

S0040-4039(96)00018-4

Design and Synthesis of Novel Protease Inhibitors. Tripeptide α',β' -Epoxyketones as Nanomolar Inactivators of the Proteasome.

Andrew Spaltenstein^{a*}, Johann J. Leban^a, Jim J. Huang^a, Kelli R. Reinhardt^a, O. Humberto Viveros^b, Jim Sigafoos^b and Ronald Crouch^c

Divisions of ^a)Organic Chemistry, ^b)Pharmacology and ^c)Bioanalytical Sciences, Burroughs Wellcome Co., 3030 Cornwallis Rd., Research Triangle Park, NC 27709

Abstract: Tripeptide α', β' -epoxyketones were prepared stereospecifically starting from Boc-[S]phenylalanine. Diastereomer **5b** inhibited the chymotrypsin-like activity of porcine endothelial cell derived proteasome at low nanomolar concentrations.

The proteasome is a high molecular weight (ca. 700 kD) cytoplasmic enzyme complex composed of at least 14 different subunits and possessing five separate hydrolytic activities one of which was recently classified as a threonine protease.¹ In addition to its "housekeeping function" in cell protein degradation, the proteasome has been implicated in a variety of disease states ranging from immune diseases (inflammation, asthma)² to cancer.³

One approach to develop inhibitors for such proteases is to utilize part of the peptide sequence of a known substrate and attach a reactive moiety which is capable of inactivating the enzyme when bound to the active site.⁴ A large number of such substrate-derived functionalities have been used as potential serine- and thiolprotease inhibitors. Among the more frequently utilized ones are aldehydes⁵, chloromethyl ketones,⁶ trifluoromethyl ketones,⁷ α -keto-acids, -esters, and -amides.⁸ Most of these compounds inhibit the enzyme either by mimicking the tetrahedral nature of the transitionstate of the enzymatic reaction (hydrated trifluoromethyl ketones), or by irreversibly alkylating a nucleophilic residue, usually a serine-, cysteine- or histidine-sidechain in the active site (chloromethyl ketones).

Here we report the synthesis of tripeptide α',β' -epoxyketones, a novel class of substrate-derived inhibitors of serine-type proteases. We reasoned that this class of compounds might be able to act either as a transition state mimetic due to their activated ketone functionality, or as a covalent irreversible inhibitor via alkylation of the enzyme with the reactive epoxide function. Based on BW2428, one of our most potent (IC₅₀= 200nM) proteasome inhibitor leads⁹, we sought to introduce the α',β' -epoxyketone functionality into the peptide sequence Ile-Ile-Phe.

BW2428

The synthesis of the targets, **5a** and **5b**, proceeded as follows (Scheme 1).^{10,11} Boc-[S]phenylalanine was converted to the Weinreb amide¹² and treated with vinylmagnesium bromide to afford vinylketone **1** in good yield. Reduction with sodiumborohydride / cerium chloride¹³ gave a 3:1 mixture of diastereomers **2a** and **2b** which were separated on silica gel. The absolute stereochemistry at carbon C-3 was established as follows: treatment of **2a** and **2b** respectively with 1M HCl/dioxane, followed by cyclization with carbonyl diimidazole gave the two oxazolidinones **6a** and **6b**, which were analyzed by spectroscopic means and assigned as indicated.¹⁴

Scheme 1 Reagents and conditions: a. MeNHOMe x HCl, EDCl, NMM, HOBt, DMF, 0°, 12h, 80% b. vinylMgBr, THF, rt, 2h, 78%
 c. NaBH₄, CeCl₃x7H₂O, MeOH, 0°, 0.2h, 94%, then separation on silica gel (EtOAc:Hexane 1:3) d. *i*. TFA / CH₂Cl₂ 0°, 3h
 ii. Cbz-lle-lle-OSu / NMM, EtOAc,0°, 2h, 50% (2 steps) e. 6 equiv. mCPBA, CHCl₃, 0°, 8h, 69% f. DMSO / Ac₂O 5:1, 25°, 12-36h, 80%

Deprotection of the two isomers 2a and 2b with trifluoroacetic acid, followed by coupling with the N-hydroxysuccinimide ester¹⁵ of Cbz-isoleucyl-isoleucine afforded the vinyl alcohols 3a (50%, two steps) and 3b (53%, two steps). The epoxidation of 3a and 3b with m-CPBA was effected in chloroform using 6 equivalents of the oxidant to give 4a (67%) and 4b (69%) respectively. In both cases, we only observed a single diastereomer from the epoxidation reaction. Oxidation of the epoxyalcohols 4a and 4b with DMSO / acetic anhydride¹⁶ gave the desired epoxyketones 5a and 5b in 78% and 80% yields. The stereochemical assignment at the epoxide carbon C-2 was carried out as outlined in Scheme 2. Opening of the epoxides 4a and 4b with thiophenol¹⁷, followed by treatment of the resulting diols with carbonyl diimidazole gave the cyclic carbonates 7a and 7b. ¹H NMR analysis showed a coupling constant J_{H2-H3} of 4.8 Hz for both isomers. MM2 calculations for the two possible ring configurations indicate a dihedral angle of 122° for the *trans* isomer and 2° for the *cis* isomer. This clear difference permits the assignment for 7a,b as the *trans* isomers with a reasonable degree of certainty (a dihedral angle of

near 0° for the *cis* configuration would give rise to a significantly larger coupling constant)¹⁸ and thus establishes the C-2 configuration of **7a** as [S] and of **7b** as [R].¹⁹

Scheme 2

Initial biological studies²⁰ showed that compound **5b** inactivates 50% of the proteasome activity at an inhibitor concentration of 5 nanomolar, while diastereomer **5a** was found to be at least 50-fold less potent. Preliminary kinetic results indicate, that the highly active isomer **5b** is a covalent, irreversible inhibitor of the proteasome. Further kinetic studies are in progress and will be reported in due course.

REFERENCES AND NOTES

- a. Löwe, J.; Stock, D.; Jap, B; Zwickl, P.; Baumeister, W.; Huber, R. Science 1995, 268, 533. b.
 Seemüller, E.; Lupas, A.; Stock, D.; Löwe, J.; Huber, R.; Baumeister, W. Science 1995, 268, 579.
- 2. Palombella, V.J.; Rando, O.J.; Goldberg, A.L.; Maniatis, T. Cell 1994, 78, 773.
- a. Treier, M.; Stoszewski, L.M.; Bohmann, D. Cell 1994, 78, 787. b. Scheffner, M.; Werness, B.A.; Huibregtsen, J.M., Levine, A.J.; Howley, P.M. Cell 1990, 63, 1129.
- 4. Fischer, G. 9Natl. Prod. Rep. 1988, 5, 465.
- 5. Delbaere, L.T.J.; Brayer, G.D. J. Mol. Biol. 1985, 183, 89.
- 6. Betzel, C.; Pal, G.P.; Jany, K.-D.; Saenger, W. FEBS Lett. 1986, 197, 105.
- 7. Gelb, M.H.; Svaren, J.P.,; Abeles, R.H. Biochemistry 1985, 24, 1813.
- a. Angelastro, M.R.; Mehdi, S.; Burkhart, J.P.; Peet, N.P.; Bey, P. J. Med. Chem. 1990, 33, 11.
 b. Hu, L.-Y.; Abeles, R.H. Arch. Biochem. Biophys. 1990, 281, 271.
- 9. Spaltenstein, A.; Leban, J.J.; Sherman, D.B.; Viveros, H.O.; Sigafoos, J., in preparation.
- 10 all compounds gave NMR, and high- or low resolution MS data consistent with the proposed structures as well as satisfactory combustion analyses.
- Abbreviations are: EDCI (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, NMM (N-methyl morpholine, DCC (dicyclohexyl carbodiimide), TFA (trifluoroacetic acid), mCPBA (mchloroperbenzoic acid), HOBT (N-hydroxybenzotriazole), Cbz (benzyloxycarbonyl), lle (L-isoleucine), Boc (tert.-butoxycarbonyl).

Spectral Data for selected compounds are as follows: ¹H NMR(DMSO-d6): **2a** 1.22(9H,s), 2.58(1H,d), 3.50(1H,m), 3.86(1H,dd), 5.03(2H,dd), 5.20(1H,d), 5.85(1H,dddd), 6.59(1H,d), 7.2(5H,m). **2b**1.22(9H,s), 2.52(1H,d), 2.78(1H,dd), 3.62(1H,m), 3.92(1H,dd), 5.00(1H,d), 5.05(1H,d), 5.20(1H,d), 5.82(1H,dddd), 6.42(1H,d), 7.2(5H,m). 3a 0.7-0.9(12H,m) 1.10(2H,m), 1.40(2H,m), 1.70(2H,m), 2.70(1H,dd), 2.95(1H,dd), 3.95(3H,m), 4.22(1H,t), 5.08(2H,s), 5.12(1H,d), 5.28(1H,d), 5.96(1H,dddd), 7.2-7.4(10H,m), 7.45(1H,d), 7.75(1H,d), 7.82(1H,d). 3b 0.6-0.8(12H,m), 1.00(2H,m), 1.30(2H,m), 1.65(2H,m), 2.50(1H,dd), 2.83(1H,dd), 3.90(1H,t), 3.99(2H,m), 4.18(1H,t), 5.00(2H,s), 5.02(1H,d), 5.18(2H,dd), 5.83(1H,dddd), 7.1-7.4(11H,m), 7.65(2H,m). 4a 0.65-0.85(12H,s), 1.0(1H,m), 1.18(1H,m), 1.35(1H,m), 1.45(1H,m), 1.65(1H,m), 1.78(1H,m), 2.64(2H,m), 2.76(1H,dd), 2.95(1H,m), 3.01(1H,dd), 3.13(1H,dd), 3.97(1H,t), 4.08(1H,dd), 4.18(1H,t), 5.08(2H,s), 7.2-7.4(10H,m),7.45(1H,d), 7.71(1H,d), 7.83(1H,d). 4b 0.6-0.8(12H,m), 1.05(2H,m), 1.35(2H,m), 1.65(2H,m), 2.45(1H,dd), 2.62(2H,m), 2.82(2H,m), 3.05(1H,m), 3.85(1H,t), 4.04(1H,m), 4.18(1H,t), 4.99(2H),s),5.38(1H,d), 7.1-7.4(11H,m), 7.72(1H,d), 7.80(1H,d). 5a 0.80(12H,m), 1.15(2H,m), 1.35(2H,m), 1.65(2H,m), 2.50(1H,dd), 2.80(2H,m), 3.05(1H,dd), 3.66(1H,m,α'-H), 3.93(1H,t), 4.20(1H,t), 4.65(1H,m), 5.00(2H,s), 7.2--7.4(10H,m), 8.15(1H,d), 8.55(1H,d). 5b 0.78(12H,m), 1.05(2H,m), 1.35(2H,m), 1.65(2H,m), 2.79(2H,m), 2.98(2H,m), $3.62(1H,m,\alpha'-H)$, 3.85(1H,t), 4.18(1H,t), 4.58(1H,m), 5.00(2H,s), 7.2-7.4(10H,m), 7.68(1H,d), 8.44(1H,d).

12. Nahm, S.; Weinreb, S.M. Tetrahedron Lett. 1981,22, 3815.

13. Luche, J.-L. J. Am. Chem. Soc. 1978, 100, 2226.

- 15. Prepared from commercially available Cbz-IleIle by treatment with DCC / N-hydroxysuccinimide in EtOAc.
- 16. Albright, J.D.; Goldman, L. J. Am. Chem. Soc. 1965, 87, 4214.
- 17. Romeo, S.; Rich, D.H. Tetrahedron Lett. 1993, 34, 7187.
- 18. Bothner-By, A.B. Adv. Magn. Res. 1965, 1, 195. For a more detailed discussion of cyclic fivemembered carbonates see: Anet, F.A.L. J. Am. Chem. Soc. 1962, 84, 747.
- 19. We are currently attempting to obtain X-ray quality crystals of 4 and/or 7 to further substantiate the C-2 stereochemical assignment.
- 20. Fluorescence-based assay (Z-IIW-AMC substrate), the proteasome was purified from pig aorta endothelial cells. The enzyme was pre-incubated with the inhibitor for 1 hour before the reaction was initiated by addition of the substrate.

(Received in USA 2 October 1995; accepted 21 December 1995)