This article was downloaded by: [New York University] On: 01 June 2015, At: 04:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Synthesis of Acylated Steroidal Olefins and Their Derivatives

M. Mushfiq^a, A. R. Khan^a, Afreen Shamim^a, Rakhshanda Rehman^a & Sultanat^a

^a Department of Chemistry , Aligarh Muslim University , Aligarh, India

Published online: 23 Apr 2010.

To cite this article: M. Mushfiq , A. R. Khan , Afreen Shamim , Rakhshanda Rehman & Sultanat (2010) Synthesis of Acylated Steroidal Olefins and Their Derivatives, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 40:10, 1508-1515, DOI: <u>10.1080/00397910903098714</u>

To link to this article: http://dx.doi.org/10.1080/00397910903098714

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

Synthetic Communications[®], 40: 1508–1515, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 0039-7911 print/1532-2432 online DOI: 10.1080/00397910903098714

SYNTHESIS OF ACYLATED STEROIDAL OLEFINS AND THEIR DERIVATIVES

M. Mushfiq, A. R. Khan, Afreen Shamim, Rakhshanda Rehman, and Sultanat

Department of Chemistry, Aligarh Muslim University, Aligarh, India

Acylation of cholest-5-ene and cholest-5-ene 3-one with anhydrides in the presence of zinc chloride and characterization of products thus obtained on the basis of elemental analysis, spectral data, and chemical transformations are reported.

Keywords: Acetic anhydride; anhydrous sodium sulfate; Baeyer–Villiger oxidation; carbon tetrachloride; sodium bicarbonate solution (5%); zinc chloride

Acylation has shown interesting results,^[1–3] and in the Friedel–Crafts method, the β , γ -unsaturated ketone is the main product.^[4–6] No attempt has been reported of similar studies on steroidal olefins, and our continued interest in oxygen-containing steroids^[7–9] prompted us to investigate similar reactions with steroidal olefins.

Cholest-5-ene(1),^[10] on treatment with acetic anhydride and zinc chloride, afforded two products with melting points of 92 °C (3) and 125 °C (4) (Figure 1), which were almost identical in terms of composition and infrared (IR) spectral values (Table 1). Distinguishing the isomeric products was made possible with the help of ¹H NMR spectra. Compound 3 showed a distorted doublet at $\delta 2.94$ with J = 5.5 Hz for one proton ascribable to C6- α H (equatorial),^[11] making the acetyl group β (axial) oriented. For compound 4, the peak for the C6-proton was observed at $\delta 3.25$ with J = 11.9 Hz (β , axial-H), making the acetyl group α -oriented.

The chemical shift for the C4-vinylic proton is influenced by the orientation of the C6-acetyl group. In compound **3**, the proton appears at $\delta 5.67$ (C6 β -acetyl), whereas in its isomer (**4**), the same proton appeared at relatively upfield $\delta 4.99$ because of the carbonyl cone effect possible when the acetyl group is equatorially oriented.^[11]

This stereochemical assignment of the acetyl group in compounds 3 and 4 is strongly supported by the observation that under electron-impart mass spectrometry (EI-MS), the loss of the β -oriented acetyl group in compound 3 is much faster than the same loss in compound 4.

Received March 19, 2009.

Address correspondence to Rakhshanda Rehman, Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India. E-mail: rakhshandaorg@rediffmail.com

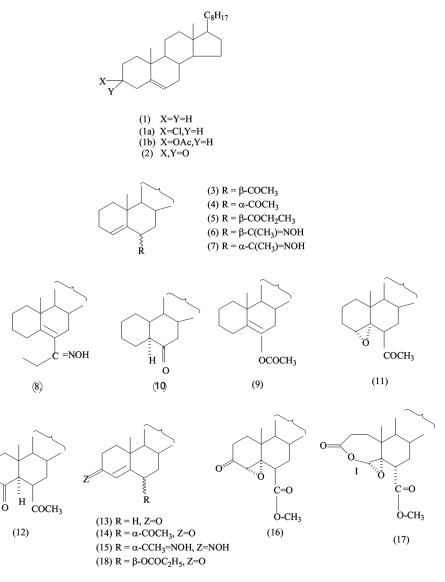


Figure 1.

The same substrate (1) under similar conditions, using propanoic anhydride and zinc chloride, furnished only one compound (mp 99 °C) characterized as 6β propionyl cholest-4-ene (5). The stereochemical assignment of the propionyl group (axial) is based on the observation of a multiplet at $\delta 2.88$ (W1/2 = 3 Hz) for one proton at C6 (equatorial). The elemental analysis and IR spectral values (Table 1) for the compound are in full agreement with the structure (5).

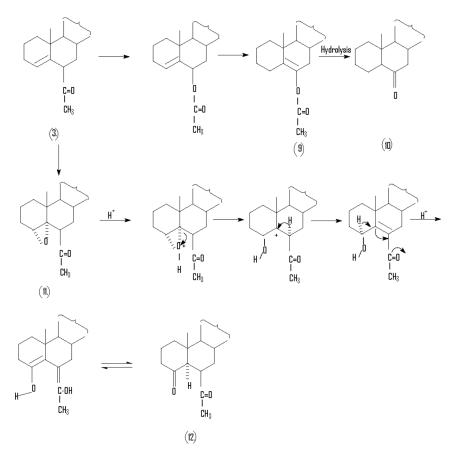
The formulations 3, 4, and 5 find further support on the basis of preparation of simple derivatives. The compounds 3–5 afforded the corresponding oximes 6, 7, and 8, respectively.

1509

			в т		Tame 1. rutary used and opportant data of the volupoution	a or any componing	
		, fou	Analysis (%), found (calculated)	(pç			
Compound	Composition	С	Н	z	IR (KBr/NuJol) (v max cm ⁻¹)	¹ H NMR (100 Hz)	Mass EI (m/z)
3	$\mathrm{C}_{29}\mathrm{H}_{48}\mathrm{O}$	84.40 (84.46)	11.54 (11.65)		1710 (C=O), 1650 (C=C)	5.67 (1H, m, C4H), 2.94 (1H, dis.d, <i>I</i> =55H7 (56%H) 2.14 (3H s	412 (M ⁺), 397 (M-CH ₃), 384 (M-CO/C ₂ H ₄), (M-CH ₂ -
						CH ₃ CO), 0.90, 0.87, 0.84, 0.67 (other methyl protons)	= C=0, 369 (397-CO)
4	$C_{29}H_{48}O$	84.41 (84.45)	11.55		1710 (C=O),	4.99 (1H, m, C4H), 3.25 (1H, dis.d,	412 (M ⁺), 397 (M-CH ₃), 384
		(04.40)	(c0.11)		(n=n) (COI	J = 11.9 HZ COPIT), 2.17 (3H, S, CH ₃ CO), 1.09, 0.88, 0.85, 0.67	$(M-CU/C_{2H4})$, 3/0 (M-CH2- = C=O), 369 (397-CO)
v	$C_{2,0}H_{2,0}O$	84 41	11 78	I	1710 1650	(ouner memyl prouons) 5.65.(1H m C4H) 2.8.(1H m	(+M) 927
)	000000	(84.43)	(11.81)			$W1/2 = 3 Hz. C6\alpha H). 2.4 (2H. q.$	
						COCH ₂ CH ₃), 1.8, 1.63, 1.2, 1.08,	
						0.85, 0.7 (other methyl protons)	
9	$C_{29}H_{49}NO$	81.36	11.50	3.11	3250 (OH),	8.67 (1H, s, C=NOH), 5.54 (1H,	427 (M ⁺), 412 (M-CH ₃), 409
		(81.49)	(11.47)	(3.27)	1655-1615	m, C4H), 2.85 (1H, dis.α,	$(M-H_2O), 384 (M-CH_2 = C=O)$
					(C=C, C=N)	$J = 4.7 \text{ Hz}$, C6 α -H), 1.80 (3H, s,	369
						CH ₃ -C=NOH), 1.02, 0.90, 0.87,	M- $CH_2 = C = O (M - CH_3 - $
						0.81, 0.65 (other methyl protons)	C=N-O-H)
7	$C_{29}H_{49}NO$	81.38	11.41	3.18	3280 (OH),	5.0 (1H, m, C4-H), 3.0 (1H, m,	427 (M ⁺), 412, 409, 384, 369
		(81.49)	(11.47)	(3.27)	1640 - 1620	$W1/2 = 8 Hz$, C6 β -H), 1.8 (3H,	
					(C=C, C=N)	s, CH ₃ .C=N-OH), 1.43, 1.33, 1.26, 0.05, 0.82, (244:22, 2024):-1	
						protons)	
×	$C_{30}H_{51}NO$	81.58	11.59	3.11	3280, 1660	3.25 (2H, m, ClH ₂), 1.23, 1.2, 0.93,	
		(81.56)	(11.63)	(3.17)		0.85, 0.77 (methyl protons).	
9	$C_{29}H_{48}O_2$	81.36	11.28		1720 (CH ₃ CO),	2.17 (3H, s, CH ₃ COO), 1.06, 0.9,	428 (M ⁺), 413 (M-CH ₃), 386
		(81.30)	(11.21)		1660 (C=C)	0.87, 0.84, 0.62 (other methyl	(M-CH ₂ CO), 385 (M-CH ₃ CO),
;	:					protons)	369 (M-CH ₃ COO)
11	$C_{29}H_{48}O_2$	81.34 (81.30)	11.26 (11.21)	I	1710, 860 (epoxy ring)	3.29 (1H, d, <i>J</i> = 12.5 Hz, C4 β-H), 2.86 (1H, d, <i>J</i> = 4.1 Hz, C6 α-H),	428 (M ⁺), 399 (M-CHO), 386, 385, 368

Table 1. Analytical and spectral data of the compounds

Downloaded by [New York University] at 04:54 01 June 2015


428 (M ⁺), 413, 400, 386, 315 (M-C ₈ H ₁₇)	426 (M ⁺)		I		
2.17 (3H, s, CH ₃ CO), 1.11, 0.99, 0.87, 0.84, 0.62 (other methyl protons) 2.92 (1H, m, C6 α –H) 2.81 (1H, d, $J = 3.8$ Hz, C5 α -H), 2.2 (2H, m, C3H ₂), 2.05 (3H, s, CH ₃ CO), 1.12, 0.92, 0.88, 0.84, 0.68 (other	methyl protons) 5.96 (1H, s. C4-H), 3.2, (1H, m, W1/2 = 9 Hz, C6 β-H), 2.13 (3H, s, CH3-C0, 1.25, 1.0, 0.9, 0.8, 0.7	 (outel metulyi protons) 7.0 (2H bs, two NOH), 5.57 (1H, s, C4-H), 2.81 (1H, m, C6β-H), 2.11 (3H, bs, CH₃-C=NOH), 1.2, 0.91, 0.8, 0.6 (other methyl methyl methyl 	$\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	4.0 (1H, s, C4 β -H), 3.5 (3H, s, C0CH ₃), 3.1 CO), 3.1 (1H, bm, W1/2 = 10 Hz, C6 β -H), 2.56 (2H, bm, C ₂ -H ₃), 1.28, 1.12, 1.01, 0.8, 0.7 (other methyl	5.7 (1H, s, C4-H), 5.45 (1H, m, W1/2=8 Hz, C6 ∞ -H), 2.36 (4H, bm, C ₂ -H ₂ and CH ₃ -CH ₂ -CO), 1.18, 1.1, 0.9, 0.8, 0.7 (other methyl protons)
1720–1680 (more than one CO)	1710 (C=O), 1680 (C=C-CO), 1615 (C=C)	3240, 1650, 1630	1740, 1705, 910 (epoxy)	1750 br, 910	1740, 1680
I	I	6.08 (6.13)			
11.24 (11.21)	10.78 (10.86)	10.51 (10.59)	10.09 (10.11)	9.72 (9.76)	10.49 (10.59)
81.34 (81.30)	81.61 (81.63)	76.22 (76.26)	75.92 (75.93)	73.35 (73.37)	78.81 (78.89)
C ₂₉ H ₄₈ O ₂	C ₂₉ H ₄₆ O ₂	$C_{29}H_{48}N_2O_2$	C ₂₉ H ₄₆ O ₄	C ₂₉ H ₄₆ O ₅	C ₃₀ H ₄₈ O ₃
12	14	15	16	17	18

Compound **3** under Baeyer–Villiger oxidation conditions using m-chloroperbenzoic acid gave four products identified as 6β -acetoxycholestan-5-ene (**9**), 5α -cholestan-6-one (**10**),^[12] [normal Baeyer–Villiger (B.V.) product], 6β -acetyl- 4α ,5-epoxy- 5α -cholestane (**11**), and 6β -acetyl- 5α cholestan-4-one (**12**). Scheme 1 explains the formation of these products starting from compound **3**.

Cholest-5-ene-3-one $(2)^{[13]}$ on treatment with acetic anhydride in the presence of zinc chloride afforded two products: cholest-4-en-3-one $(13)^{[13]}$ and 6α -acetyl cholest-4-en-3-one (14). Compound 13 is a simple isomerized product that refuses the Friedel–Crafts reaction because the double bond is in conjugation with the carbonyl group, whereas the compound 14 is obtained by the Friedel–Crafts reaction before the isomerization can take place.

The characterization of **14** is based on the ¹H NMR spectrum, which gave two signals of interest at $\delta 3.2 (W1/2 = 9 Hz)$ and $\delta 5.96$ for one proton each. These can be ascribed to C6 β -H and C4-vinylic H, and hence the acetyl group at C6 is α -oriented (equatorial).

Compound 14, on oximation, gave a compound with a melting point of 145 °C, which was analyzed to show two nitrogen atoms. In its IR spectrum, the carbonyl

ŝ
Ξ
20
une
Ju
0
4
04:5
4
-
at
5
sity
rs
é
nive
Ч
IJ
rk
<u>`</u>
\succ
≥
e
Ž
~
.ط
ed
qe
g
nlo
N
20
ă

		Table 2.	Table 2. Substrate, reagent, and the products	oducts		
Substrate (wt/mol)	Reagent	Product	Solvent system for elutions	Crystallized form	Yield (g/mol)	Mp (°C)
1 , 2.5 g, 0.0067 mol	$(CH_3CO)_2O \cdot ZnCl_2$	3	Petrol/ether 100:2	MeOH	1.15 g, 0.003 mol	92
		4	Petrol/ether 100:5	MeOH	0.63 g, 0.0015 mol	125
$2 \mathrm{g}, 0.005 \mathrm{mol}$	$(C_2H_5CO)_2O \cdot ZnCl_2$	5		MeOH	0.75 g, 0.0017 mol	66
2.3 g, 0.0078 mol	$(CH_3CO)_2O \cdot ZnCl_2$	13	Petrol/ether 25:1	MeOH	0.5 g, 0.001 mol	80 (81)
0.0078		14	Petrol/ether 16:1	MeOH	0.62 g, 0.001 mol	100
1g	$(C_2H_5CO)_2O \cdot ZnCl_2$	13	Petrol/ether 25:1	MeOH	0.06 g, 0.00015 mol	80
		18	Petrol/ether 18:1	MeOH	0.7 g, 0.0015 mol	119
3 , 2 g, 0.005 mol	NH ₂ OH · HCl	9		MeOH and CH ₃ COCH ₃	2 g, 0.003 mol	184
4 , 2 g, 0.005 mol	NH ₂ OH · HCl	7			$0.7 \mathrm{g}, 0.0017 \mathrm{mol}$	Oil
5 , 1 g, 0.002 mol	NH ₂ OH · HCl	8		MeOH	1 g, 0.0017 mol	187
3 , 2.5 g, 0.006 mol	Meta-chloroperbenzoic acid	6	Separated	MeOH	0.28 g, 0.0007 mol	98
		10	Prep. TLC	MeOH	0.52 g, 0.001 mol	68 - 70
		11			0.62 g, 0.001 mol	lio
		12			0.8 g, 0.0018 mol	Oil
14 , 2g	NH ₂ OH · HCl	15	Petrol	MeOH and CH ₃ COCH ₃	0.5 g, 0.001 mol	145
	Meta-chloroperbenzoic acid	16	Petrol/ether 15:1		0.5 g, 0.001 mol	Oil
		17	Petrol/ether 10:1	I	0.8 g, 0.0017 mol	Oil

band was absent; therefore, it can be formulated as 6α -acetylcholest-4-en-3-one-1',3-dioxime (15).

Baeyer–Villiger oxidation of 6α -acetylcholest-4-en-3-one (14) afforded methyl 4 α -5-epoxy-5 α -cholestan-3-oxo- 6α -carboxylate (16) and methyl 3-oxo- $4\alpha\alpha$,5-epoxy-A-homo-5- α -cholestan-4-oxo-6- α -carboxylate (17). A similar attempt using propionic anhydride–zinc chloride with cholest-5-ene-3one (2) gave the propionoxy derivative (18). The data (Table 1) are in full agreement with the structure being 6β -propionoxy-cholest-4-ene-3-one (18).

Similar treatment to 3β -chlorocholest-5-ene $(1a)^{[14]}$ resulted in simple replacement of chlorine by the acetoxy group, whereas the 3β -acetoxy cholest-5-ene $(1b)^{[15]}$ completely refused to react under the conditions.

EXPERIMENTAL

General Procedure for Acylation

A solution of cholest-5-ene (1) (2.5 g, 0.007 mol) in carbon tetrachloride (40 ml) was added in small portions to a well-stirred mixture of acetic anhydride (20 ml) and dry zinc chloride (1 g, 0.007 mol) over a period of 40–45 min. The temperature of the reaction mixture was maintained between 0 and 5 °C by external cooling. After the addition was complete, stirring was continued for 8 h at room temperature under anhydrous conditions. The reaction mixture was then poured into ice-cooled water. The organic matter was extracted with carbon tetrachloride; washed successively with water, sodium bicarbonate solution (5%), and water; and then dried over anhydrous sodium sulfate. Evaporation of solvent under reduced pressure afforded an oil, which was chromatographed over silica gel (50 g). The column was eluted with light petroleum ether to provide different fractions with increasing proportions of ether as shown in Table 2.

Baeyer–Villiger oxidation was carried out according to the literature procedure,^[16] and the products are given in Table 2.

Oximation of the ketones as reported was carried out following the procedure reported in the literature,^[17] and the products are listed in Table 2.

REFERENCES

- Hoffmann, M. R.; Tsushima, T. Acylation of olefins by acetyl hexachloroantimonate: Selective formation of β,γ-unsaturated ketones under kinetic control and mechanistic rationale as an ene reaction. J. Am. Chem. Soc. 1977, 99(18), 2008. See also Kondakov, I. L. Zh. Russ., Fiz-Khim-O-va. 1892, 24, 309 and Blanc, G. Bull. Soc. Chim. Fr. 1898, 19, 699.
- 2. Olah, G. A. Friedel-Crafts and Related Reactions; John Wiley: New York, 1964; vol. 3.
- 3. Groves, J. K. The Friedel-Crafts acylation of alkenes. Chem. Soc. Rev. 1972, 1, 73.
- 4. Deno, N. C.; Chafetz, H. Acetylation of 1-methylcyclohexene. J. Am. Chem. Soc. 1952, 74, 3940.
- (a) Groves, J. K.; Jones, N. Aliphatic Friedel–Crafts reactions, part VI: Preparation of βγ unsaturated ketones by the acetylation of substituted cyclohexenes. J. Chem. Soc. (C) 1968, 2215; (b) Groves, J. K.; Jones, N. Aliphatic Friedel–Crafts reactions, part VIII:

Preparation of unsaturated ketones by the acetylation of 1-alkylcyclopentenes. J. Chem. Soc. (C) 1969, 608.

- 6. Beak, P.; Berger, K. R. Scope and mechanism of the reaction of olefins with anhydrides and zinc chloride to give $\beta\gamma$ -unsaturated ketones. J. Am. Chem. Soc. **1980**, 102, 3848.
- 7. Mushfiq, M.; Mudgal, G.; Manuel, T.; Shamim, A. Synthesis of some new arylmethylidene steroidal compounds. J. Chem. Res., Synop. 1997, 12, 474.
- Mushfiq, M.; Mudgal, G. Synthesis of some steroidal 1,5 benzothiazepine derivatives in the stigmastane series. J. Chem. Res., Synop. 1992, 5, 168.
- Mushfiq, M.; Iqbal, N. Synthesis of some steroidal 1,5 benzothiazepine derivatives. J. Ind. Chem. Soc. 1988, 65, 132.
- Anagnostopoules, C. E.; Fieser, L. F. Nitration of unsaturated steroids. J. Am. Chem. Soc. 1954, 76, 532.
- Bahacca, N. S.; Williams, D. H. Applications of NMR Spectroscopy in Organic Chemistry; Holden Day: San Francisco, 1964.
- Shoppee, C. W.; Jenkins, R. H.; Summers, G. H. R. Steroids and Walden inversion, part XXXIX: The halogenation of 5α-cholestan-6-one and pyrolysis of 5-chloro-5αcholestan-6-one. J. Chem. Soc. 1958, 1657.
- Fieser, L. F. Cholestrol and companions VII: Steroidal dibromides. J. Am. Chem. Soc. 1953, 75, 5421.
- Baker, R. H.; Squire, E. N. Derived steroids, 1: Cholesteryl ketones. J. Am. Chem. Soc. 1948, 70, 1487.
- 15. Fieser, L. F.; Fieser, M. Steroids; Reinhold: New York, 1959.
- Ahmad, M. S.; Siddiqui, A. H.; Shafiullah. Baeyer–Villiger oxidation of 3βacetoxycholest-5 ene-7-one and cholest-5 ene-7-one. *Ind. J. Chem.* 1970, 8, 786.
- Ahmad, M. S.; Shafiullah; Mushfiq, M. Azasteroids from 3α,5α-cyclocholestan-6-one and 3β-bromo-5α-cholestan-6-one. *Aust. J. Chem.* 1971, 24, 213.