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The chemistry of crown ethers/polyether macrocycles has 

been one of the important subjects of intense research.
1
 Polyether 

macrocycles have found numerous applications in various 

research fields and industry.
1,2

 Apart from their popular chemical 

applications including separation, detection, molecular 
recognition, catalysis and biological activities; polyether 

macrocycles have been utilized to understand certain molecular 

processes and to obtain insights on molecular structure and 

conformational behaviors of macrocyclic systems.
1,2

 Due to their 

immense importance across branches of chemical science, 

numerous oxo, aza, aza-oxo crown ethers/polyether macrocycles 
similar to the archetypal 18-crown-6 system were synthesized. 

Especially, the synthesis of periphery modified and large ring-

based oxo and aza-oxo polyether macrocycles has received 

substantial attention due to their interesting properties.
1-5

  

Alongside the classical polyether macrocycles, the synthesis 

of optically active oxo, aza, aza-oxo crown ethers/polyether 
macrocycles have received substantial attention

1,4,5
 and these 

macrocycles have found various significant applications in 

organic synthesis.
1,4,5

 Various linkers/building blocks including 

enantiopure building blocks (e.g., amino acids, sugars, BINOL, 

amines and amino alcohols, etc) were employed for synthesizing 

the corresponding optically active polyether macrocycles.
1,4,5

 In 
general, optically active macrocycles/polyether macrocycles were 

assembled by using the conventional macrocyclization 

approaches, such as, Williamson ether synthesis, peptide 

coupling, macrolactonization, macrolactamization and other 

standard macrocyclization methods (Scheme 1).
6 

 

 

Scheme 1. Approaches toward optically active polyether 

macrocycles. 
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We report the application of ring closing metathesis-based macrocyclization route for synthesizing 22-

36 membered optically active aza-oxo crowns/polyether macrocycles. While the RCM-based synthesis 

of polyether macrocycles was well explored in the literature, the synthesis of optically active polyether 

macrocycles was not explored via the RCM reaction. Accordingly, the present method reveals an 

efficient assembling of a library of new classes of optically active aza-oxo polyether macrocycles from 

optically active RCM precursors, which were assembled from easily available linkers, chiral α-

methylbenzylamine and amino alcohol building blocks under simple reaction conditions. 
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Ring closing metathesis (RCM) reaction is an extensively 

used strategy for the synthesis of natural products and small, 

medium and large-sized cyclic olefins.
7
 Notably, various 

periphery modified oxo and aza-oxo polyether macrocycles and a 

variety of mechanically interlocked macrocyclic compounds 

(e.g., catenanes and rotaxanes, etc) were synthesized via the 
RCM-based macrocyclization.

8
 Recently, we have reported the 

RCM-based macrocyclization route to polyether macrocycles 

starting from simple starting materials.
8f,g

 When compared some 

of the conventional macrocyclization methods, the RCM-based 

macrocyclization method was found to be relatively efficient to 

afford high yields of polyether macrocyclic olefins.
8
 

 

Scheme 2. Topic of this work. 

While the RCM technique was extensively used for synthesizing 

numerous racemic and optically active small, medium and large-
sized cyclic olefins and natural products;

7
 however, to the best of 

our knowledge, the RCM technique has not been explored for 

synthesizing optically active polyether macrocycles (Scheme 

1).
1,4,5,7,8

 Hence, given the efficiency and usefulness of the RCM 

strategy in organic synthesis,
7,8

 we envisioned to utilize the 

RCM-based macrocyclization technique for assembling optically 
active aza-oxo polyether macrocycles and accordingly, herein, 

we report our preliminary works in this direction. This protocol 

has led to an efficient assembling of a library of new classes of 

optically active aza-oxo polyether macrocycles from optically 

active RCM precursors, which were prepared from various 

linkers, chiral α-methylbenzylamine and amino alcohol building 
blocks under simple reaction conditions (Scheme 2). 

 

Scheme 3.
9
 Generalized scheme comprising assembling of RCM 

precursors 4 from linkers and chiral α-methylbenzylamines. 

To execute the synthesis of optically active aza-oxo polyether 

macrocycles; at first we assembled various suitable optically 

active RCM precursors from different linkers and R or S α-
methylbenzylamines (Scheme 3). Initially, various bis aldehydes 

1 (generalized structure) were prepared from the corresponding 

o-hydroxyl benzaldehydes and different linkers by using the 

standard synthetic procedures. Next, the treatment of R and S α-

methylbenzylamines (2) with 1 followed by the addition of 

NaBH4 afforded the corresponding optically active bis amines 3. 
Then, the N-benzylation of 3 with 1-(allyloxy)-2-

(chloromethyl)benzene afforded the corresponding optically 

active RCM precursor 4 encompassing various aliphatic, 

polyether and aromatic ring-based linkers (Scheme 3). 

 

Table 1.
10

 Synthesis of optically active aza-oxo polyether 

macrocycles 5a-h via the RCM-based macrocyclization of 4a-h. 

 
Next, we attempted the macrocyclization of the assembled 

optically active RCM precursors 4a-h (Table 1). In this regard, at 

first we carried out the RCM-based macrocyclization of the RCM 

precursors 4a-e which were prepared from (R)-α-

methylbenzylamine. Accordingly, the reaction of the RCM 

precursor 4a (derived from o-hydroxyl benzaldehyde) in the 
presence of 5 mol% of the Grubbs’s 1

st
 generation catalyst gave 

the optically active aza-oxo polyether macrocyclic olefin 5a in 

80% yield (E/Z = 90:10, Table 1). Similarly, the RCM reaction of 

the precursor 4b (derived from 2-hydroxy-1-naphthalaldehyde) 

afforded the optically active aza-oxo polyether macrocyclic 

olefin 5b in 91% yield (E/Z = 80:20, Table 1). Furthermore, the 
RCM precursors 4c-e which were derived from the 

corresponding oxygen- and aromatic ring-based linkers were 

subjected to the RCM reaction in the presence of the Grubbs’s 1
st
 

generation catalyst. These reactions gave the optically active aza-

oxo polyether macrocyclic olefins 5c-e in 75-82% yields, 

respectively (E/Z ratio up to 87:13, Table 1). Subsequently, we 
performed the RCM reaction of the starting materials 4f-h, which 

were prepared from (S)-α-methylbenzylamine. Accordingly, the 

RCM-based macrocyclization of 4f-h in the presence of the 

Grubbs’s 1
st
 generation catalyst afforded the optically active aza-

oxo polyether macrocyclic olefins 5f-h in 72-82% yields, 

respectively (E/Z ratio up to 95:05, Table 1). 
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Table 2.

11
 Assembling of RCM precursors 7a-g from α-amino 

alcohols and synthesis of optically active aza-oxo polyether 

macrocycles 8a-g via the RCM-based macrocyclization. 

 

Having done the synthesis of optically active aza-oxo 

polyether macrocycles from 4a-h, which were prepared from R 

and S α-methylbenzylamines; then, we wished to increase the 

generality of this method by using R and S amino alcohols as 
chiral building blocks. Accordingly, the reductive amination of 

bis aldehydes 1 with R and S α-amino alcohols followed by the 

N-benzylation gave the bis alcohols 6, which were subsequently 

subjected to the O-allylation to afford the optically active RCM 

precursors 7a-g encompassing various aliphatic, polyether and 

aromatic linkers (Table 2, see the supplementary material). 
After assembling the RCM precursors 7a-g, we then attempted 

the macrocyclization of these substrates. At first, we carried out 

the RCM-based macrocyclization of 7a,b,d, which were prepared 

from (R)-2-amino-2-phenylethanol and different linkers. 

Accordingly, the RCM reactions of 7a,b,d in the presence of the 

Grubbs’s 1
st
 generation catalyst afforded the optically active aza-

oxo polyether macrocyclic olefins 8a,b,d in 80-90% yields, 

respectively (E/Z ratio up to 93:07, Table 2). Similarly, the RCM 

reaction of 7c which was prepared from (R)-2-aminobutan-1-ol 

afforded the optically active aza-oxo polyether macrocyclic 

olefin 8c in 85% yield (E/Z = 81:19, Table 2). Having done the 

synthesis of aza-oxo polyether macrocycles 8a-d based on the 

(R)-α-amino alcohols; subsequently, we carried out the RCM 

reactions of 7e-g which were prepared from (S)-α-amino alcohols 

and different linkers. Accordingly, the macrocyclization of 7e-g 
in the presence of the Grubbs’s 1

st
 generation catalyst afforded 

the optically active aza-oxo polyether macrocyclic olefins 8e-g in 

72-88% yields, respectively (E/Z ratio up to 82:18, Table 2). 

 

Scheme 4. Synthesis of optically active aza-oxo polyether 

macrocycles 12
9
 and 16

11
. 

 

Successively, we were further interested to elaborate the 

generality of this method by synthesizing large cavity-based, 

optically active polyether macrocycles 12 and 16. Accordingly, 

the bis aldehyde 9 was synthesized using the standard synthetic 

procedures.
8f
 Next, the reductive amination of (R)-α-

methylbenzylamine (2a) with 9 gave the optically active bis 

amine 10. Further, the N-benzylation of 10 with 1-(allyloxy)-2-

(chloromethyl)benzene gave the RCM precursor 11 (Scheme 4). 

Then, we attempted the Grubbs’s 1
st
 generation catalyst-

catalyzed macrocyclization of 11, which successfully afforded 

the optically active aza-oxo polyether macrocycle 12 in 71% 
yield (E/Z = 76:24, Scheme 4). Finally, we were interested to 
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prepare an amino alcohol building block-based optically active 

polyether macrocycle similar to 12. In this regard, at first we 

prepared the RCM precursor 15 from (R)-2-amino-2-

phenylethanol (2c) and 9 involving the reductive amination, N-

benzylation and O-allylation steps as shown in Scheme 4. Then, 

we attempted the Grubbs’s 1
st
 generation catalyst-catalyzed 

macrocyclization of 15, which successfully afforded the optically 

active aza-oxo polyether macrocycle 16 in 75% yield (E/Z = 

75:25, Scheme 4). 

In summary, we have disclosed the application of ring closing 

metathesis-based macrocyclization route for an efficient 

assembling of a library of new classes of optically active aza-oxo 
polyether macrocycles in very good yields under simple 

macrocyclization reaction conditions. Further works are in 

progress to explore the synthetic utility of optically active aza-

oxo polyether macrocycles obtained in this work. 
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11. (a) EtOH, 80 

o
C, 12 h, then, NaBH4, 80 

o
C, 12 h. (b) BnBr, 

K2CO3, CH3CN, 80 
o
C, 3 d. (b) allyl bromide, NaH, THF, rt. (d) 

Grubbs's catalyst I, DCM, reflux, 24 h. 

Supplementary Material 

Supplementary data (procedures and copy of 
1
H, 

13
C NMR Charts of 

compounds) associated with this article can be found in the online version. 
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Highlights 

 RCM-based macrocyclization and polyether 

macrocycle synthesis. 

 Synthesis of 22-36 membered optically 

active aza-oxo polyether macrocyclic 

olefins. 

 Optically active aza-oxo polyether 

macrocycle synthesis under relatively 

simple reaction conditions. 

 Macrocyclization using easily available 

linkers, chiral α-methylbenzylamine and 

amino alcohol building blocks. 

 


