH groups appeared as two singlet signals at δ 11.10 and 13.15 ppm. Moreover, the mass spectrum of **6b** clearly showed the molecular ion peak at *m*/z 353 corresponding to the molecular weight of the molecular formula (C₁₇H₁₆N₆OS)+1.

Scheme 2 Synthetic route to 5-amino-4-arylazo-1-phenylthiocarbamoyl-4-pyrazolin-3-ones 6a-c

Furthermore, the reaction of N'-arylidene-2-cyanoacetohydrazides 7 [36] with carbon disulfide in dimethyl formamide, in the presence of potassium hydroxide, gave the non-isolable intermediate **8**. The latter was converted into the corresponding ketene dithioacetal **9** by treatment with methyl iodide at room temperature in a moderate yield (Scheme 3). The structure of **9** was confirmed by analytical and spectroscopic data. The IR spectrum of **9c** showed absorption bands at 3,183 (NH), 2,108 (C = N), and 1,641 (C=O). Its ¹H NMR spectrum in DMSO-*d*₆ revealed the presence of singlet signals at δ 2.45, 2.55, and 3.85 ppm, characteristic for three methyl groups. The two doublet signals at δ 6.90 and 7.40 ppm were astributed to aromatic protons. Two singlet signals at δ 8.20 and 11.35 ppm were assigned to N=CH and NH protons, respectively. Also, the structure **9c** is supported by its mass spectrum which showed a molecular ion peak at *m*/*z* = 322 (52.4 %) corresponding to the formula (C₁₄H₁₅N₃O₂S₂)+1.

Polarized α -cyanoketene dithioacetals are versatile starting materials for the synthesis of a wide variety of heterocycles. Thus, heating of ketene dithioacetals **9**

Scheme 3 Synthetic route to 3-amino-N'-arylidene-5-methylthio-1H-pyrazole-4-carbohydrazides 10a-c and 11a-c

with hydrazine hydrate afforded the corresponding 3-Aminopyrazole derivatives **10**. The chemical structure of compounds **10** was secured by their correct spectral data (IR, ¹H NMR, and MS) and elemental analyses.

Cyclocondensation of compound **9** with benzenesulfonyl hydrazide in refluxing DMF containing potassium carbonate furnished the novel aminopyrazole derivative **11**. The formation of **11** is assumed to proceed through Michael's addition of the amino group to the ethylenic bond in **9** with elimination of methanethiol followed by intramolecular cyclization at the cyano group to form **11**. The chemical structure of product **11** was established by analytical and spectral data. The infrared spectrum of compound **11b** was characterized by the appearance of absorption bands at 3,367, 3,275, 3,182 cm⁻¹ corresponding to NH₂ and NH functions, in addition to the carbonyl absorption at 1,650 cm⁻¹. Also, the ¹H NMR spectrum displayed two singlet signals at δ 2.40 and 2.55 ppm for two methyl groups, a multiplet signal in the range δ 7.20–7.80 ppm for aromatic protons, a singlet signal at 8.30 ppm due to the CH=N proton and two singlet signals at δ 9.20 and 12.05 ppm due to NH₂ and NH protons, respectively.

Our investigation was extended to examine the base-promoted nucleophilic addition of compound 7 into phenyl isothiocyanate in DMF containing potassium hydroxide. Subsequent treatment of the non-isolable sulfide salt 12 with an equimolar amount of methyl iodide afforded the corresponding ketene-N,S-acetal 13. The aminopyrazole derivatives of the type 14 were synthesized in high yields by refluxing a mixture of ketene-*N*,S-acetal 13 with hydrazine hydrate in ethanol for

Scheme 4 Synthetic route to 3-amino-N'-arylidene-5-phenylamino-1H-pyrazole-4-carbohydrazides 14a-c

4 h as shown in Scheme 4. The structure of the obtained products was confirmed from their agreeable elemental and spectral data. Bands at 3,358, 3,272, 3,194 cm⁻¹ (NH₂ and NH), and 1,654 cm⁻¹ (C=O) in the IR spectrum and molecular ion peak m/z at 335 (100 %) in the mass spectrum confirmed the structure of compound **14b**. The ¹H NMR spectrum of compound **14b** showed a singlet signal at δ 2.48 ppm due to methyl protons, a multiplet signal in the range δ 6.90–7.70 ppm for the aromatic protons, a singlet signal at δ 8.25 ppm for CH=N proton, and a singlet signal at δ 8.85 ppm assignable to NH₂ protons, in addition to three singlet signals at δ 9.75, 10.75, and 12.60 for three NH groups.

Conclusion

In summary, 15 different functionalized 3-amino- and 5-aminopyrazole derivatives were efficiently synthesized under mild reaction conditions. 5-Amino-1-substituted-4-pyrazolin-3-one derivatives **3** and **6** were obtained by coupling of N'-substituted-2-cyanoacetohydrazide with different aryl diazonium chlorides, while 3-amino-5-1H-pyrazole-4-carbohydrazide derivatives **10**, **11**, and **14** were obtained by cyclocondensation of ketene dithioacetal **9** and ketene-N,S-acetal **13** with hydrazine and/or benzenesulfonyl hydrazide. The synthesized aminopyrazole derivatives were characterized by IR, NMR, mass spectroscopy, and elemental analyses.

References

- 1. Y. Liu, H. Zhang, D. Yin, D. Chen, Res. Chem. Intermed. (2013). doi:10.1007/s11164-013-1489-1
- 2. C. Liu, Y. Chen, Y. Sun, F. Wu, Res. Chem. Intermed. 39, 2087-2093 (2013)
- 3. C.N. Kirsten, T.H. Schrader, J. Am. Chem. Soc. 119, 12061–12068 (1997)
- C. Ghiron, A. Nencini, I. Micco, R. Zanaletti, L. Maccari, H. Bothmann, S. Haydar, M. Varrone, C. Pratelli, B. Harrison, Int. Patent. Appl WO=2008=087529, 2008
- S. Soma, D. Bikash, B. Anindya, G. Shovanlal, S. Kolluru, J. Tarun, Eur. J. Med. Chem. 41, 1190–1195 (2006)
- V.I. Alexandre, E.D. Dmitri, S.G. Elena, S.D. Elena, G.K. Madina, G.K. Angela, M.K. Volodymyr, D.M. Oleg, E.T. Sergey, M.O. Ilya, A.V. Anton, Bioorg. Med. Chem. Lett. 20, 2133–2136 (2010)
- I. Kim, H.S. Jong, M.P. Chang, W.J. Joon, R.K. Hyung, R.H. Jin, N. Zaesung, H. Young-Lan, S.C. Young, K. Nam, J.J. Dong, Bioorg. Med. Chem. Lett. 20, 922–926 (2010)
- 8. Pfizer Inc. Patent US2008/280875 A1, 2008
- 9. Merck GmbH Patent WO2009/46784 A1, 2009
- 10. Novartis AG Patent WO2009/150230 A1, 2009
- 11. AstraZeneca UK Ltd Patent WO2006/40528 A1, 2006
- 12. J. Velcicky, R. Feifel, S. Hawtin, Bioorg. Med. Chem. Lett. 20, 1293–1297 (2010)
- 13. M.H. Helal, G.H. Elgemeie, D.M. Masoud, Pigment Resin Technol. 36, 306-311 (2007)
- 14. Y.W. Ho, Dyes Pigments 64, 223-230 (2005)
- 15. F. Karcı, A. Demircalı, Dyes Pigments 74, 288–297 (2007)
- 16. A.Z. Sayed, M.S. Aboul-Fetouh, H.S. Nassar, J. Mol. Struc. 1010, 146-151 (2012)
- 17. H.F. Rizk, M.A. El-Badawi, S.A. Ibrahim, M.A. El-Borai, Arab. J. Chem. 4, 37-44 (2011)
- 18. R. Aggarwal, V. Kumar, R. Kumar, S.P. Singh, Beilstein J. Org. Chem. 7, 179–197 (2011)
- 19. K.Y. Lee, J.M. Kim, J.N. Kim, Tetrahedron Lett. 44, 6737-6740 (2003)
- 20. T.M.A. Elmaati, F.M. El-Taweel, J. Heterocycl. Chem. 41, 109-134 (2004)
- 21. H.F. Anwar, M.H. Elnagdi, Arkivoc 1(i), 198-250 (2009)

- 22. K.U. Sadek, M. Ali Selim, M.H. Elnagdi, H.H. Otto, Bull. Chem. Soc. Jpn. 66, 2927-2930 (1993)
- 23. M. Furukawa, T. Yuki, S. Hayashi, Chem. Pharm. Bull. 21, 1845–1846 (1973)
- 24. J. Cai, H. Jiang, X. Lin, Huagong Shikan 20, 15-17 (2006)
- 25. G. Ege, H. Franz, J. Heterocycl. Chem 19, 1267-1273 (1982)
- 26. C.M. Pask, K.D. Camm, C.A. Kilner, M.A. Halcrow, Tetrahedron Lett. 47, 2531-2534 (2006)
- 27. M.H. Elnagdi, D.H. Fleita, M.R.H. El-Moghayar, Tetrahedron 31, 63-67 (1975)
- M.H. Elnagdi, M.R.H. El-Moghayar, D.H. Fleita, E.A.A. Hafez, S.M. Fahmy, J. Org. Chem. 41, 3781 (1976)
- 29. S.M. Riyadh, H.M. Al-Matar, M.H. Elnagdi, Molecules 13, 3140-3148 (2008)
- 30. A.S. Shawali, H.M. Hassaneen, Tetrahedron 29, 121-124 (1973)
- 31. G.H. Elgemeie, N.H. Metwally, J. Chem. Res. 6, 384-385 (1999)
- 32. R. Brehme, D. Enders, R. Fernandez, J.M. Lassaletta, Eur. J. Org. Chem. 34, 5629-5660 (2007)
- 33. S. Pal, J. Mareddy, N.S. Devi, J. Braz. Chem. Soc. 19, 1207-1214 (2008)
- 34. A.S. Morkovnik, L.N. Divaeva, A.I. Uraev, K.A. Lyssenko, R.K. Mamin, I.G. Borodkina, G.S. Borodkin, A.S. Burlov, A.D. Garnovskii, Russ. Chem. Bull. Int. Ed. 57, 1496–1507 (2008)
- 35. R.A. Mekheimer, R.M. Shaker, J. Chem. Res. (S), 76-77 (1999)
- 36. K.N. Zelenin, S.V. Oleinik, V.V. Alekseev, A.A. Potekhin, Russ. J. Gen. Chem. 71, 1116–1120 (2001)