Article

Indium Catalyzed Hydrofunctionalization of Styrene Derivatives Bearing Hydroxy Group with Organosilicon Nucleophiles

Yuji Kita, Tetsuji Yata, Yoshihiro Nishimoto, and Makoto Yasuda

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02739 • Publication Date (Web): 11 Dec 2017 Downloaded from http://pubs.acs.org on December 11, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Indium Catalyzed Hydrofunctionalization of Styrene Derivatives Bearing Hydroxy Group with Organosilicon Nucleophiles

Yuji Kita,[†] Tetsuji Yata,[†] Yoshihiro Nishimoto,^{*,‡} and Makoto Yasuda^{*,†}

[†]Department of Applied Chemistry and [‡]Frontier Research Base for Global Young Researchers Center for Open Innovation Research and Education (COiRE), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Supporting Information Placeholder

ABSTRACT

Hydrofunctionalization is one of the most important transformation reactions of alkenes. Herein, we described the development of an indium-triiodide-catalyzed hydrofunctionalization of alkenes bearing a hydroxy group using various types of organosilicon nucleophiles. Indium triiodide was the most effective catalyst, whereas typical Lewis acids such as TiCl₄, AlCl₃, BF₃·OEt₂ were ineffective. Many functional groups were successfully introduced, and these resulted in yields of 31 to 86%. Various styrene derivatives were also applicable to this reaction. Mechanistic investigation revealed that the present hydrofunctionalization proceeded through Brønsted acid-catalyzed intramolecular hydroalkoxylaiton of alkenes followed by InI₃-catalyzed substitution reaction of cyclic ether intermediates.

E = alkyl, alkenyl, alkynyl, cat. InX₃ allenyl, cyano α-carbonylalkyl Versatile Functional Groups Formal Hydrofunctionalization

Main Text

INTRODUCTION

Alkenes are important fundamental materials in organic synthesis and industrial chemistry, and many useful transformations of alkenes have been established.¹ Therefore, the direct addition reaction of alkenes with various reagents such as electrophilic, nucleophilic, and radical ones to give functionalized alkanes with high selectivity and high step economy is highly desired even now. In this context, many examples for hydrofunctionalization of alkenes through the addition of E-H (E =C, O, N, P, and S) to alkenes have already been reported.² One example involves the hydrofunctionalization of Michael acceptors such as α,β -unsaturated carbonyl compounds or nitriles with a variety of organosilicon nucleophiles, which is a well-developed method³ (Scheme 1-A). However, the application of less-polar alkenes to the process of hydrofunctionalization has been insufficiently developed, and available organosilicon nucleophiles are limited to silvl enolates, silvl cyanides and silvl azides⁴ (Scheme 1-B). Our group also reported the regioselective hydrofunctionalization of simple alkenes with silvl ketene acetals and a stoichiometric amount of indium^{4g} or bismuth salts^{4f} through carboindation or carbobismuthination, respectively. Herein, the regioselective hydrofunctionalization of less-polar alkenes bearing a hydroxy group with organosilicon nucleophiles was accomplished in the presence of catalytic amount of indium trihalide (Scheme 1-C). The present reaction proceeded through a unique reaction mechanism including Brønsted acid-catalyzed hydroalkoxylaiton of alkenes followed by InI₃-catalyzed substitution reaction of cyclic ether intermediates, which is quite different from our previously reported method

through carbometalation. In the present hydrofunctionalization, various organosilicon nucleophiles as well as silyl ketene acetals were allowed to use. Moreover, not only mono-substituted alkenes but also di- and tri-substituted alkenes, which often showed low reactivity for previously developed hydrofunctionalization,^{4c,4f,4g,4j} were applicable. It is noted that a wide range of functional groups could be introduced into alkenes via a single synthetic operation.⁵

Scheme 1. (A) Michael Addition; (B) Hydrofunctionalization by Organosilicon Nucleophiles with Less-polar Alkenes; (C) This Work Allows the Introduction of Versatile Functional Groups to Alkenes

E = alkyl, α-carbonylalkyl, alkenyl, alkynyl, allenyl, cyano, azide, sulfide

RESULTS AND DISCUSSION

Optimization of Reaction Conditions. The reaction of styrene with silvl ketene acetal **2a** was attempted in the presence of a catalytic amount of indium tribromide, but instead of obtaining the hydrofunctionalization product, the polymerization of styrene occurred (Scheme 2-A). Interestingly, we found that *o*-(2-hydroxyethyl)styrene (**1a**) afforded the target product **3aa** in a high yield (Scheme

-B).

Scheme 2. Investigation of Indium Bromide Catalyzed Reaction of Silyl Ketene Acetal with

Styrene (A) or Styrene Derivative 1a (B)

That result prompted us to investigate the effect of acid catalysts on the hydrofunctionalization of **1a** with **2a** (Table 1). As shown in Scheme 2-(B), InBr₃ gave **3aa** in a 76% yield (entry 1). GaBr₃ also afforded **3aa** in approximately the same yield (entry 2). On the other hand, the desired product **3aa** was not obtained, and starting alkene **1a** and TMS-**1a** were recovered in the cases of the reaction using InCl₃, In(OTf)₃ or Bil₃ (entries 3-5). The reaction catalyzed by InI₃ raised the yield of **3aa** to 92% (entry 6). Without the addition of **2a**, only cyclic ether **4** was produced in a high yield (entry 7). Thus, the hydrofunctionalization product could be obtained via **4**. Typical Lewis acids such as ZnCl₂, AlCl₃, and TiCl₄ were ineffective for the desired hydrofunctionalization and either gave the cyclic ether **4** or recovered the starting material (entries 8-10). The reaction using BF₃·OEt₂ resulted in complicated mixture (entry 11). A cationic gold catalyst, which is often used to functionalize alkenes,⁶ was ineffective (entry 12). The reaction catalyzed by HI aq. would not afford the product **3aa**, but did produce cyclic ether **4** in a high yield (entry 13).

Table 1. The Effect of Acid Catalysts on the Hydrofunctionalization of Styrene Derivative 1a

with Organosilicon Nucleophile 2a^a

			yield (%) ^b			recovery of 1a (%)
entry	catalyst	time (h)	3 aa	4	TMS-1a	
1	InBr ₃	24	76	0	0	0
2	GaBr ₃	24	72	0	0	0
3	InCl ₃	96	0	16	33	15
4	In(OTf) ₃	24	0	40	3	5
5	BiI3	72	0	0	91	0
6	InI ₃	24	92 (71) ^c	0	0	0
7 ^d	InI ₃	24	0	90	0	0
8	ZnCl ₂	96	0	0	45	8
9	AlCl ₃	24	1	56	0	0
10	TiCl4	48	0	57	0	0
11	BF ₃ ·OEt ₂	24	0	0	0	0
12	AuCl ₃ /AgOTf	24	0	52	0	0
13	HI aq.	24	0	77	0	0

^a1st step: 1a (0.5 mmol), catalyst (0.05 mmol), ClCH₂CH₂Cl (1 mL), 80 °C, 24 h. 2nd step: 2a (0.75 mmol),

rt, 2 h. The reaction was quenched with Bu₄NF (1 M in THF). ^bYields were determined by ¹H NMR using internal standards (bromoform). ^cIsolated yield. ^dThe 2nd step was not carried out.

Substrate Scope of Organosilicon Nucleophiles. Reactions of 1a with various organosilicon nucleophiles 2 catalyzed by InI₃ were carried out (Table 2). The bulky silvl ketene acetal 2b was suitable for this reaction system to provide the cyclohexane derivative **3ab** in high yield (entry 1). The silvl enol ether 2c afforded the target product 3ac (entry 2). Hydrofunctionalization with the silvl cyanide 2d occurred (entry 3), but the reported method^{4b} that uses a Brønsted acid for hydrocyanation of styrene gave only cyclic ether 4 (see Scheme S1 in Supporting Information for detail). Methallylsilane 2e also provided the hydrofunctionalization product in moderate yield (entry 4).⁷ Reactions using allylsilane 2f, alkenylsilane 2g, alkynylsilane 2h, and propargylsilane 2i proceeded efficiently in the presence of a catalytic amount of InI₃/Me₃SiBr (entries 5-8). The addition of Me₃SiBr was necessary for the reactions using nucleophiles **2f-2i**, which have a relatively low level of nucleophilicity. In these cases, the combination of InX₃ with Me₃SiX showed high Lewis acidity.⁸ To the best of our knowledge, the reaction using 2i is the first example of an intermolecular Markovnikov hydroallenylation toward less-polar alkenes.⁹ Heteroatom nucleophiles such as silyl sulfide 2j and silvl azide 2k were applicable to this reaction system (entries 9 and 10).¹⁰

^{*a*}1st step: **1a** (0.5 mmol), InI₃ (0.05 mmol), ClCH₂CH₂Cl (1 mL), 80 °C, 24 h. 2nd step: **2** (0.75-2.5 mmol), Me₃SiBr (0-0.1 mmol), rt, 2-14 h (See Experimental Section for detail). The reaction was quenched with Bu₄NF (1 M in THF). ^{*b*}Isolated yield. ^{*c*}InI₃ (20 mol %). ^{*d*}InI₃ (20 mol %), 70 °C at the 2nd step. ^{*e*}35 °C at the 2nd step. ^{*f*}50 °C at the 2nd step.

Substrate Scope and Limitation of Styrene Derivatives. The scope of styrene derivatives with a hydroxy moiety is shown in Table 3. In all cases, the nucleophilic attack of 2a took place at a benzylic position exclusively and other regioisomers were not formed. The β -methylstyrene derivative 1b gave the product 3ba, and the reaction of the α -methylstyrene derivative 1c formed vicinal quaternary carbon atoms efficiently (entries 1 and 2). The reaction using the alkene 1d, which is not a styrene derivative, provided no hydrofunctionalized product 3da and complicated mixture was obtained (entry 3). The result suggested that the present reaction system was limited to styrene derivatives. The styrene derivatives 1e-1l, which have different carbon frameworks, were also suitable to this reaction system. The reaction of β -(hydroxyalkyl)-substituted styrenes 1e and 1f afforded the target products in modest yields (entries 4 and 5) while α -(hydroxyalkyl)-substituted styrenes swere applicable to this

reaction system. The reaction of styrene derivatives bearing electron donating groups **1i** and **1j**, as well as electron withdrawing groups **1k** and **1l**, proceeded smoothly to give target products **3ia-3la** in moderate to high yields (entries 8-11). The trisubstituted alkene **1m** was suitable for this reaction system (entry 12). The intermolecular addition of silyl enolates to trisubstituted alkenes without electron-withdrawing group has not been reported and the use of disubstituted alkenes usually resulted in low yields due to their steric hindrance.^{4f,4g} Therefore, it is advantage of this work that trisubstituted substrate was applicable and disubstituted alkenes gave moderate to high yield.

Table 3. Scope of Hydrofunctionalization Using Various Styrene Derivatives^{*a,b*}

^{*a*}1st step: **1** (0.5 mmol), InI₃ (0.05 mmol), ClCH₂CH₂Cl (1 mL), rt-80 °C, 1-120 h (See Experimental Section for detail). 2nd step: **2a** (0.75 mmol), rt, 2 h. The reaction was quenched with Bu₄NF (1 M in THF). ^{*b*}Corresponding cyclic ethers were obtained without addition of **2a** (see Table S1 in Supporting Information for detail). ^{*c*}Isolated yield. ^{*d*}**2a** (3 equiv). ^{*e*}**2a** (4 equiv).

Mechanistic Investigation. Hydrofunctionalization with styrene derivative **1n**, including a methoxyalkyl group, was attempted, but gave neither the target product **5** nor the cyclic ether **4** (Scheme 3-A). Moreover, the hydroalkoxylation of styrene with methanol as an external alcohol in the presence of a catalytic amount of InI₃ afforded no benzyl ether **6** (Scheme 3-B). These control experiments suggested that the intramolecular hydroxy group is necessary for this type of hydrofunctionalization. Taking into account the result of entry 13 in Table 1, the hydroalkoxylation of **1a** can be catalyzed by a Brønsted acid, which can be generated via the alcoholysis of InI₃ with **1a**

*in situ.*¹¹ Thus, control experiments were carried out as shown in Scheme 4 to identify the active catalyst species for hydroalkoxylation. InI₃ or HI aq. efficiently catalyzed the hydroalkoxylation while the addition of K_2CO_3 , or 2,6-di(*tert*-butyl)-4-methylpyridine¹² as a proton scavenger, entirely prevented the InI₃-catalyzed hydroalkoxylation of **1a**. Therefore, these results indicated that *in situ*-generated Brønsted acid promoted the formation of the cyclic ether **4**.

Scheme 3. Investigation of Styrene Derivatives without OH Group.

Scheme 4. Hydroalkoxylation in the Presence of a Proton Scavenger

Proposed Mechanism. A proposed mechanism for the InI_3 -catalyzed hydrofunctionalization of **1a** with an organosilicon nucleophile (Me₃Si*Nu*) is shown in Scheme 5. A trace amount of InI_3 undergoes alcoholysis with **1a** to give HI. The alkene moiety of **1a** is protonated and then alkoxylation occurs to afford cyclic ether **4**. The interaction between InI_3 and the ethereal oxygen of **4** cleaves the oxygen-carbon bond to generate carbocation **9**. A nucleophilic attack of the organosilicon compound to **9** occurs to produce the hydrofunctionalization product **10**. Transmetalation of the alkoxylatium moiety of **10** with Me₃SiI regenerates the InI_3 catalyst. The indium trihalide catalyzed substitution reaction

of ethers by an organosilicon nucleophile (Me₃Si*Nu*) has been previously reported by our group.¹³ Target alcohol product **3** is obtained after quenching by Bu₄NF.¹⁴ In our previous reports^{4f,4g}, an indium trihalide coordinated to a carbon-carbon double bond and acted as a π Lewis acid to activate alkenes. Contrastively, in the present reaction, InI₃ mainly contributes to the generation of a Brønsted acid to transform an alkene into a cyclic ether intermediate and the substitution reaction of the intermediate with nucleophiles.

Scheme 5. Proposed Mechanism

Selective Functionalization of Alkenes. We demonstrated the selective functionalization of substrate **10** with two types of alkene moieties (Scheme 6).¹⁵ When **10** underwent our developed hydrofunctionalization using silyl ketene acetal **2a**, hydroalkylation took place selectively at the alkene moiety with a hydroxyalkyl group to afford product **120a** (Scheme 6-A). By contrast, when utilizing the BiBr₃-mediated hydrofunctionalization conditions,^{4f} polymerization of **10** just occurred. Moreover, the selective hydroazidation proceeded in the InI₃-mediated reaction of **10** with silyl azide **2k** to give **12-N₃** (Scheme 6-B). On the other hand, the reported iron-mediated hydroazidation¹⁶ using NaN₃ occurred at both alkene moieties of **10** to give product **13-N₃**. The other reported system using

Brønsted acid catalyst and Me₃SiN₃ as an azide source¹⁷ was employed to afford no hydroazidation product but a hydroalkoxylation intermediate and starting material **10**. The selective hydrocyanation of **10** with silyl cyanide **2d** was also observed under InI₃-catalyzed conditions to give **12od** exclusively, while the reported method^{4b} resulted in polymerization of **10** (Scheme 6-C). These results showed the advantage of the InI₃-catalyzed system for selective functionalization of the complex molecules.

Scheme 6. Selective Hydrofunctionalization of the Substrate 10 with Two Types of Alkene Moieties.

^a1) **1o** (0.5 mmol), InI₃ (10 mol %), ClCH₂CH₂Cl (10 mL), 5 °C, 17 h. 2) **2a** (1.5 mmol), rt, 12 h. ^{*b*}**1o** (0.2 mmol), BiBr₃ (0.3 mmol), **2a** (0.3 mmol) and CH₂Cl₂ (0.2 mL), rt, 8 h. ^c1) **1o** (0.5 mmol), InI₃ (10 mol %), ClCH₂CH₂Cl (10 mL), 5 °C, 5 h. 2) Me₃SiN₃ (**2k**, 1.5 mmol), rt, 17 h. ^{*d*}**1o** (0.5 mmol), NaN₃ (4.0 mmol), Fe₂(ox)₃·6H₂O (2.5 mmol), NaBH₄ (3.2 mmol), THF (20 mL) and H₂O (20 mL), 0 °C, 0.5 h. ^{*e*}**1o** (0.5 mmol), TfOH (25 mol %), Me₃SiN₃ (**2k**, 1.5 mmol), SiO₂ (1.25 g), CH₂Cl₂ (2.5 mL), rt, 1 h. ^{*f*}**1**) **1o** (0.5 mmol), InI₃ (10 mol %), ClCH₂CH₂Cl (10 mL), 5 °C, 19 h. 2) Me₃SiCN (**2d**, 2.5 mmol), rt, 35 h. ^{*g*}**1o** (0.5 mmol), TfOH (2.2 mmol), Me₃SiCN (**2d**, 2.1 mmol), PhCF₃ (4.5 mL), -5 °C, 1 h.

CONCLUSION

We have developed an InI₃ catalyzed hydrofunctionalization of alkenes with a hydroxyalkyl group using organosilicon nucleophiles such as silyl enolate, allylsilane, alkenylsilane, alkynylsilane, propargylsilane, silyl cyanide, silyl sulfide and silyl azide. Many functional groups that would be used for further elaboration were added to the alkene moiety in a single step. Various styrene derivatives were suitable for this reaction. It is noted that addition reaction of silyl enolate proceeded efficiently for not only monosubstituted alkenes but also multi-substituted ones compared with previously reported hydrofunctionalization. The selective functionalization of styrene derivatives with two alkene moieties was accomplished to show the preference of an alkene moiety with a hydroxyalkyl group. Mechanistic investigation showed that this hydrofunctionalization is composed of two steps: the hydroalkoxylation of an alkene catalyzed by a Brønsted acid and a sequential

substitution reaction of cyclic ether catalyzed by InI₃. This transformation of alkene to ether allowed us to synthesize alkenes with many types of functional groups, which cannot be introduced into alkenes in our previous works. Therefore, this work provides a novel method for functionalization of alkenes.

EXPERIMENTAL SECTION

General Information. New compounds were characterized by ¹H, ¹³C, ¹³C off-resonance techniques, COSY, HMQC, HMBC, IR, MS, HRMS. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained with TMS as internal standard. IR spectra were recorded as thin films. Bulb-to-bulb distillation (Kugelrohr) was accomplished at the oven temperature and pressure indicated. High-resolution mass spectra were obtained by magnetic sector type mass spectrometer. All reactions were carried out under nitrogen. All products were obtained as racemic mixtures.

Material. Dehydrated ClCH₂CH₂Cl was purchased and used without further purification. Organosilicon nucleophiles **2a**, **2d**, **2e**, **2f**, **2h** and **2k** are commercially available. Styrene derivatives **1a**, **1d**, **1e**, **1f**, **1g**, **1h**, **1l** and organosilicon nucleophiles **2b**, **2c**, **2g**, **2i** and **2j** were synthesized by literature procedures and spectral data of these compounds were shown below. Styrene derivatives **1b**, **1c**, **1i**, **1j**, **1k**, **1m**, **1n** and **1o** are new compounds, and synthetic method and spectral data of these compounds were shown below. All metal salt and Me₃SiBr are commercially available.

(1a) 2-(2-vinylphenyl)ethan-1- ol^{18}

To a three necked flask, THF (56 mL) and 1-bromo-2-vinylbenzene (4.15 g, 20 mmol) were added. This solution was cooled at -78 °C and *n*-BuLi (1.6 M hexane solution, 14 mL, 22 mmol) was dropped over 15 minutes. After stirring for 1.5 h at -78 °C, to the reaction mixture was dropped ethylene oxide (1.1 M in THF, 25 mL, 30 mmol) and the reaction mixture was stirred for 0.5 h at -78 °C. The mixture was warm to room temperature and quenched by sat. NH₄Cl aq. (25 mL). This solution was extracted with diethyl ether (20 mL x 3) and the collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (1.36 g, 45%). This is known compound and spectroscopic data were identical with those from literature.

(1b) 2-(2-(prop-1-en-1-yl)phenyl)ethan-1-ol

ω

To a three necked flask, THF (56 mL) and 1-bromo-2-(prop-1-en-1-yl)benzene (4.15 g, 20 mmol) were added. This solution was cooled at -78 °C and n-BuLi (1.6 M hexane solution, 14 mL, 22 mmol) was dropped over 15 minutes. After stirring for 1.5 h at -78 °C, to the reaction mixture was dropped ethylene oxide (1.1 M in THF, 25 mL, 30 mmol) and the reaction mixture was stirred for 0.5 h at -78 °C. The mixture was warm to room temperature and quenched by sat. NH₄Cl aq. (25 mL). This solution was extracted with diethyl ether (20 mL x 3) and the collected organic layer was dried

(MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (E/Z = 99: 1, 1.67 g, 51%). IR: (neat) 3359 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.43 (d, J = 5.5 Hz, 1H, 5-H), 7.23-7.11 (m, 3H, 6-H, 7-H and 8-H), 6.65 (dq, J = 15.6, 1.4 Hz, 1H, 9-H), 6.11 (dq, J = 15.6, 6.9 Hz, 1H, 10-H), 3.80 (t, J = 6.9 Hz, 2H, 1-H₂), 2.94 (t, J = 6.9 Hz, 2H, 2-H₂), 1.90 (dd, J = 6.9, 1.4 Hz, 3H, 11-H₃), 1.41 (s, 1H, OH); ¹³C NMR: (100 MHz, CDCl₃) 137.3 (s, C-3), 134.9 (s, C-4), 130.2 (d, C-8), 128.3 (d, C-9), 127.9 (d, C-10), 126.9 (d), 126.8 (d), 126.2 (d, C-5), 63.1 (t, C-1), 36.4 (t, C-2), 18.9 (q, C-11); MS: (CI, 70 eV) *m/z* 163 ([M + 1]⁺, 43); HRMS: (EI, 70 eV); Calculated (C₁₁H₁₄O) 162.1045 (M); Found: 162.1046.

(1c) 2-(2-(prop-1-en-2-yl)phenyl)ethan-1-ol

To a three necked flask, THF (56 mL) and 1-bromo-2-(prop-1-en-2-yl)benzene (3,49 g, 20 mmol) were added. This solution was cooled at -78 °C and n-BuLi (1.6 M hexane solution, 14 mL, 22 mmol) was dropped over 15 minutes. After stirring for 1.5 h at -78 °C, to the reaction mixture was dropped ethylene oxide (1.1 M in THF, 25 mL, 30 mmol) and the mixture was stirred for 0.5 h at -78 °C. The reaction mixture was warm to room temperature and quenched by sat. NH₄Cl aq. (25 mL). This solution was extracted with diethyl ether (20 mL x 3) and the collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography

(hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the
product (1.53 g, 47%). IR: (neat) 3359 (OH) cm ⁻¹ , 1639 (C=C) cm ⁻¹ ; ¹ H NMR: (400 MHz, CDCl ₃)
7.29-7.15 (m, 3H), 7.15-7.09 (m, 1H, 7-H), 5.23-5.17 (m, 1H, 10-H ^A), 4.89-4.82 (m, 1H, 10-H ^B), 3.81
$(t, J = 7.2 \text{ Hz}, 2\text{H}, 1-\text{H}_2), 2.92 (t, J = 7.2 \text{ Hz}, 2\text{H}, 2-\text{H}_2), 2.05 (s, 3\text{H}, 11-\text{H}_3), 1.39 (s, 1\text{H}, \text{OH}); {}^{13}\text{C}$
NMR: (100 MHz, CDCl ₃) 145.4 (s, C-9), 144.3 (s, C-8), 134.6 (s, C-3), 129.6 (d, C-4), 128.4 (d, C-
7), 126.9 (d), 126.3 (d), 115.2 (t, C-10), 63.7 (t, C-1), 36.1 (t, C-2), 25.3 (q, C-11); MS: (CI, 70 eV)
m/z 163 ([M + 1] ⁺ , 100); HRMS: (EI, 70 eV) Calculated (C ₁₁ H ₁₄ O) 162.1045 (M) Found: 162.1043.

(1d) (2-allylphenyl)methanol¹⁹

To a three necked flask, (2-bromophenyl)methanol (9.45 g, 50 mmol), hexane (50 mL), Et2O (5 mL), 3,4-dihydro-*2H*-pyran (5.12 g, 60 mmol) and Amberlyst15 (6.3 g) were added. After stirring for 45 minutes, the reaction mixture was purified by column chromatography (hexane, column length 11 cm, diameter 26 mm, silica 75 g and Amberlyst15 6.2 g) to give 2-((2-bromobenzyl)oxy)tetrahydro-2H-pyran (7.2 g, 53%).

To a three necked flask, magnesium turning (0.73 g, 30 mmol) and THF (10 mL) were added. Three drops of a solution of 2-((2-bromobenzyl)oxy)tetrahydro-2H-pyran (7.2 g, 27 mmol) in THF (12 mL) was dropped into the vessel, and then ten drops of 1,2-dibromoethane was added to the reaction mixture. The reminding THF solution of 2-((2-bromobenzyl)oxy)tetrahydro-2H-pyran was dropped into the reaction mixture over 10 minutes. After stirring for 15 minutes, the mixture was refluxed for

1 hour, and then cooled at 30 °C. A solution of allyl bromide (4.4 g, 36 mmol) in THF (10 mL) was dropped over 5 minutes. After stirring for 17 hours, the reaction mixture was quenched by sat. NH₄Cl aq. (30 mL) under ice bath. The solution was extracted by ethyl acetate (30 mL x 4). The collected organic layer was dried (MgSO₄) and the solvent was evaporated to give 2-((2-allylbenzyl)oxy)tetrahydro-2H-pyran (6.35 g, 100%).

To a three necked flask, 2-((2-allylbenzyl)oxy)tetrahydro-2H-pyran (6.27 g, 27 mmol), MeOH (38 mL) and 1N HCl aq. (38 mL) were added. After stirring for 20 hours at 50 °C, the reaction mixture was quenched by Et_2O (100 mL). The mixture was extracted by Et_2O (50 mL x 3) and the collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 60:40, column length 11 cm, diameter 26 mm, spherical silica gel) to give (2-allylphenyl)methanol as the target product (4.0 g, 100%). This is known compound and spectroscopic data were identical with those from literature.

(1e) (E)-5-phenylpent-4-en-1-ol²⁰

To a three necked flask, THF (250 mL) and LiAlH₄ (5.1 g, 130 mmol) were added. This solution was cooled at 0 °C and 5-phenylpent-4-yn-1-ol (4.28 g, 26 mmol) was added to the mixture and the reaction mixture was stirred for 1 h at 0 °C. After refluxing for 2 day, to the reaction mixture was dropped sat. potassium sodium tartrate aq. (100 mL) at 0 °C. This solution was extracted with diethyl ether (100 mL x 3) and the collected organic layer was washed by sat. NaCl aq. (100 mL). The organic

layer was dried (MgSO₄) and the solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (3,24 g, 77%). This is known compound and spectroscopic data were identical with those from literature.

(1f) (*E*)-4-phenylbut-3-en-1-ol 21

To a three necked flask, THF (21 mL) and LiAlH₄ (1.78 g, 47 mmol) were added. This solution was cooled at 0 °C and 4-phenylbut-3-yn-1-ol (2.34 g, 16 mmol) in THF (21 mL) was dropped to the mixture over 10 minutes. After refluxing for 15 h, the reaction mixture was quenched by Na₂SO₄·10H₂O at 0 °C. This mixture was filtered and the filtrate was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (2.21 g, 93%). This is known compound and spectroscopic data were identical with those from literature.

(1g) 5-phenylhex-5-en-1-ol²²

To a two necked flask, Pd(PPh₃)₄ (0.695 g, 0.6 mmol), 1,4-dioxane (40 mL), phenyl boronic acid (3.05 g, 24 mmol), 5-hexyne-1-ol (2.10 g, 20 mmol) and acetic acid (0.13 g, 2.0 mmol) were added. After stirring for 10 minutes at rt, the reaction mixture was stirred for 16 h at 80 °C. The reaction

mixture was filtered and the solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (3.17 g, 90%). This is known compound and spectroscopic data were identical with those from literature.

(1h) 4-phenylpent-4-en-1-ol²²

ОН

To a two necked flask, Pd(PPh₃)₄ (0.692 g, 0.6 mmol), 1,4-dioxane (60 mL), phenyl boronic acid (3.04 g, 24 mmol), 4-pentyne-1-ol (1.65 g, 20 mmol) and acetic acid (0.22 mL, 4.0 mmol) were added. The reaction mixture was stirred for 16 h at 80 °C. The mixture was filtered and the solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (2.60 g, 80%). This is known compound and spectroscopic data were identical with those from literature.

(1i) 5-(p-tolyl)hex-5-en-1-ol

$$m$$
 i 3 1
 p 5 4 2 OH

To a two necked flask, Pd(PPh₃)₄ (0.343 g, 0.297 mmol), 1,4-dioxane (20 mL), *p*-tolyl boronic acid (1.70 g, 12.5 mmol), 5-hexyn-1-ol (0.981 g, 0.999 mmol) and acetic acid (0.101 g, 1.68 mmol) were added. After stirring for 24 h at 80 °C, the reaction mixture was filtered through a short pad of celite and the filtrate was evaporated. The residue was purified by column chromatography (hexane/ethyl

acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (1.17 g, 61%). IR: (neat) 3444 (OH) cm⁻¹, 1624 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.29 (d, *J* = 8.2 Hz, 2H, *o*), 7.13 (d, *J* = 8.2 Hz, 2H, *m*), 5.24 (d, *J* = 1.4 Hz, 1H, 6-H^A), 5.01 (d, *J* = 1.4 Hz, 1H, 6-H^B), 3.62 (t, *J* = 6.3 Hz, 2H, 1-H₂), 2.51 (t, *J* = 7.7 Hz, 2H, 4-H₂), 2.34 (s, 3H, 7-H₃), 1.67-1.54 (m, 2H, 2-H₂), 1.54-1.41 (m, 2H, 3-H₂), 1.67-1.41 (br, 1H, OH); ¹³C NMR: (100 MHz, CDCl₃) 148.0 (s, C-5), 138.1 (s, *p*), 137.0 (s, *i*), 128.9 (d, *m*), 125.9 (d, *o*), 111.6 (t, C-6), 62.7 (t, C-1), 35.0 (t, C-4), 32.3 (t, C-2), 24.3 (t, C-3), 21.0 (q, C-7); MS: (EI, 70 eV) *m/z* 190 (M, 28); HRMS: (EI, 70 eV) Calculated (C₁₃H₁₈O) 190.1358 (M) Found: 190.1355.

(1j) 5-(4-methoxyphenyl)hex-5-en-1-ol

To a two necked flask, Pd(PPh₃)₄ (0.352 g, 0.305 mmol), 1,4-dioxane (20 mL), *p*-methoxy phenyl boronic acid (1.85 g, 12.2 mmol), 5-hexyn-1-ol (0.977 g, 9.95 mmol) and acetic acid (0.117 g, 1.95 mmol) were added. After stirring for 24 h at 80 °C, the reaction mixture was filtered through a short pad of celite and the filtrate was evaporated. The residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (0.993 g, 48%). IR: (neat) 3400 (OH) cm⁻¹, 1608 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.35 (d, J = 8.9 Hz, 2H, o), 6.86 (d, J = 8.9 Hz, 2H, m), 5.21 (s, 1H, 6-H^A), 4.98 (s, 1H, 6-H^B), 3.81 (s, 3H, OMe), 3.65 (t, J = 6.0 Hz, 2H, 1-H₂), 2.51 (t, J = 7.5 Hz, 2H, 4-H₂), 1.66-1.46 (m, 4H, 2-H₂)

and 3-H₂), 1.39 (s, 1H, OH); ¹³C NMR: (100 MHz, CDCl₃) 158.9 (s, *p*), 147.5 (s, C-5), 133.5 (s, *i*), 127.1 (d, *o*), 113.6 (d, *m*), 110.9 (t, C-6), 62.8 (t, C-1), 55.2 (q, OMe), 35.0 (t, C-4), 32.3 (t, C-3), 24.3 (t, C-2); MS: (EI, 70 eV) *m/z* 206 (M, 24); HRMS: (EI, 70 eV) Calculated (C₁₃H₁₈O₂) 206.1307 (M) Found: 206.1308.

(1k) 4-(4-chlorophenyl)pent-4-en-1-ol

To a two necked flask, Pd(PPh₃)₄ (0.352 g, 0.305 mmol), 1,4-dioxane (20 mL), *p*-chloro phenyl boronic acid (1.81 g, 11.6 mmol), 4-pentyn-1-ol (0.811 g, 9.64 mmol) and acetic acid (0.125 g, 2.08 mmol) were added. After stirring for 24 h at 80 °C, the reaction mixture was filtered through a short pad of celite and the filtrate was evaporated. The residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (0.715 g, 36%). IR: (neat) 3433 (OH) cm⁻¹, 1716 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.34 (d, J = 8.9 Hz, 2H), 7.29 (d, J = 8.9 Hz, 2H), 5.28 (d, J = 0.92 Hz, 1H, 5-H^A), 5.10 (d, J = 0.92 Hz, 1H, 5-H^B), 3.65 (t, J = 6.4 Hz, 2H, 1-H₂), 2.57 (t, J = 7.8 Hz, 2H, 3-H₂), 1.70 (tt, J = 7.8, 6.4 Hz, 2H, 2-H₂), 1.29 (s, 1H, OH); ¹³C NMR: (100 MHz, CDCl₃) 146.8 (s, C-4), 139.4 (s, *i*), 133.2 (s, *p*), 128.4 (d), 127.4 (d), 113.0 (t, C-5), 62.2 (t, C-1), 31.4 (t, C-3), 30.9 (t, C-2); MS: (EI, 70 eV) *m/z* 196 (M, 2); HRMS: (EI, 70 eV) Calculated (C₁₁H₁₃ClO) 196.0655 (M) Found: 196.0654.

(11) 4-(4-fluorophenyl)pent-4-en-1- ol^{22}

To a two necked flask, $Pd(PPh_3)_4$ (0.328 g, 0.3 mmol), 1,4-dioxane (20 mL), *p*-fluorophenyl boronic acid (1.69 g, 12 mmol), 4-pentyne-1-ol (0.839 g, 10 mmol) and acetic acid (0.13 g, 2.0 mmol) were added. The reaction mixture was stirred for 24 h at 80 °C. The mixture was filtered and the solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (0.341 g, 19%). This is known compound and spectroscopic data were identical with those from literature.

(1m) 2-(2-(but-2-en-2-yl)phenyl)ethan-1-ol

To a three necked flask, THF (35 mL) and 1-bromo-2-(but-2-en-2-yl)benzene (2.55 g, 12 mmol) were added. This solution was cooled at -78 °C and n-BuLi (1.6 M hexane solution, 9 mL, 13 mmol) was dropped over 15 minutes. After stirring for 1.5 h at -78 °C, to the reaction mixture was dropped ethylene oxide (1.1 M in THF, 16 mL,18 mmol) and the mixture was stirred for 0.5 h at -78 °C. The reaction mixture was warm to room temperature and quenched by sat. NH₄Cl aq. (15 mL). This solution was extracted with diethyl ether (20 mL x 3) and the collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (0.368 g, 17%, ratio of stereoisomer = 85:15). IR: (neat) 3352 (OH) cm⁻¹; ¹H NMR: (400

MHz, CDCl₃) major stereoisomer 7.30-7.19 (m, 3H, 4-H, 5-H and 6-H), 7.03 (dd, *J* = 5.6, 3.6 Hz, 1H, 7-H), 5.58 (qq, *J* = 6.5, 1.7 Hz, 1H, 10-H), 3.80 (dd, *J* = 7.0, 12.8 Hz, 2H, 1-H₂), 2.91-2.76 (m, 2H, 2-H₂), 1.96 (m, 3H, 11-H₃), 1.41-1.33 (br, 1H, OH), 1.37 (d, *J* = 6.5 Hz, 3H, 12-H₃); ¹³C NMR: (100 MHz, CDCl₃) major stereoisomer 142.3 (s, C-8), 136.7 (s, C-9), 135.3 (s, C-3), 129.5 (d, C-4), 128.8 (d, C-7), 126.8 (d), 126.6 (d), 122.4 (d, C-10), 63.4 (t, C-1), 36.1 (t, C-2), 26.0 (q, C-11), 14.8 (q, C-12); MS: (CI, 70 eV) *m*/*z* 176 (M, 5); HRMS: (EI, 70 eV) Calculated (C₁₂H₁₆O) 176.1201 (M) Found: 176.1205.

(1n) 1-(2-methoxyethyl)-2-vinylbenzene

4 3 2 11 0 Me 6 7 8 9 10

To a branched reactor vessel, NaOH aq. (50 wt%, 1g), benzene (2 mL), 2-(2-vinylphenyl)ethan-1ol (0.737 g, 5 mmol), tributylamine (0.0492 g, 0.27 mmol) and dimethyl sulfate (0.962 g, 8 mmol) were added. After stirring for 3 h at 40 °C, the reaction mixture was quenched by diethyl ether (4 mL) and H₂O (4 mL). This solution was extracted with diethyl ether (5 mL x 3), and washed by H₂O (4 mL) and sat. NaCl aq. (5 mL). The collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane) column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (0.649 g, 81%). IR: (neat) 1115 (OMe) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.49 (dd, J = 3.6, 5.3 Hz, 1H), 7.24-7.15 (m, 3H), 7.01 (dd, J = 17.4, 11.1 Hz, 1H, 9-H), 5.64 (dd, J = 17.4, 1.4 Hz, 1H, 10-H^A), 5.30 (dd, J = 11.1, 1.4 Hz, 1H, 10-H^B), 3.53 (t, J = 7.7 Hz, 2H, 1-H₂), 3.34 (s, 3H, 11-H₃), 2.97 (t, J = 7.7 Hz, 2H, 2-H₂); ¹³C NMR: (100 MHz, CDCl₃) 136.9 (s, C-8), 135.9 (s, C-3), 134.4 (d, C-9), 130.0 (d, C-4), 127.7 (d), 126.7 (d), 125.8 (d), 115.7 (t, C-10), 73.0 (t, C-1), 58.6 (q, C-11), 33.5 (t, C-2); MS: (CI, 70 eV) *m/z* 163 ([M + 1]⁺, 100), 131 (52); HRMS: (EI, 70 eV) Calculated (C₁₁H₁₄O) 162.1045 (M⁺) Found: 162.1046; Analysis: C₁₁H₁₄O (162.10) Calculated: C, 81.44; H, 8.70 Found: C, 81.16; H, 8.52.

(10) 2-(2-(prop-1-en-2-yl)phenyl)ethan-1-ol

To a two necked flask, Pd(PPh₃)₄ (0.420 g, 0.363 mmol), 1,4-dioxane (20 mL), *p*-vinyl boronic acid (2.20 g, 14.9 mmol), 4-pentyn-1-ol (1.05 g, 12.5 mmol) and acetic acid (0.13 mL, 2.40 mmol) were added. After stirring for 29 h at 80 °C, the reaction mixture was filtered through a short pad of celite and the filtrate was evaporated. The residue was purified by column chromatography (hexane/ethyl acetate = 80:20, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (1.77 g, 75%). IR: (neat) 3359 (OH) cm⁻¹, 1628 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.42-7.36 (m, 4H), 6.71 (dd, J = 18.4, 10.6 Hz, 1H, 6-H), 5.76 (d, J = 18.4 Hz, 1H, 7-H^A), 5.33 (s, 1H, 5-H^A), 5.25 (d, J = 10.6 Hz, 1H, 7-H^B), 5.10 (s, 1H, 5-H^B), 3.66 (t, J = 6.3 Hz, 2H, 1-H₂), 2.61 (t, J = 7.7 Hz, 2H, 3-H₂), 1.73 (tt, J = 6.3, 7.7 Hz, 2H, 2-H₂), 1.51 (br, 1H, OH); ¹³C NMR: (100 MHz, CDCl₃) 147.4 (s, C-4), 140.2 (s, *i*), 136.7 (s, *p*), 136.3 (d, C-6), 126.2 (d), 126.1 (d), 113.7 (t, C-7), 112.5 (t, C-5), 62.4 (t, C-1), 31.4 (t, C-3), 31.1 (t, C-2); MS: (CI, 70 eV) *m/z* 189 ([M + 1]⁺, 100); HRMS: (EI, 70 eV)

(2b) (cyclohexylidene(methoxy)methoxy)trimethylsilane^{4g}

OSiMe₃

To a solution of diisopropylamine (11.5 g, 110 mmol) in THF (80 mL) was added n-BuLi (63 mL, 1.6 M in hexane) at 0 °C. The resulted solution was stirred for 10 min at room temperature. Then, a solution of methyl cyclohexanecarboxyrate (11.4 g, 80 mmol) in THF (30 mL) was slowly added to the LDA solution at -78 °C. After the solution was stirred for 2h at -78 °C, trimethylsilylchloride (10.8 g, 100 mmol) was added to the reaction mixture, and the reaction mixture was stirred for 20 h at room temperature. The reaction mixture was poured into ice water and hexane, which was extracted with hexane. The organic phase was washed with brine, dried (MgSO₄) and concentrated. The obtained crude oil was purified by distillation (bp. 100-102 °C, 20 mmHg) to give the desired product (14.3 g, 83%). This is known compound and spectroscopic data were identical with those from literature.

(2c) 3-trimetylsilyloxy-2-pentene²³

To a solution of diisopropylamine (10.1 g, 100 mmol) in THF (100 mL) was added *n*-BuLi (1.6 M in hexane, 63 mL, 100 mmol) at 0 °C. After stirring at 0 °C for 15 min, then to reaction mixture was added 3-pentanone (6.89 g, 80 mmol) dropwise at -78 °C. After stirred for 30 min at -78 °C, Me₃SiCl

OSiMe₃

(10.9 g, 100 mmol) was added dropwise at -78 °C. The reaction mixture was allowed to reach room temperature and stirred for 30 min. Then, sat. NaHCO₃ aq. (50 mL) was added and the solution was extracted with pentane (50 mL x 3). The organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by distillation under reduced pressure (76 °C, 85 mmHg) to give the product (12.0 g, 76% yield, E/Z = 5:1). This is known compound and spectroscopic data were identical with those from literature.

(2g) (E)-trimethyl(styryl)silane^{24,25}

Me₃Si

To a three necked flask, trimethyl(phenylethynyl)silane (3.63 g, 20.8 mmol) and dry hexane (5 mL) were added. To the reaction mixture was dropped DIBAL-H (1.0 M in hexane, 24 mL, 24 mmol). After stirring for 13 h at rt, the reaction mixture was quenched by 4 N HCl aq. (17 mL) at 0 °C. The mixture was extracted by Et₂O (20 mL x 3) and the collected organic layer was washed with sat. NaCl aq. (60 mL x 3). The organic layer was dried (MgSO₄) and the solvent was evaporated and the residue was purified by distillation under reduced pressure (112 °C, 23 mmHg) to give the product (2.23 g, 60%). This is known compound and spectroscopic data were identical with those from literature.

(2i) trimethyl(prop-2-yn-1-yl)silane²⁶

SiMe₃

To a three necked flask, Mg (1.82 g, 75 mmol), Et₂O (16 mL) and HgCl₂ (0.255 g, 0.94 mmol) were

added. After vigolously stirring for 30 minutes at rt, propargyl bromide (1.1 M in Et₂O, 2 mL, 2.2 mmol) was dropped to the mixture. The reaction mixture was cooled into 0 °C and propargyl bromide (1.1 M in Et₂O, 31 mL, 34.1 mmol) was dropped to the reaction mixture. After stirring for 30 minutes at rt, the reaction mixture was cooled into 0 °C and Me₃SiCl (3.34 g, 30.7 mmol) was dropped to the reaction mixture. After vigolously stirring for 9 h at rt, the reaction mixture was filtered through a celite pad and the filtrate was purified by column chromatography (Et₂O, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product (51wt% in Et₂O, 2.91 g, 36%). This is known compound and spectroscopic data were identical with those from literature.

(2j) trimethyl(phenylthio)silane^{27,28}

To a three necked flask, Et₂O (32 mL) and benzenethiol (3.60 g, 33 mmol) were added. This solution was cooled at -78 °C and *n*-BuLi (1.6 M hexane solution, 52 mL, 82.5 mmol) was dropped to the mixture over 15 minutes, followed by Me₃SiCl was dropped over 4 minutes. After stirring for 2 hours, the reaction mixture was quenched by dry hexane (18 mL). The solvent was evaporated and the residue was filtered and the residue was washed by hexane. The solvent was evaporated and the residue was purified by distillation under reduced pressure (110 °C, 20 mmHg) to give the product (4.82 g, 81%). This is known compound and spectroscopic data were identical with those from literature.

InI₃ catalyzed hydrofunctionalization of styrene derivatives 1 using organosilicon nucleophiles 2 (Table 1-3, Scheme 3A and Scheme 6), General Procedure. To a solution of acid catalyst (10 mol %) in 1,2-dichloroethane (1 mL) was added styrene derivatives 1 (0.5 mmol). The mixture was stirred at 80 °C for 24 h and then cooled to rt. Organosilicon nucleophiles 2 (0.75 mmol) was added to the reaction mixture. After stirring at rt for 2 h, the mixture was quenched by diethyl ether (2 mL), Bu₄NF (1 M in THF, 1 mL) and sat. Na₂CO₃ aq. (2 mL) and then extracted with diethyl ether (2 mL x 3). The collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (column length 11 cm, diameter 26 mm, spherical silica gel).

Methyl 3-[2-(2-hydroxyethyl)phenyl]-2,2-dimethylbutanoate (3aa)

From InI₃ (0.0254 g, 0.0513 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0740 g, 0.499 mmol), and dimethylketene methyl trimethylsilylacetal (0.141 g, 0.809 mmol) following general procedure, **3aa** (0.089 g, 71%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3440 (OH) cm⁻¹, 1728 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.25-7.10 (m, 4H, 4-H, 5-H, 6-H and 7-H), 3.87-3.69 (m, 2H, 1-H₂), 3.63 (s, 3H, OMe), 3.54 (q, J = 7.2 Hz, 1H, 9-H), 3.27 (ddd, J = 13.5, 7.2, 6.8 Hz, 1H, 2-H^A), 2.79 (ddd, J = 13.5, 7.7, 7.2 Hz, 1H, 2-H^B), 1.47 (s, 1H, OH), 1.23 (d, J = 7.2 Hz, 3H, 10-H₃), 1.18 (s, 3H, 11-Me^A), 1.11 (s, 3H, 11-Me^B);¹³C NMR: (100 MHz, CDCl₃) 178.3 (s, C-12), 141.5 (s, C-8), 136.8 (s, C-3), 130.1 (d, C-4), 128.0 (d), 126.3 (d), 126.2 (d), 63.6 (t, C-1), 51.7 (q, C-13), 47.0 (s, C-11), 39.9 (d, C-9), 36.6 (t, C-2), 24.0 (q, 11-Me^B), 21.2 (q, 11-Me^A), 17.5

(q, C-10); MS: (CI, 70 eV) *m/z* 251 ([M + 1]⁺, 100); HRMS: (EI, 70 eV) Calculated (C₁₅H₂₂O₃) 250.1569 (M⁺) Found: 250.1571.

Methyl 1-(1-(2-(2-hydroxyethyl)phenyl)ethyl)cyclohexane-1-carboxylate (3ab)

From InI₃ (0.0495 g, 0.10 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0755 g, 0.509 mmol), and (cyclohexylidene(methoxy)methoxy)trimethylsilane (0.327 g, 1.53 mmol) following general procedure (rt, 3 h at 2nd step), **3ab** (0.109 g, 74%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3440 (OH) cm⁻¹, 1716 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.19-7.11 (m, 4H, Ar), 3.78-3.67 (m, 2H, 1-H₂), 3.60 (s, 3H, OMe), 3.32-3.19 (m, 2H, 9-H and 2-H^A), 2.75 (dt, J = 14.0, 6.8 Hz, 1H, 2-H^B), 2.34-2.28 (br, 1H), 2.21 (s, 1H, OH), 2.08-2.00 (br, 1H), 1.65-1.51 (br, 3H), 1.33-1.21 (m, 2H), 1.24 (d, J = 7.2 Hz, 3H, 10-H₃), 1.21-0.95 (m, 3H); ¹³C NMR: (100 MHz, CDCl₃) 176.4 (s, C-17), 141.6 (s, C-8), 136.6 (s, C-3), 129.9 (d, C-4), 128.2 (d, C-7), 126.2 (d), 125.9 (d), 63.5 (t, C-1), 52.2 (s, C-11), 51.2 (q, OMe), 41.9 (d, C-9), 36.6 (t, C-2), 32.7 (t), 30.7 (t), 25.5 (t), 23.8 (t), 23.6 (t), 17.0 (q, C-10); MS: (EI, 70 eV) *m/z* 290 (M, 1); HRMS: (CI, 70 eV) Calculated (C₁₈H₂₇O₃) 291.1960 ([M + 1]⁺) Found: 291.1957.

5-[2-(2-Hydroxyethyl)phenyl]-4-methylhexan-3-one (3ac)

 $\begin{array}{c}
1 & OH \\
5 & 4 & 3 & 2 \\
6 & 9 & 13 \\
7 & 8 & 11 \\
10 & 0
\end{array}$

2
3
4
5
6
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
22
22
23
24
25
26
27
28
29
30
31
21
32
33
34
35
36
37
38
39
<u>4</u> 0
л 0 //1
41
42
43
44
45
46
47
48
49
50
51
51
52
53
54
55
56
57
58
59
60
00

From InI ₃ (0.0226 g, 0.0456 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0765 g, 0.516 mmol), and (Z)-
trimethyl(pent-2-en-3-yloxy)silane (0.216 g, 1.36 mmol) following general procedure (rt, 5 h at 2 nd
step), 3ac (0.0837 g, 69%, d.r. = 54:46) was obtained after column chromatography (hexane/ethyl
acetate = 80:20). IR: (neat) 3433 (OH) cm ⁻¹ , 1709 (C=O) cm ⁻¹ ; ¹ H NMR: (400 MHz, CDCl ₃) diastereo
mixture: 7.26-7.07 (m, 4H), 3.97-3.88 (m, 0.46H), 3.88-3.75 (m, 1.54H), 3.39-3.25 (m, 1H), 3.07 (dt,
<i>J</i> = 13.5, 6.8 Hz, 0.46H), 3.02-2.78 (m, 2.54H), 2.61 (dq, J = 18.4, 7.2 Hz, 0.54H), 2.53-2.32 (m, 1H),
2.03 (dq, J = 17.8, 7.2 Hz, 0.46H), 1.82 (s, 0.54H), 1.20 (t, J = 6.8 Hz, 3H), 1.11 (t, J = 6.8 Hz, 1.62H),
1.10 (t, $J = 7.2$ Hz, 1.38H), 0.806 (t, $J = 7.2$ Hz, 1.62H), 0.788 (t, $J = 6.8$ Hz, 1.38H); ¹³ C NMR: (100
MHz, CDCl ₃) diastereo mixture: 215.9 (s), 215.7 (s), 144.7 (s), 143.4 (s), 136.2 (s), 136.1 (s), 130.6
(d), 130.4 (d), 127.1 (d), 126.7 (d), 126.1 (d), 126.0 (d), 125.5 (d), 63.8 (t), 63.4 (t), 52.7 (d), 52.0 (d),
36.6 (d), 36.5 (d), 36.4 (t), 36.3 (t), 36.2 (t), 36.0 (t), 21.4 (q), 19.8 (q), 16.2 (q), 15.6 (q), 7.64 (q),
7.41 (q); MS: (CI, 70 eV) m/z 235 ($[M + 1]^+$, 100); HRMS: (CI, 70 eV) Calculated ($C_{15}H_{23}O_2$)
235.1698 ([M + 1] ⁺) Found: 235.1698.

5-[2-(2-Hydroxyethyl)phenyl]-4-methylhexan-3-one (3ad)

	1_OH	
	$\begin{pmatrix} 4 \\ 3 \\ 2 \end{pmatrix}$	
5	11	
6		
	7 8	
	10	

From InI₃ (0.0565 g, 0.114 mmol, 20 mol %), 2-(2-vinylphenyl)ethan-1-ol (0.0765 g, 0.516 mmol), and trimethylsilyl cyanide (0.3 mL, 2.5 mmol) following general procedure (70 °C, 14 h at 2nd step), **3ad** (0.0284 g, 31%) was obtained after column chromatography (hexane/ethyl acetate = 80:20). IR: (neat) 3429 (OH) cm⁻¹, 2241 (CN) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.54-7.47 (m, 1H), 7.34-7.20

(m, 3H, 4-H, 5-H and 6-H), 4.24 (q, *J* = 6.8 Hz, 1H, 9-H), 3.92-3.81 (m, 2H, 1-H₂), 2.89 (t, *J* = 6.8 Hz, 2H, 2-H₂), 1.71 (s, 1H, OH), 1.62 (d, *J* = 6.8 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 136.0 (s), 135.6 (s), 130.5 (d, C-4), 128.3 (d), 127.6 (d), 127.3 (d), 122.2 (s, C-11), 63.2 (t, C-1), 35.2 (t, C-2), 27.7 (d, C-9), 21.0 (d, C-10); MS: (CI, 70 eV) *m*/*z* 176 ([M + 1]⁺, 25), 158 (M – OH, 100); HRMS: (EI, 70 eV) Calculated (C₁₁H₁₃NO) 175.0997 (M⁺) Found: 175.0998.

2-(2-(4-Methylpent-4-en-2-yl)phenyl)ethan-1-ol (3ae)

 $\begin{array}{c} 5 \\ 6 \\ 7 \\ 7 \\ 10 \\ 10 \\ 14 \end{array}$

From InI₃ (0.0244 g, 0.0492 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0744 g, 0.502 mmol) and trimethyl(2-methylallyl)silane (0.115 g, 0.896 mmol) following general procedure (rt, 4 h at 2nd step), **3ae** (0.056 g, 55%) was obtained after column chromatography (hexanc/ethyl acetate = 80:20). IR: (neat) 3410 (OH) cm⁻¹, 1647 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.27 (d, J = 7.2 Hz, 1H, 7-H), 7.22 (t, J = 7.2 Hz, 1H), 7.17 (d, J = 7.2 Hz, 1H, 4-H), 7.13 (t, J = 7.2 Hz, 1H), 4.74 (s, 1H, 13-H^A), 4.68 (s, 1H, 13-H^B), 3.83 (t, J = 6.8 Hz, 2H, 1-H₂), 3.27-3.16 (m, 1H, 9-H), 3.03-2.88 (m, 2H, 2-H₂), 2.32 (dd, J = 13.5, 6.3 Hz, 11-H^A), 2.23 (dd, J = 13.5, 8.7 Hz, 11-H^B), 1.70 (s, 3H, 14-H₃), 1.50 (s, 1H, OH), 1.20 (d, J = 6.8 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 146.0 (s, C-8), 144.0 (s, C-12), 135.0 (s, C-3), 130.1 (d, C-4), 126.9 (d), 126.1 (d, C-7), 125.8 (d), 112.2 (t, C-13), 63.5 (t, C-1), 46.6 (t, C-11), 35.9 (t, C-2), 32.1 (d, C-9), 22.4 (q, C-14), 21.6 (q, C-10); MS: (EI, 70 eV) *m/z* 204 (M, 2); HRMS: (CI, 70 eV) Calculated (C₁₄H₂₁O) 205.1592 ([M + 1]⁺) Found: 205.1589.

2-[2-(Pent-4-en-2-yl)phenyl]ethan-1-ol (3af)

From InI₃ (0.0303 g, 0.0611 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0745 g, 0.503 mmol), allyltrimethylsilane (0.0834 g, 0.730 mmol) and Me₃SiBr (0.0097 g, 0.0634 mmol) following general procedure (rt, 3 h at 2nd step), **3af** (0.082 g, 86%) was obtained after column chromatography (hexane/ethyl acetate = 80:20). IR: (neat) 3344 (OH) cm⁻¹, 1666 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.29-7.10 (m, 4H, 4-H, 5-H, 6-H and 7-H), 5.77-5.64 (m, 1H, 12-H), 5.01 (d, J = 14.0 Hz, 1H, 13-H^A), 4.95 (d, J = 10.1 Hz, 1H, 13-H^B), 3.80 (t, J = 7.2 Hz, 2H, 1-H₂), 3.09 (sextet, J = 7.0 Hz, 1H, 9-H), 3.00-2.85 (m, 2H, 2-H₂), 2.43-2.24 (m, 2H, 11-H₂), 1.59 (s, 1H, OH), 1.23 (d, J = 7.0 Hz, 3H, 10-H₃) ¹³C NMR: (100 MHz, CDCl₃) 145.4 (s, C-8), 137.0 (d, C-12), 135.1 (s, C-3), 130.1 (d, C-4), 126.9 (d), 126.0 (d), 125.8 (d), 116.1 (t, C-13), 63.5 (t, C-1), 42.4 (t, C-11), 36.0 (t, C-2), 34.1 (d, C-9), 21.8 (q, C-10); MS: (CI, 70 eV) *m*/*z* 191 ([M + 1]⁺, 30), 173 (M - OH, 100), 149 (M – CH₂CHCH₂, 35); HRMS: (EI, 70 eV) Calculated (C₁₃H₁₈O) 190.1358 (M⁺) Found: 190.1357.

(E)-2-[2-(4-Phenylbut-3-en-2-yl)phenyl]ethan-1-ol (3ag)

From InI₃ (0.0229 g, 0.0462 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0743 g, 0.501 mmol), (*E*)-trimethyl(styryl)silane (0.2687 g, 1.52 mmol) and Me₃SiBr (0.016 g, 0.105 mmol) following general

procedure (rt, 10 h at 2nd step), **3ag** (0.0742 g, 59%) was obtained after column chromatography (hexane/ethyl acetate = 80:20). IR: (neat) 3402 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.35-7.14 (m, 9H, Ar), 6.37 (dd, *J* = 4.3, 15.9 Hz, 1H, 11-H), 6.35 (d, *J* = 15.9 Hz, 1H, 12-H), 3.94 (dq, *J* = 4.3, 6.8 Hz, 1H, 9-H), 3.85 (t, *J* = 6.8 Hz, 2H, 1-H₂), 2.98 (t, *J* = 6.8 Hz, 2H, 2-H₂), 1.58 (s, 1H, OH), 1.45 (d, *J* = 6.8 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 143.9 (s, C-8), 137.4 (s, *i*), 135.4 (s, C-3), 135.2 (d, C-11), 130.2 (d, C-4), 128.5 (d), 127.2 (d), 127.04 (d), 127.01, 126.2 (d), 126.1 (d), 63.5 (t, C-1), 37.4 (d, C-9), 35.9 (t, C-2), 21.4 (q, C-10); MS: (CI, 70 eV) *m/z* 253 ([M + 1]⁺, 5), 235 (M – OH, 100); HRMS: (EI, 70 eV) Calculated (C₁₈H₂₀O) 252.1514 (M⁺) Found: 252.1514.

2-(2-(4-Phenylbut-3-yn-2-yl)phenyl)ethan-1-ol (3ah)

From InI₃ (0.0257 g, 0.0519 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0751 g, 0.507 mmol), trimethyl(phenylethynyl)silane (0.270 g, 1.55 mmol) and Me₃SiBr (0.0143 g, 0.0934 mmol) following general procedure (rt, 1 h at 2nd step), **3ah** (0.0684 g, 54%) was obtained after column chromatography (hexane/ethyl acetate = 80:20). IR: (neat) 3301 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.64 (d, J = 7.2 Hz, 1H, Ar), 7.43-7.38 (m, 2H, Ar), 7.30-7.22 (m, 4H, Ar), 7.22-7.17 (m, 2H, Ar), 4.24 (q, J = 6.8 Hz, 1H, 9-H), 3.88 (t, J = 7.2 Hz, 2H, 1-H₂), 3.04-2.92 (m, 2H, 2-H₂), 1.72 (s, 1H, OH), 1.56 (d, J = 6.8 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 141.8 (s, C-8), 134.9 (s, C-3), 131.5 (d), 130.1 (d, C-4), 128.2 (d), 127.7 (d), 127.5 (d), 127.2 (d), 126.9 (d), 123.6 (s, *i*), 93.1 (s, C-11), 81.7 (s, C-12), 63.4 (t, C-1), 35.6 (t, C-2), 28.5 (d, C-9), 23.8 (q, C-10); MS: (CI, 70 eV) *m/z*

251 ([M + 1]⁺, 20), 233 (M - OH, 100); HRMS: (CI, 70 eV) Calculated (C₁₈H₁₉O) 251.1436 ([M + 1]⁺) Found: 251.1436.

2-[2-(Penta-3,4-dien-2-yl)phenyl]ethan-1-ol (3ai)

1 OH 4 3 2 5 9 11 7 8 12 10 13

From InI₃ (0.0274 g, 0.0553 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0745 g, 0.503 mmol), trimethyl(prop-2-yn-1-yl)silane (51 wt % in Et₂O, 0.1653 g, 1.50 mmol) and Me₃SiBr (0.0170 g, 0.111 mmol) following general procedure (35 °C, 2 h at 2nd step), **3ai** (0.07 g, 68%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3394 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.31 (d, J = 7.7 Hz, 1H, 7-H), 7.25-7.21 (m, 1H), 7.20-7.14 (m, 2H), 5.30 (dt, J =6.8, 6.5 Hz, 1H, 11-H), 4.83-4.74 (m, 2H, 13-H₂), 3.85 (dt, J = 6.3, 6.8 Hz, 2H, 1-H₂), 3.82-3.74 (m, 1H, 9-H), 2.972 (t, J = 6.8 Hz, 1H, 2-H^A), 2.966 (t, J = 6.8 Hz, 1H, 2-H^B), 1.41 (t, J = 6.3 Hz, 1H, OH), 1.34 (d, J = 7.0 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 207.8 (s, C-12), 144.3 (s, C-8), 135.2 (s, C-3), 130.1 (d, C-4), 127.1 (d), 127.0 (d), 126.2 (d), 96.0 (d, C-11), 76.7 (t, C-13), 63.5 (t, C-1), 35.9 (t, C-2), 33.6 (d, C-9), 21.5 (q, C-10); MS: (CI, 70 eV) *m/z* 189 ([M + 1]⁺, 10); HRMS: (EI, 70 eV) Calculated (C₁₃H₁₆O) 188.1201 (M⁺) Found: 188.1199.

2-[2-(1-(Phenylthio)ethyl)phenyl]ethan-1-ol (3aj)

From InI₃ (0.0245 g, 0.0494 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0739 g, 0.499 mmol) and trimethyl(phenylthio)silane (0.278 g, 1.52 mmol) following general procedure (rt, 13 h at 2nd step), **3aj** (0.0758 g, 59%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3394 (OH) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.51 (d, J = 7.7 Hz, 1H, 7-H), 7.42-7.36 (m, 2H), 7.32-7.15 (m, 6H), 4.66 (q, 1H, 9-H), 3.88-3.73 (m, 2H, 1-H₂), 3.03-2.82 (m, 2H, 2-H₂), 1.77 (s, 1H, OH), 1.63 (d, J = 7.2 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 141.1 (s, C-8), 135.7 (s), 134.7 (s), 133.2 (d), 130.1 (d, C-4), 128.8 (d), 127.6 (d), 127.2 (d), 127.1 (d), 127.0 (d), 63.4 (t, C-1), 43.3 (d, C-9), 35.7 (t, C-2), 22.3 (q, C-10); MS: (CI, 70 eV) *m/z* 259 ([M + 1]⁺, 1), 149 (M – SPh, 100); HRMS: (EI, 70 eV) Calculated (C₁₆H₁₈OS) 258.1078 (M⁺) Found: 258.1081.

2-[2-(1-Azidoethyl)phenyl]ethan-1-ol (3ak)

From InI₃ (0.0288 g, 0.0581 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0776 g, 0.524 mmol) and azidotrimethylsilane (0.2 mL, 1.5 mmol) following general procedure (50 °C, 4 h at 2nd step), **3ak** (0.0612 g, 54%) was obtained after column chromatography (hexane/ethyl acetate = 80:20). IR: (neat) 3437 (OH) cm⁻¹, 2102 (N=N=N) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.35 (d, J = 7.2 Hz, 1H, 7-H),

7.26-7.12 (m, 3H, 4-H, 5-H and 6-H), 4.89 (q, J = 6.8 Hz, 1H, 9-H), 3.77 (t, J = 6.8 Hz, 2H, 1-H₂), 2.87 (t, J = 6.8 Hz, 2H, 2-H₂), 1.65 (s, 1H, OH), 1.47 (d, J = 6.8 Hz, 3H, 10-H₃); ¹³C NMR: (100 MHz, CDCl₃) 139.2 (s, C-8), 135.7 (s, C-3), 130.3 (d, C-4), 128.1 (d), 127.2 (d), 126.1 (d, C-7), 63.5 (t, C-1), 56.7 (d, C-9), 35.4 (t, C-2), 21.1 (q, C-10); MS: (CI, 70 eV) m/z 164 ([M + 1]⁺ – N₂, 30); HRMS: (CI, 70 eV) Calculated (C₁₀H₁₄N₃O) 192.1137 ([M + 1]⁺) Found: 192.1134.

Methyl 3-[2-(2-hydroxyethyl)phenyl)]-2,2-dimethylpentanoate (3ba)

From InI₃ (0.0286 g, 0.0577 mmol), (*E*)-2-(2-(prop-1-en-1-yl)phenyl)ethan-1-ol (0.0799 g, 0.493 mmol) and dimethylketene methyl trimethylsilylacetal (0.2819 g, 1.62 mmol) following general procedure (80 °C, 15 h at 1st step), **3ba** (0.068 g, 52%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3452 (OH) cm⁻¹, 1728 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.24-7.14 (m, 4H, 4-H, 5-H, 6-H and 7-H), 3.93-3.93 (m, 1H, 1-H^A), 3.83-3.73 (m, 1H, 1-H^B), 3.65 (s, 3H, 14-H₃), 3.34 (dd, *J* = 11.8, 3.4 Hz, 1H, 9-H), 3.25 (dt, *J* = 14.0, 7.2 Hz, 1H, 2-H^A), 2.83 (ddd, *J* = 14.0, 7.7, 7.5 Hz, 1H, 2-H^B), 1.84-1.73 (m, 1H, 10-H^A), 1.66-1.58 (m, 1H, 10-H^B), 1.49-1.41 (m, 1H, OH), 1.16 (s, 3H, 12-Me^A), 1.03 (s, 3H, 12-Me^B), 0.677 (t, *J* = 7.2 Hz, 3H, 11-H₃); ¹³C NMR: (100 MHz, CDCl₃) 178.6 (s, C-13), 138.7 (s, C-8), 138.4 (s, C-3), 130.0 (d), 127.7 (d), 126.3 (d), 126.1 (d), 63.5 (t, C-1), 51.8 (q, C-14), 47.3 (s, C-12), 47.2 (d, C-9), 36.3 (t, C-2), 24.5 (q, 12-Me^B), 24.1 (t, C-10), 20.7 (q, 12-Me^A), 12.8 (q, C-11); MS: (CI, 70 eV) *m/z* 265 ([M + 1]⁺, 100); HRMS: (CI, 70 eV) Calculated (C₁₆H₂₅O₃) 265.1804 ([M + 1]⁺) Found: 265.1803.

Methyl 3-[2-(2-hydroxyethyl)phenyl)]-2,2-dimethylpentanoate (3ca)

From InI₃ (0.0264 g, 0.0533 mmol), 2-(2-(prop-1-en-2-yl)phenyl)ethan-1-ol (0.0822 g, 0.507 mmol) and dimethylketene methyl trimethylsilylacetal (0.135 g, 0.774 mmol) following general procedure (80 °C, 6 h at 1st step), **3ca** (0.1047 g, 72%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3425 (OH) cm⁻¹, 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.39-7.30 (m, 1H, 7-H), 7.21-7.08 (m, 3H, 4-H, 5-H and 6-H), 3.87 (t, J = 7.2 Hz, 2H, 1-H₂), 3.56 (s, 3H, OMe), 3.11 (t, J = 7.2 Hz, 2H, 2-H₂), 1.59 (s, 4H, 9-Me and OH), 1.16 (s, 3H, 10-Me); ¹³C NMR: (100 MHz, CDCl₃) 177.3 (s, C-11), 144.1 (s, C-8), 137.3 (s, C-3), 132.4 (d, C-4), 130.9 (d, C-7), 126.3 (d), 125.4 (d), 64.8 (t, C-1), 51.4 (q, OMe), 49.9 (s, C-10), 45.4 (s, C-9), 39.6 (t, C-2), 28.2 (q, 9-Me), 22.5 (q, 10-Me); MS: (EI, 70 eV) *m*/*z* 232 (M - MeOH, 5); HRMS: (CI, 70 eV) Calculated (C₁₆H₂₅O₃) 265.1804 ([M + 1]⁺) Found: 265.1801.

Methyl 7-hydroxy-2,2-dimethyl-3-phenylheptanoate (3ea)

From InI₃ (0.0278 g, 0.0561 mmol), (*E*)-5-phenylpent-4-en-1-ol (0.0864 g, 0.532 mmol) and dimethylketene methyl trimethylsilylacetal (0.149 g, 0.855 mmol) following general procedure (80 °C, 65 h at 1st step), **3ea** (0.040 g, 28%) was obtained after column chromatography (hexane/ethyl

acetate = 80:20). IR: (neat) 3444 (OH) cm⁻¹, 1728 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.25 (t, 2H, *m*), 7.22 (d, 1H, *p*), 7.15 (d, 2H, *o*), 3.64 (s, 3H, OMe), 3.51 (t, *J* = 6.8 Hz, 2H, 1-H₂), 2.96 (dd, *J* = 12.6, 3.4 Hz, 1H, 5-H), 1.89-1.77 (m, 1H, 4-H^A), 1.59-1.39 (m, 3H, 4-H^B and 2-H₂), 1.34 (s, 1H, OH), 1.18-1.05 (m, 2H, 3-H₂), 1.14 (s, 3H, 6-Me^A), 1.01 (s, 3H, 6-Me^B); ¹³C NMR: (100 MHz, CDCl₃) 178.3 (s, C-7), 140.1 (s, *i*), 129.7 (d, *m*), 127.8 (d, *o*), 126.6 (d, *p*), 62.7 (t, C-1), 52.8 (d, C-5), 51.7 (q, OMe), 46.7 (s, C-6), 32.5 (t, C-2), 29.7 (t, C-4), 24.5 (q, 6-Me^A), 24.2 (t, C-3), 20.7 (q, 6-Me^B); MS: (CI, 70 eV) *m/z* 265 ([M + 1]⁺, 74); HRMS: (CI, 70 eV) Calculated (C₁₆H₂₅O₃) 265.1804 ([M + 1]⁺) Found: 265.1805.

Methyl 6-hydroxy-2,2-dimethyl-3-phenylhexanoate (3fa)

From InI₃ (0.0338 g, 0.068 mmol), (*E*)-4-phenylbut-3-en-1-ol (0.0762 g, 0.514 mmol) and dimethylketene methyl trimethylsilylacetal (0.120 g, 0.688 mmol) following general procedure (80 °C, 120 h at 1st step), **3fa** (0.038 g, 30%) was obtained after column chromatography (hexane/ethyl acetate = 80:20). IR: (neat) 3437 (OH) cm⁻¹, 1728 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.38 (t, J = 7.2 Hz, 2H, m), 7.23 (t, J = 7.2 Hz, 1H, p), 7.16 (d, J = 7.2 Hz, 2H, o), 3.64 (s, 3H, 7-H₃), 3.55 (t, J = 6.8 Hz, 2H, 1-H₂), 2.99 (dd, J = 12.6, 2.9 Hz, 1H, 4-H), 1.92-1.79 (m, 1H, 3-H^A), 1.66-1.47 (m, 2H, 3-H^B and OH), 1.37-1.24 (m, 2H, 2-H₂), 1.16 (s, 3H, 5-Me^A), 1.02 (s, 3H, 5-Me^B); ¹³C NMR: (100 MHz, CDCl₃) 178.4 (s, C-6), 139.9 (s, i), 129.7 (d, o), 127.9 (d, m), 126.7 (d, p), 62.5 (t, C-1), 52.4 (d, C-4), 51.7 (q, C-7), 46.7 (s, C-5), 31.1 (t, C-2), 26.2 (t, C-3), 24.6 (q, 5-

Me^B), 20.6 (q, 5-Me^A); MS: (CI, 70 eV) *m/z* 251 ([M + 1]⁺, 100); HRMS: (CI, 70 eV) Calculated (C₁₅H₂₃O₃) 251.1647 ([M + 1]⁺) Found: 251.1649.

Methyl 7-hydroxy-2,2,3-trimethyl-3-phenylheptanoate (3ga)

From InI₃ (0.0253 g, 0.0511 mmol), 2-(2-vinylphenyl)ethan-1-ol (0.0911 g, 0.615 mmol) and dimethylketene methyl trimethylsilylacetal (0.125 g, 0.717 mmol) following general procedure (rt, 3 h at 1st step), **3ga** (0.084 g, 59%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3444 (OH) cm⁻¹, 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.32-7.15 (m, 5H, Ar), 3.55 (t, J = 7.0 Hz, 2H, 1-H₂), 3.50 (s, 3H, OMe), 2.24 (td, J = 13.0, 4.8 Hz, 1H, 4-H^A), 1.77 (s, 1H, OH), 1.63 (td, J = 13.0, 4.8 Hz, 1H, 4-H^B), 1.54 (tt, J = 7.7, 7.0 Hz, 2H, 2-H₂), 1.39 (s, 3H, 6-H₃), 1.28-1.15 (m, 1H, 3-H^A), 1.12 (s, 3H, 7-Me^A), 1.02 (s, 3H, 7-Me^B), 0.993-0.836 (m, 1H, 3-H^B); ¹³C NMR: (100 MHz, CDCl₃) 177.2 (s, C-8), 143.0 (s, *i*), 128.2 (d), 127.3 (d), 125.9 (d, *p*), 62.7 (t, C-1), 51.2 (q, OMe), 49.7 (s, C-7), 45.9 (s, C-5), 34.8 (t, C-4), 33.5 (t, C-2), 22.1 (q, 7-Me^A), 21.7 (q, 7-Me^B), 21.2 (q, C-6), 20.8 (t, C-3); MS: (CI, 70 eV) *m*/*z* 279 ([M + 1]⁺, 1), 247 (M - OMe, 3); HRMS: (CI, 70 eV) Calculated (C₁₇H₂₇O₃) 279.1960 ([M + 1]⁺) Found: 279.1958.

Methyl 6-hydroxy-2,2,3-trimethyl-3-phenylhexanoate (3ha)

From InI₃ (0.0213 g, 0.0430 mmol), 4-phenylpent-4-en-1-ol (0.0862 g, 0.531 mmol) and dimethylketene methyl trimethylsilylacetal (0.139 g, 0.797 mmol) following general procedure (rt, 8 h at 1st step), **3ha** (0.092 g, 66%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3448 (OH) cm⁻¹, 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.32-7.22 (m, 4H, *o* and *m*), 7.22-7.16 (m, 1H, *p*), 3.59 (td, J = 6.8, 1.9 Hz, 2H, 1-H₂), 3.50 (s, 3H, OMe), 2.31 (ddd, J = 14.0, 13.0, 3.38 Hz, 1H, 3-H^A), 1.73-1.59 (m, 2H, 3-H^B and OH), 1.48-1.34 (m, 1H, 2-H^A), 1.40 (s, 3H, 5-H₃) 1.22-1.09 (m, 1H, 2-H^B), 1.13 (s, 3H, 6-Me^A), 1.03 (s, 3H, 6-Me^B); ¹³C NMR: (100 MHz, CDCl₃) 177.2 (s, C-7), 142.8 (s, *i*), 128.2 (d), 127.3 (d), 126.0 (d, *p*), 63.4 (t, C-1), 51.2 (q, OMe), 49.7 (s, C-6), 45.6 (s, C-4), 31.0 (t, C-3), 28.0 (t, C-2), 22.1 (q, 6-Me^B), 21.7 (q, 6-Me^A), 21.3 (q, C-5); MS: (CI, 70 eV) *m/z* 265 ([M + 1]⁺, 100); HRMS: (EI, 70 eV) Calculated (C₁₆H₂₄O₃) 264.1725 (M⁺) Found: 264.1724.

Methyl 7-hydroxy-2,2,3-trimethyl-3-(p-tolyl)heptanoate (3ia)

From InI_3 (0.0253 g, 0.0511 mmol), 5-phenylhex-5-en-1-ol (0.0908 g, 0.477 mmol) and dimethylketene methyl trimethylsilylacetal (0.123 g, 0.706 mmol) following general procedure (rt, 4 h at 1st step), **3ia** (0.097 g, 70%) was obtained after column chromatography (hexane/ethyl acetate =

70:30). IR: (neat) 3444 (OH) cm⁻¹, 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.11 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 8.7 Hz, 2H), 3.56 (t, J = 6.8 Hz, 2H, 1-H₂), 3.52 (s, 3H, 9-H₃), 2.31 (s, 3H, *p*-Me), 2.22 (td, J = 13.0, 3.9 Hz, 1H, 4-H^A), 1.61 (td, J = 12.6, 4.8 Hz, 1H, 4-H^B), 1.54 (tt, J = 6.8, 7.3 Hz, 2H, 2-H₂), 1.37 (s, 3H, 6-H₃), 1.30 (s, 1H, OH), 1.27-1.15 (m, 1H, 3-H^A), 1.10 (s, 3H, 7-Me^A), 1.01 (s, 3H, 7-Me^B), 0.99-0.87 (m, 1H, 3-H^B); ¹³C NMR: (100 MHz, CDCl₃) 177.3 (s, C-8), 139.9 (s, *i*), 135.4 (s, *p*), 128.1 (d), 128.0 (d), 62.8 (t, C-1), 51.2 (q, C-9), 49.7 (s, C-7), 45.6 (s, C-5), 34.8 (t, C-4), 33.6 (t, C-2), 22.2 (q, 7-Me^A), 21.8 (q, 7-Me^B), 21.3 (q, C-6), 20.9 (t, C-3), 20.8 (q, *p*-Me); MS: (CI, 70 eV) *m*/*z* 293 ([M + 1]⁺, 24); HRMS: (CI, 70 eV) Calculated (C₁₈H₂₉O₃) 293.2117 ([M + 1]⁺) Found: 293.2114.

Methyl 7-hydroxy-3-(4-methoxyphenyl)-2,2,3-trimethylheptanoate (3ja)

From InI₃ (0.0266 g, 0.0537 mmol), 5-(4-methoxyphenyl)hex-5-en-1-ol (0.1075 g, 0.521 mmol) and dimethylketene methyl trimethylsilylacetal (0.121 g, 0.692 mmol) following general procedure (rt, 1 h at 1st step), **3ja** (0.092 g, 57%) was obtained after column chromatography (hexane/ethyl acetate = 60:40). IR: (neat) 3440 (OH) cm⁻¹, 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.14 (d, J = 8.7 Hz, 2H, o), 6.81 (d, J = 8.7 Hz, 2H, m), 3.79 (s, 3H, 10-H₃), 3.55 (t, J = 7.2 Hz, 2H, 1-H₂), 3.52 (s, 3H, 9-H₃), 2.19 (ddd, J = 14.5, 13.5, 3.4 Hz, 1H, 4-H^A), 1.66-1.50 (m, 3H, 4-H^B and 2-H₂), 1.36 (s, 3H, 6-H₃), 1.27-1.13 (m, 2H, 3-H^A and OH), 1.10 (s, 3H, 7-Me^A), 1.01 (s, 3H, 7-Me^B), 0.98-0.87 (m, 1H, 3-H^B); ¹³C NMR: (100 MHz, CDCl₃) 177.3 (s, C-8), 157.5 (s, p), 134.9 (s, i), 129.2 (d, o), 112.5

(d, *m*), 62.7 (t, C-1), 55.0 (q, C-10), 51.2 (q, C-9), 49.7 (s, C-7), 45.3 (s, C-5), 34.9 (t, C-4), 33.5 (t, C-2), 22.0 (q, 7-Me^B), 21.7 (q, 7-Me^A), 21.3 (q, C-6), 20.8 (t, C-3); MS: (EI, 70 eV) *m/z* 277 (M - OMe, 0.5), 207 (M - Me₂CHCO₂Me, 100); HRMS: (CI, 70 eV) Calculated (C₁₈H₂₉O₄) 309.2066 ([M + 1]⁺) Found: 309.2064.

Methyl 3-(4-chlorophenyl)-6-hydroxy-2,2,3-trimethylhexanoate (3ka)

From InI₃ (0.0267 g, 0.0539 mmol), 4-(4-chlorophenyl)pent-4-en-1-ol (0.1014 g, 0.481 mmol) and dimethylketene methyl trimethylsilylacetal (0.137 g, 0.786 mmol) following general procedure (rt, 12 h at 1st step), **3ka** (0.064 g, 45%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3444 (OH) cm⁻¹, 1724 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.25 (d, J = 8.7 Hz, 2H, m), 7.17 (d, J = 8.7 Hz, 2H, o), 3.64-3.56 (m, 2H, 1-H₂), 3.52 (s, 3H, 8-H₃), 2.27 (ddd, J = 14.5, 13.0, 3.4 Hz, 1H, 3-H^A), 1.54 (ddd, J = 13.5, 13.0, 5.3 Hz, 1H, 3-H^B), 1.45-1.34 (m, 1H, 2-H^A), 1.38 (s, 3H, 5-H₃), 1.32 (s, 1H, OH), 1.19-1.06 (m, 1H, 2-H^B), 1.12 (s, 3H, 6-Me^A), 1.04 (s, 3H, 6-Me^B); ¹³C NMR: (100 MHz, CDCl₃) 177.0 (s, C-7), 141.5 (s, i), 132.0 (s, p), 129.7 (d, o), 127.5 (d, m), 63.4 (t, C-1), 51.3 (q, C-8), 49.7 (s, C-6), 45.5 (s, C-4), 31.1 (t, C-3), 28.0 (t, C-2), 22.1 (q, 6-Me^B), 21.8 (q, 6-Me^A), 21.3 (q, C-5); MS: (CI, 70 eV) m/z 301 ([M + 1]⁺ + 2, 34), 299 ([M + 1]⁺, 100); HRMS: (CI, 70 eV) Calculated (C₁₆H₂₄ClO₃) 299.1414 ([M + 1]⁺) Found: 299.1410.

Methyl 3-(4-fluorophenyl)-6-hydroxy-2,2,3-trimethylhexanoate (3la)

F

From InI₃ (0.0229 g, 0.046 mmol), 4-(4-fluorophenyl)pent-4-en-1-ol (0.0905 g, 0.481 mmol) and dimethylketene methyl trimethylsilylacetal (0.139 g, 0.797 mmol) following general procedure (rt, 22 h at 1st step), **3la** (0.101 g, 77%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3456 (OH) cm⁻¹, 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.21 (dd, J^{t}_{HF} = 5.3 Hz, J^{t}_{HH} = 8.7 Hz, 2H, *o*), 6.98 (dd, J^{t}_{HF} = 9.2 Hz, J^{t}_{HH} = 8.7 Hz, 2H, *m*), 3.65-3.53 (m, 2H, 1-H₂), 3.51 (s, 3H, 8-H₃), 2.27 (ddd, *J* = 14.5, 13.5, 3.4 Hz, 1H, 3-H^A), 1.67 (ddd, *J* = 13.5, 13.5, 5.3 Hz, 1H, 3-H^B), 1.52 (s, 1H, OH), 1.46-1.34 (m, 1H, 2-H^A), 1.39 (s, 3H, 5-H₃), 1.22-1.13 (m, 1H, 2-H^B), 1.12 (s, 3H, 6-Me^A), 1.03 (s, 3H, 6-Me^B); ¹³C NMR: (100 MHz, CDCl₃) 177.1 (s, C-7), 161.2 (d, *J* = 255 Hz, *p*), 138.6 (d, *J* = 3.3 Hz, *i*), 129.8 (d, *J* = 7.4 Hz, *o*), 114.0 (d, *J* = 20.5 Hz, *m*), 63.3 (t, C-1), 51.3 (q, C-8), 49.8 (s, C-6), 45.3 (s, C-4), 31.1 (t, C-3), 27.9 (t, C-2), 22.0 (q, 6-Me^B), 21.7 (q, 6-Me^A), 21.4 (q, C-5); MS: (CI, 70 eV) *m/z* 283 ([M + 1]⁺, 100); HRMS: (CI, 70 eV) Calculated (C₁₆H₂₄FO₃) 283.1709 ([M + 1]⁺) Found: 283.1708.

Methyl 3-(2-(2-hydroxyethyl)phenyl)-2,2,3-trimethylpentanoate (3ma)

From InI₃ (0.0298 g, 0.0601 mmol), 2-(2-(but-2-en-2-yl)phenyl)ethan-1-ol (0.0482 g, 0.273 mmol) and dimethylketene methyl trimethylsilylacetal (0.203 g, 1.16 mmol) following general procedure

(70 °C, 4 h at 1st step), **3ma** (0.043 g, 56%) was obtained after column chromatography (hexane/ethyl acetate = 50:50). IR: (neat) 3417 (OH) cm⁻¹, 1716 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.23 (dd, J = 7.3, 1.8 Hz, 1H, 7-H), 7.19 (dd, J = 6.9, 2.3 Hz, 1H, 4-H), 7.17-7.10 (m, 2H, 5-H and 6-H), 3.94-3.83 (m, 2H, 1-H₂), 3.55 (s, 3H, OMe), 3.28 (dt, J = 13.7, 6.0 Hz, 1H, 2-H^A), 2.91 (dt, J = 13.7, 6.8 Hz, 1H, 2-H^B), 2.51 (dq, J = 14.7, 7.3 Hz, 1H, 10-H^A), 1.60 (s, 3H, 9-Me), 1.60-1.51 (m, 1H, 10-H^B), 1.25 (s, 1H, OH), 1.15 (s, 3H, 12-Me^A), 1.13 (s, 3H, 12-Me^B), 0.719 (t, J = 7.3 Hz, 3H, 11-H₃); ¹³C NMR: (100 MHz, CDCl₃) 177.4 (s, C-13), 140.6 (s, C-8), 138.6 (s, C-3), 132.2 (d, C-4), 131.6 (d, C-7), 126.2 (d), 125.1 (d), 64.6 (t, C-1), 51.4 (q, OMe), 50.8 (s, C-12), 49.2 (s, C-9), 39.1 (t, C-2), 31.3 (t, C-10), 24.4 (q, 9-Me), 22.5 (q, 12-Me^A), 22.2 (q, 12-Me^B), 9.3 (q, C-11); MS: (EI, 70 eV) *m/z* 249 (M – CH₂CH₃, 12); HRMS: (CI, 70 eV) Calculated (C₁₇H₂₇O₃) 279.1960 ([M + 1]⁺) Found: 279.1958.

Methyl 6-hydroxy-2,2,3-trimethyl-3-(4-vinylphenyl)hexanoate (120a)

From InI₃ (0.0251 g, 0.0507 mmol) in 1,2-dichloroethane (10 mL), 4-(4-vinylphenyl)pent-4-en-1-ol (0.080 g, 0.425 mmol) and dimethylketene methyl trimethylsilylacetal (0.302 g, 1.73 mmol) following general procedure (5 °C, 17 h at 1st step and rt, 12 h at 2nd step), **120a** (0.0568 g, 46%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3487 (OH) cm⁻¹, 1716 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.33 (d, J = 8.6 Hz, 2H, m), 7.20 (d, J = 8.6 Hz, 2H,

o), 6.69 (dd, *J* = 17.7, 10.9 Hz, 1H, 8-H), 5.73 (d, *J* = 17.7 Hz, 1H, 9-H^A), 5.22 (d, *J* = 10.9 Hz, 1H, 9-H^B), 3.62-3.55 (m, 2H, 1-H₂), 3.52 (s, 3H, OMe), 2.30 (ddd, *J* = 14.0, 12.7, 3.2 Hz, 1H, 3-H^A), 1.76-1.60 (br, 1H, OH), 1.66 (ddd, *J* = 13.1, 12.7, 5.0 Hz, 1H, 3-H^B), 1.45-1.35 (m, 1H, 2-H^A), 1.39 (s, 3H, 5-H₃), 1.21-1.10 (m, 1H, 2-H^B), 1.13 (s, 3H, 6-Me^A), 1.04 (s, 3H, 6-Me^B); ¹³C NMR: (100 MHz, CDCl₃) 177.2 (s, C-7), 142.6 (s, *i*), 136.3 (d, C-8), 135.1 (s, *p*), 128.4 (d, *o*), 125.1 (d, *m*), 113.4 (t, C-9), 63.4 (t, C-1), 51.2 (q, OMe), 49.7 (s, C-6), 45.6 (s, C-4), 31.0 (t, C-3), 28.0 (t, C-2), 22.1 (q, 6-Me^B), 21.7 (q, 6-Me^A), 21.2 (q, C-5); MS: (EI, 70 eV) *m/z* 290 (M, 2); HRMS: (CI, 70 eV) Calculated (C₁₈H₂₇O₃) 291.1960 ([M + 1]⁺) Found: 291.1958.

4-Azido-4-(4-vinylphenyl)pentan-1-ol (12-N₃)

From InI₃ (0.0261 g, 0.0527 mmol) in 1,2-dichloroethane (10 mL), 4-(4-vinylphenyl)pent-4-en-1-ol (0.0964 g, 0.512 mmol) and trimethylsilyl azide (0.167 g, 1.45 mmol) following general procedure (5 °C, 5 h at 1st step and rt, 17 h at 2nd step), **12-N**₃ (0.0228 g, 20%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3398 (OH) cm⁻¹, 2106 (N₃) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.41 (d, J = 8.7 Hz, 2H), 7.35 (d, J = 8.7 Hz, 2H), 6.71 (dd, J = 17.9, 10.6 Hz, 1H, 6-H), 5.76 (d, J = 17.9 Hz, 1H, 7-H^A), 5.26 (d, J = 10.6 Hz, 1H, 7-H^B), 3.53 (t, J = 6.3 Hz, 2H, 1-H₂), 1.96-1.85 (m, 2H, 3-H₂), 1.69 (s, 3H, 5-H₃), 1.57-1.32 (m, 3H, 2-H₂ and OH); ¹³C NMR: (100 MHz, CDCl₃) 142.8 (s, *i*), 136.6 (s, *p*), 136.0 (d, C-6), 126.3 (d), 125.7 (d), 114.2 (t, C-7), 66.6 (s, C-4),

62.6 (t, C-1), 38.5 (t, C-3), 27.5 (t, C-2), 25.7 (q, C-5); MS: (EI, 70 eV) *m*/*z* 171 (M – N₃ – H₂O, 69); HRMS: (CI, 70 eV) Calculated (C₁₃H₁₈N₃O) 232.1450 ([M + 1]⁺) Found: 232.1455.

5-Hydroxy-2-methyl-2-(4-vinylphenyl)pentanenitrile (12od)

From InI₃ (0.0256 g, 0.0517 mmol) in 1,2-dichloroethane (10 mL), 4-(4-vinylphenyl)pent-4-en-1-ol (0.0949 g, 0.504 mmol) and trimethylsilyl cyanide (0.3 mL, 2.5 mmol) following general procedure (5 °C, 19 h at 1st step and rt, 35 h at 2nd step), **12od** (0.055 g, 50%) was obtained after column chromatography (hexane/ethyl acetate = 70:30). IR: (neat) 3433 (OH) cm⁻¹, 2237 (CN) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.42 (d, J = 8.7 Hz, 2H), 7.39 (d, J = 8.7 Hz, 2H), 6.70 (dd, J = 17.4, 10.6 Hz, 1H, 7-H), 5.76 (d, J = 17.4 Hz, 1H, 8-H^A), 5.28 (d, J = 10.6 Hz, 1H, 8-H^B), 3.61 (t, J = 6.3 Hz, 2H, 1-H₂), 2.08-1.94 (m, 2H, 3-H₂), 1.78-1.65 (m, 1H, 2-H^A), 1.73 (s, 3H, 5-H₃), 1.57-1.38 (m, 2H, 2-H^B and OH); ¹³C NMR: (100 MHz, CDCl₃) 139.3 (s, *i*), 137.1 (s, *p*), 135.8 (d, C-7), 126.7 (d), 125.6 (d), 123.3 (s, C-6), 114.6 (t, C-8), 62.0 (t, C-1), 42.1 (s, C-4), 38.3 (t, C-3), 28.6 (t, C-2), 27.8 (q, C-5); MS: (EI, 70 eV) *m/z* 215 (M, 21); HRMS: (CI, 70 eV) Calculated (C₁₄H₁₈NO) 216.1388 ([M + 1]⁺) Found: 216.1391.

4-Azido-4-(4-(1-azidoethyl)phenyl)butan-1-ol (13-N₃)

To a branched reaction vessel, Fe₂(ox)₃·6H₂O (1.19 g, 2.46 mmol) and H₂O (20 mL) was added. After stirring for 1 h, the solution was cooled to 0 °C and degassed for 10 minutes. NaN₃ (0.26 g, 4.0 mmol) and THF (10 mL) were added and the vessel was purged by N₂. To the mixture, 2-(2-(prop-1-en-2yl)phenyl)ethan-1-ol (0.0987 g, 0.524 mmol) in THF (10 mL) was slowly added at 0 °C, and then NaBH4 (0.06 g, 1,60 mmol) was added at 0 °C. The reaction mixture was stirred at 0 °C for 5 minutes and NaBH₄ (0.06 g, 1,60 mmol) was added. After stirring for 50 minutes at 0 °C, the mixture was quenched by sat. NH₄Cl aq. (8 mL) and then extracted with MeOH (10 wt % in CH₂Cl₂ x 2). The collected organic layer was dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography (hexane/ethyl acetate = 60:40, column length 11 cm, diameter 26 mm, spherical silica gel) to give the product 13-N₃ (0.035 g, 28%). IR: (neat) 3401 (OH) cm⁻¹, 2106 (N₃) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.40 (d, J = 7.7 Hz, 2H, o), 7.32 (d, J = 7.7 Hz, 2H, m), 4.62 (q, J = 7.0 Hz, 1H, 6-H), 3.58 (t, J = 6.0 Hz, 2H, 1-H₂), 1.91 (t, J = 7.7 Hz, 2H, 3-H₂), 1.70 (s, 3H, 5-H₃), 1.60-1.46 (m, 1H, 2-H^A), 1.54 (d, J = 7.0 Hz, 3H, 7-H₃), 1.46-1.31 (m, 1H, 2-H^B), 1.31-1.18 (br, 1H, OH); ¹³C NMR: (100 MHz, CDCl₃) 143.2 (s, *i*), 139.9 (s, *p*), 126.5 (d, *m*), 125.9 (d, *o*), 66.5 (s, C-4), 62.6 (t, C-1), 60.6 (d, C-6), 38.5 (t, C-3), 27.5 (t, C-2), 25.7 (q, C-5), 21.5 (q, C-7); MS: (EI, 70 eV) m/z 232 (M – N₃, 15); HRMS: (EI, 70 eV) Calculated (C₁₃H₁₈N₆O) 274.1542 (M) Found: 274.1546. Trimethyl(2-vinylphenethoxy)silane (TMS-1a)

TMS-1a in a crude product was identified by ¹H NMR of an authentic sample of TMS-1a (Table 1). The authentic sample was prepared by the following procedure.^{7b} The solution of HN(SiMe₃)₂ (0.80 mmol, 0.129 g) in CH₂Cl₂ (0.5 mL) was slowly added to the solution of 1a (0.99 mmol, 0.147 g) and I₂ (0.010 mmol, 0.0025 g) at room temperature. After stirring for 1 hour at room temperature, Na₂S₂O₃ (1 g) was added to the reaction mixture and the resulting precipitation was stirred for 30 min. The supernatant liquid was directly purified by silica gel column chromatography (only CH₂Cl₂ was used as a mobile-phase) to obtain trimethyl(2-vinylphenethoxy)silane TMS-1a (0.88 mmol, 0.194 g, 89%). IR: (neat) 3087, 3062, 3027, 1627, 1484, 1450, 1412, 1383 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.49 (dd, *J* = 5.6, 4.1 Hz, 1H), 7.23-7.15 (m, 3H), 7.02 (dd, *J* = 17.4, 10.9 Hz, 1H), 5.65 (dd, *J* = 17.4, 1.2 Hz, 1 H), 5.30 (dd, J = 10.9, 1.2 Hz, 1H), 3.72 (t, J = 7.3 Hz, 2H), 2.93 (t, J = 7.3 Hz, 2H), 0.06 (s, 9H); ¹³C NMR: (100 MHz, CDCl₃) 137.0 (s), 136.0 (s), 134.5 (d), 130.4 (d), 127.7 (d), 126.7 (d), 125.7 (d), 115.7 (t), 63.2 (t), 36.7 (t), -0.61 (q); MS: (EI, 70 eV) m/z; HRMS: (EI, 70 eV) 220.1283 (M) Calculated Found: 220.1285.

InI₃ catalyzed hydroalkoxylation of styrene derivative 1a (Entry 7 in Table 1). To a solution of InI₃ (0.0250 g, 0.0504 mmol) in 1,2-dichloroethane (1 mL) was added 2-(2-vinylphenyl)ethan-1-ol 1a (0.0777 g, 0.524 mmol). After stirring at 80 °C for 24 h, the mixture was quenched by diethyl ether (2 mL) and sat. Na₂CO₃ aq. (2 mL), and then extracted with diethyl ether (2 mL x 3). The collected

organic layer was dried (MgSO₄). The solvent was evaporated and the yield of cyclic ether **4** was determined by ¹H-NMR.

InI₃ catalyzed hydroalkoxylation of styrene with methanol (Scheme 3-B). To a solution of InI₃ (0.0241 g, 0.050 mmol) in 1,2-dichloroethane (1.0 mL) and methanol (20 μ L, 0.50 mmol) was added styrene (56 μ L, 0.50 mmol). After stirring at 80 °C for 24 h, the mixture was quenched by diethyl ether (2 mL) and sat. Na₂CO₃ aq. (2 mL), and then extracted with diethyl ether (2 mL x 3). The collected organic layer was dried (MgSO₄). The solvent was evaporated and the yield of benzyl ether **6** was determined by ¹H-NMR.

InI₃ catalyzed hydroalkoxylation of styrene derivative 1a in the presence of proton scavenger (Scheme 4). To a solution of InI₃ (0.05 mmol) and proton scavenger (0.15 mmol) in 1,2dichloroethane (1 mL) was added 2-(2-vinylphenyl)ethan-1-ol 1a (0.50 mmol). After stirring at 80 °C for 24 h, the mixture was quenched by diethyl ether (2 mL) and sat. Na₂CO₃ aq. (2 mL), and then extracted with diethyl ether (2 mL x 3). The collected organic layer was dried (MgSO₄). The solvent was evaporated and the yield of the cyclic ether 4 was determined by ¹H-NMR.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website. Copies of ¹H and ¹³C NMR spectra of materials and products (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: nishimoto@chem.eng.osaka-u.ac.jp

*E-mail: yasuda@chem.eng.osaka-u.ac.jp

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Numbers JP15H05848 in Middle Molecular Strategy and JP16K05719. Part of the work was supported by the Sumitomo Electric Industries Group CSR Foundation to M.Y. Y.N. acknowledges support from the Frontier Research Base for Global Young Researchers, Osaka University, of the MEXT program and from Mitsui Chemicals Award in Synthetic Organic Chemistry. Thanks are due to the Analytical Instrumentation Facility, Graduate School of Engineering, Osaka University, for assistance in obtaining the MS spectra.

REFERENCES

(1) Comprehensive Organic Synthesis II, Vol. 4 Knochel, P., Mo lander, G. A., Eds.

(2) For recent reviews: a) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. *Chem. Rev.* 2016, *116*, 8912-9000. b) Rodriguez-Ruiz, V.; Carlino, R.; Bezzenine-Lafollée, S.; Gil, R.; Prim, D.; Schulza, E.; Hannedouche, J. *Dalton Trans.* 2015, *44*, 12029-12059. c) Zeng, X. *Chem. Rev.* 2013, *113*, 6864-6900. d) *Hydrofunctionalization*; Ananikov, V. P., Tanaka, M., Eds.; Topics in Organometallic Chemistry; Springer-Verlag: Berlin, Heidelberg, 2013; p 43. e) Patil, N. T.; Kavthe,

R. D.; Shinde, V. S. Tetrahedron, 2012, 68, 8079-8146. For polymerization of vinylarenes catalyzed by indium salts: f) Bompart, M.; Vergnaud, J.; Strub, H.; Carpentier, J.-F. Polym. Chem. 2011, 2, 1638-1640. g) Peppe, C.; Lang, E. S.; Andrade, F. M.; Castro, L. B. Synlett 2004, 1723-1726. h) Tsuchimoto, T.; Kamiyama, S.; Negoro, R.; Shirakawa, E.; Kawakami, Y. Chem. Commun. 2003, 852-853. i) Dai, J.; Wu, J.; Zhao, G.; Dai, W.-M. Chem. Eur. J. 2011, 17, 8290-8293. (3) For selective examples: Allylsilane: a) Denmark, S. E.; Baizitov, R. Y. J. Org. Chem. 2006, 71, 593-605. Alkenylsilane: b) Nakao, Y.; Chen, J.; Imaoka, H.; Hiyama, T.; Ichikawa, Y.; Duan, W.-L.; Shintani, R.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 9137-9143. Alkynylsilane: c) Xu, Y.-l.; Pan, Y.-m.; Liu, P.; Wang, H.-S.; Tian, X.-Y.; Su, G.-F. J. Org. Chem. 2012, 77, 3557-3562. Propargylsilane: d) Dziedzic, M.; Lipner, G.; Illangua, J. M.; Furman, B. Tetrahedron, 2005, 61, 8641-8647. Silyl enolate: e) Tamagaki, H.; Nawate, Y.; Nagase, R.; Tanabe, Y. Chem. Commun. 2010, 46, 5930-5932. Silvl sulfide: f) Fiorenza, M.; Reginato, G.; Ricci, A.; Taddei, M. J. Org. Chem. 1984, 49, 551-553. Silyl cyanide g) Strappaveccia, G.; Angelini, T.; Bianchi, L.; Santoro, S.; Piermatti, O.; Lanari, D.; Vaccaro, L. Adv. Synth. Catal. 2016, 358, 2134-2139. Silyl azide: h) Kim, S.-G. Park, T.-H. Synth. Commun. 2007, 37, 1027-1035. (4) Silyl cyanide: a) Falk, A.; Göderz, A.-L.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2013, 52, 1576-

1580. b) Yanagisawa, A.; Nezu, T.; Mohri, S. Org. Lett. 2009, 11, 5286-5289. Silyl azide: c) Zotto,
C. D.; Michaux, J.; Zarate-Ruiz, A.; Gayon, E.; Virieux, D.; Campagne, J.-M.; Terrasson, V.; Pieters,
G.; Gaucher, A.; Primd, D. J. Organomet. Chem. 2011, 696, 296-304. d) Breton, G. W.; Daw, K. A.;
Kropp, P. J. J. Org. Chem. 1992, 57, 6646-6649. Silyl enolate: e) Nishimoto, Y.; Takeuchi, M.; Yasuda,

M.; Baba, A. *Chem. Eur. J.* 2013, *19*, 14411-14415. f) Nishimoto, Y.; Ueda, H.; Inamoto, Y.; Yasuda,
M.; Baba, A. *Org. Lett.* 2010, *12*, 3390-3393.

(5) Jones, A. S.; Paliga, J. F.; Greenhalgh, M. D.; Quibell, J. M.; Steven, A.; Thomas, S. P. Org. Lett.2014, 16, 5964-5967.

(6) Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028-9072.

(7) In general, the nucleophilic attack of allylsilanes to electrophiles occurs at γ-position of a silyl group. We reported the indium-catalyzed substitution reaction of hydroxy or trimethylsiloxy group with γ-substituted allylsilanes such as cinnamyl and prenyl silanes to give the corresponding products in γ-addition manner. a) Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. *J. Org. Chem.* **2006**, *71*, 8516-8522. b) Saito, T.; Nishimoto, Y.; Yasuda, M.; Baba, A. *J. Org. Chem.* **2007**, *72*, 8588-8590.

(8) Our reported reactions for C-O bonds cleavage by indium-silicon combined Lewis acid catalyst.
See: a) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. *Chem. Lett.* 2011, *40*, 1223-1225. b) Onishi,
Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. *Org. Lett.* 2011, *13*, 2762-2765. c) Nishimoto, Y.; Onishi, Y.;
Yasuda, M.; Baba, A. *Angew. Chem. Int. Ed.* 2009, *48*, 9131-9134. d) Saito, T.; Yasuda, M.; Baba, A. *Synlett.* 2005, *11*, 1737-1740. e) Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. *Tetrahedron* 2002, *58*, 8227-8235.

(9) For selective examples of anti-Markovnikov hydroallenation: a) Yokobori, U.; Ohmiya, H.;
Sawamura, M. *Organometallics* 2012, *31*, 7909-7913. b) Alameda-Angulo, C.; Quiclet-Sire, B.; Zard,
S. Z. *Tetrahedron Lett.* 2006, *47*, 913-916. c) Sato, A.; Ito, H.; Taguchi, T. *J. Org. Chem.* 2005, *70*, 709-712.

(10) Yields of hydrofunctionalization using Me₃SiCN and Me₃SiN₃ were not increased even by the addition of Me₃SiBr.

(11) Kobayashi et al have reported a catalytic amount of HI mediated hydroalkoxylation of styrene derivatives to give 6-membered cyclic ether. Kobayashi, K.; Shikata, K.; Maegawa, H.; Fukamachi, S.; Tanmatsu, M.; Konishi, H. *Heterocycles* 2010, *81*, 2361-2368.

(12) Lambert, R. F.; Hinkle, R. J.; Ammann, S. E.; Lian, Y.; Liu, J.; Lewis, S. E.; Pike, R. D. J. Org. Chem. 2011, 76, 9269-9277.

(13) Nishimoto, Y.; Saito, T.; Yasuda, M.; Baba, A. Tetrahedron 2009, 65, 5462-5471.

(14) The mixture of the silvl ether **11** and target alcohol product **3** was obtained with quenching by H₂O instead of Bu₄NF (1 M in THF).

(15) Riera, A.; Moreno, M. Molecules 2010, 15, 1041-1073.

(16) Leggans, E. K.; Barker, T. J.; Duncan, K. K.; Boger, D. L. Org. Lett. 2012, 14, 1428-1431.

(17) Breton, G. W.; Daus, K. A.; Kropp, P. J. J. Org. Chem. 1992, 57, 6646-6649.

(18) Cesati, R. R. III; Armas, J. D.; Hoveyda, A. H. Org. Lett. 2002, 4, 395-398.

(19) Palmer, A. M.; Chrismann, S.; Muench, G.; Brehm, C.; Zimmermann, P. J.; Buhr, W.; Senn-

Bilfinger, J.; Feth, M. P.; Simon, W. A. Bioorgan. Med. Chem. 2009, 17, 368-384.

(20) Yalavac, I.; Lyons, S. E.; Webb, M. R.; Procter, D. J. Chem. Commun. 2014, 50, 12863-12866.

(21) Tummatorn, J.; Ruchirawat, S.; Ploypradith, P. Chem. Eur. J. 2010, 16, 1445-1448.

(22) Rosner, C.; Hennecke, U. Org. Lett. 2015, 17, 3226-3229.

(23) Tirpak, R. E.; Rathke, M. W. J. Org. Chem. 1982, 47, 5099–5102.

(24) Preparation: Sheshenev, A. E.; Baird, M. S.; Bolesov, I. G.; Shashkov, A. S. *Tetrahedron* 2009, 65, 10552-10564.

(25) Characterization Data: McAtee, J. R.; Martin, S. E. S.; Cinderella, A. P.; Reid, W. B.; Johnson,

K. A.; Watson, D. A. Tetrahedron 2014, 70, 4250-4256.

(26) Liu, H.; Yu, J.; Li, X.; Yan, R.; Xiao, J.-C.; Hong, R. Org. Lett. 2015, 17, 4444-4447.

(27) Preparation: Craig, G. W.; Sternberg, E. D.; Jones, G. H.; Moffatt, J. G. J. Org. Chem. 1986, 51, 1258-1264.

(28) Characterization: Dey, R. R.; Paul, B.; Dhar, S. S.; Bhattacharjee, S. Chem. Lett. 2014, 43,

1545-1547.