Catalysis Science & Technology

Accepted Manuscript

Catalysis Science & Technology

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **Terms & Conditions** and the **ethical guidelines** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

www.rsc.org/catalysis

RSCPublishing

View Article Online

Catalysis Science & Technology Accepted Manuscript

A table of contents entry:

Preparation of L-phenylalaninol with high *ee* selectivity by catalytic hydrogenation of L-phenylalaninate over Cu/ZnO/Al₂O₃ catalyst

Chunyou Gao, Xiuzheng Xiao, Dongsen Mao, Guanzhong Lu*

Cu/ZnO/Al₂O₃ (Cu/Zn/Al = 1/0.3/1, mol) catalyzed hydrogenation of L-phenylalaninate by H₂ at 110 °C and 4 MPa for 5 h, 69.2 % yield of L-phenylalaninol with 99.84 % ee value was obtained.

Cite this: DOI: 10.1039/c0xx00000x

ARTICLE iew Arrice Online

Preparation of L-phenylalaninol with high *ee* selectivity by catalytic hydrogenation of L-phenylalaninate over Cu/ZnO/Al₂O₃ catalyst

Chunyou Gao^a, Xiuzheng Xiao^a, Dongsen Mao^a, Guanzhong Lu^{a,b}*

5 Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

The Cu/ZnO/Al₂O₃ catalyst for hydrogenation of L-phenylalaninate to L-phenylalaninol was prepared by a co-precipitation method, and characterized by XRD, low-temperature N₂ adsorption, H₂-TPR, N₂O chemisorption and ICP. The results show that the physicochemical properties of catalysts are greatly 10 affected by the ZnO amount, and the exposed copper surface area, dispersion of CuO and BET surface area of $Cu/ZnO/Al_2O_3$ catalyst with Cu/Zn/Al = 1/0.3/1 (mol) reach the largest. The chemoselectivity of Lphenylalaninol is changed with ZnO amount in the $Cu/ZnO/Al_2O_3$ catalyst, and when Cu/Zn/Al =1/0.3/1(mol) in the Cu/ZnO/Al₂O₃ catalyst, it exhibits higher catalytic performance and chemoselectivity to L-phenylalaninol. Furthermore, the effect of temperature, pressure, reaction time and the molar ratio of is catalyst to ester on the catalytic hydrogenation of L-phenylalaninate were investigated. The catalytic hydrogenation of L-phenylalaninate was operated at 110 °C and 4 MPa of H₂ for 5 h, the yield of Lphenylalaninol can reach 69.2 %, and its ee selectivity is 99.84 %.

1. Introduction

Published on 12 December 2012 on http://pubs.rsc.org | doi:10.1039/C2CY207631

Downloaded by Duke University on 12 December 2012

formation of chiral amino alcohols, especially L-The 20 phenylalaninol, has become the subject of considerable efforts because of their importance in asymmetric synthesis, peptide and pharmaceutical chemistry, resolution of racemic mixtures, synthesis of insecticidal compounds, and so on ¹⁻¹⁰.

- L-phenylalaninol has often been prepared by reducing the 25 corresponding L-phenylalanine or esters. In most cases, the metal hydrides were used as a reducing agent, which are reactive at low temperature thereby guaranteeing the integrity of the stereogenic center. It was reported that, LiAlH₄¹¹⁻¹², LiAlH₄-THF¹³, BH₃¹⁴, NaBH₄ (NaBH₄/LiCl, NaBH₄/TiCl₄, NaBH₄/CeCl₃, NaBH₄-I₂-
- ³⁰ THF, NaBH₄/Cyanuric chloride, NaBH₄/I₂) ¹⁵⁻²⁰, KBH₄-CaCl₂ ²¹ Zn(BH₄)₂²², LiBH₄/DCC ²³, Lewis base catalysts ²⁴ have been employed for the reduction of L-phenylalanine or esters to obtain L-phenylalaninol. Even though those reactions can be carried out at room temperature on a 100-150g scale, the costs and the large
- 35 amount of waste render this methodology less attractive for technical application ²⁵. Therefore, another approach of catalytic hydrogenation is obviously more attractive. However, carboxylic acids and esters are the least reactive functional groups for the classical hydrogenation catalysts, and the reaction temperature $_{40}$ of > 200 °C is usually needed for efficient transformation, which
- will cause the racemization of products²⁶.

The industrial prospect of amino alcohols is driving the research of catalysts for the effective hydrogenation of amino acid or esters for a very long time. From the earliest reports by 45 Ovakimian, Kuna and Levene, Raney nickel was used as the

catalyst for a hydrogenation of esters of certain amino acids to amino alcohols at 35~100 °C 27. 10 years ago, Nishimura's catalyst (mixed Pt/Rh oxide of 45.9%Rh and 19.9%Pt) was reported to catalyze hydrogenation of amino esters to 50 corresponding amino alcohols at 25 °C under 10 MPa hydrogen pressure without racemization, while phenyl group was catalytically hydrogenated to cyclohexyl group simultaneously²⁶. Recently, a ruthenium complex was found to catalyze the hydrogen reduction of optically active esters to the corresponding 55 chiral alcohol without loss of optical purities. A variety of optically active esters can be reduced to the corresponding alcohols in excellent yield without loss of their optical purity or causing undesirable side reactions, but for amino esters²⁸

As is well-known, copper containing catalysts are widely used 60 in a hydrogenation of esters to alcohols, because they allow selective hydrogenation of carbon-oxygen bonds and are relatively inactive for carbon-carbon bond hydrogenolysis²⁹. Among them, Cu/ZnO/Al₂O₃ catalysts are typical catalysts, and are employed in synthesis of methanol 30-33, synthesis of N-65 ethylethylenediamine ³⁴, gas phase hydrogenolysis ³⁵ and hydrogenolysis of glycerol to propylene glycol ³⁶. However, the effect of ZnO promoter in copper catalysts is a matter of controversy in the hydrogenation of esters to alcohols. Some research works suggest that Zn can increase electron density on 70 copper and can store or activate hydrogen ³⁷⁻³⁹. It was reported that, in the Cu-ZnO mixed oxide highly active and epitaxial bound metallic copper platelets can be formed after a reduction of catalyst ⁴⁰⁻⁴². Kawamura et al. thought that the presence of Zn can increase the dispersion of Cu particles ⁴³. Despite there are lots of

75 works done on the copper catalysts for a hydrogenation of fat

This journal is © The Royal Society of Chemistry [year]

esters to alcohols, no detailed research works have been reported on the copper catalyst for hydrogenation of amine acids or esters to corresponding alcohols.

- In this paper, we have developed the Cu/ZnO/Al₂O₃ catalyst ⁵ for hydrogenation of methyl L-phenylalaninate to methyl Lphenylalaninol under mild reaction conditions, in which the catalyst is very cheap and highly effective. The Cu/ZnO/Al₂O₃ catalyst was prepared by the co-precipitation method and exhibits higher activity and selectivity for methyl L-phenylalaninol ¹⁰ synthesis by L-phenylalaninate hydrogenation, which may be useful for the commercial application of the catalyst in
- useful for the commercial application of the catalyst in hydrogenation of L-phenylalaninate to methyl L-phenylalaninol. This reaction formula is described as follows:

2. Experimental

Published on 12 December 2012 on http://pubs.rsc.org | doi:10.1039/C2CY20763J

Downloaded by Duke University on 12 December 2012

2.1. Catalyst preparation

- The Cu/ZnO/Al₂O₃ catalysts were prepared by the coprecipitation method. The starting materials were $20 Cu(NO_3)_2 \cdot 3H_2O_1$ $Zn(NO_3)_2 \cdot 3H_2O$, $Al(NO_3)_3 \cdot 3H_2O$ (A.R., Sinopharm Chemical Reagent Ltd.) and solved in de-ionized water to form 1 mol/L aqueous solution. 10 % ammonia aqueous solution was added into 1 mol/L Al(NO₃)₃ solution until pH 8.0, and 0.5 mol/L Na₂CO₃ solution was added into a mixed solution 25 of 1 mol/L Cu(NO₃)₂ and 1 mol/L Zn(NO₃)₂ until pH 8.0, in which 10 % ammonia aqueous solution and Na₂CO₃ solution were used as a precipitating agent. After two as-prepared solutions were mixed under stirring, this synthesis solution was aged for 5 h at 70 °C under stirring in an oil bath, and then it was 30 cooled to room temperature at static condition and kept for 2 h. The precipitate was filtrated, and washed with de-ionized water and ethanol until the filtrate is neutral. After dried in air at 120 °C for 24 h, the catalysts were calcined at 450 °C for 4 h, and pressed and crushed to 0.45–0.85 mm (20–40 mesh). The resulted
- ³⁵ Cu/ZnO/Al₂O₃ catalysts with different Zn amounts were termed as C0, C1, C3, C4, C5 and C7, respectively. The compositions of Cu/ZnO/Al₂O₃ catalysts are listed in Table 1.

2.2. Catalyst characterization

The compositions of Cu, Zn and Al in the Cu/ZnO/Al₂O₃ ⁴⁰ catalysts were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP, Optical Emission Spectrometer, optima 7000 DV). The surface areas of catalysts were measured by a N₂ adsorption at -196 °C on a Micrometrics ASAP 2020 apparatus and calculated by the Brumauer-Emmett-Teller (BET) ⁴⁵ method.

The powder X-ray diffraction (XRD) patterns of catalysts were recorded on a PANalytical PW 3040/60 X'Pert PRO diffractometer with Ni-filtered CuK α radiation and operated at 40 kV and 40 mA. The average crystallite sizes of catalysts were

⁵⁰ calculated based on the diffraction peak broadening by the Scherrer equation.

 H_2 -temperature-programmed reduction (H_2 -TPR) was performed on a flow system equipped with a thermal conductivity detector (TCD). 50 mg catalyst was used and pretreated at 350 °C

- ⁵⁵ for 1 h under N₂ flow of 50 mL/min. After it was cooled to room temperature under N₂, it was flushed by 10 % H₂/N₂ of 50 mL/min instead of N₂, and TPR of sample was run from room temperature to 500 °C at 10 °C/min. Effluent gas was dried by powder KOH and consumption of hydrogen was analyzed by ⁶⁰ TCD. The amount of hydrogen consumption was calibrated by using known amount of CuO ⁴⁴, and denoted as X. The amount of surface metallic copper sites was determined by dissociative N₂O adsorption at 50 °C ^{44,45}, and the experiment procedure was as follows: the catalyst was first reduced in the TPR procedure to 500 °C. Then the catalyst bed was purged with N₂ (50 mL/min)
- and cooled to 50 °C, and was oxidized in 2 % N₂O/He (50 mL/min) at 50 °C for 0.5 h. Finally, this catalyst was flushed with N₂ to remove the N₂O oxidant and cooled to room temperature to $_{70}$ start second TPR run. Hydrogen consumption in the second TPR was denoted as Y. The dispersion of Cu and exposed Cu surface

area were calculated as following equations: All copper atoms were reduced in the first TPR:

 $CuO + H_2 \rightarrow Cu + H_2O$, hydrogen consumption = X

⁷⁵ Surface copper oxidized by N₂O at 50 °C, which is Cu₂O, was reduced in the second TPR:

 $Cu_2O + H_2 \rightarrow 2Cu + H_2O$, hydrogen consumption = Y

The dispersion of Cu (D_{Cu}) and exposed Cu surface area (S_{Cu}) were calculated as follows:

⁸⁰
$$D_{Cu} = (2 \times Y/X) \times 100 \%$$

 $S_{Cu} = 2 \times Y \times N_{AV}/(X \times M_{Cu} \times 1.4 \times 10^{19}) = 1353 \times Y/X$
 (m^2_{Cu}/g_{Cu})

Where N_{AV} = Avogadro's constant, M_{Cu} = relative atomic mass (63.456 g/mol), 1.4×10^{19} comes from that an equal abundance of ⁸⁵ an average copper surface atom area of 0.0711 nm² (equivalent to 1.4×10^{19} copper atoms per square meter).

2.3. Testing of catalyst performance

The performance of catalyst for methyl L-phenylalaninate hydrogenation was tested in 0.5 L stainless steel autoclave under 90 stirring at a speed of 500 rpm. Prior to the catalytic activity measurement, 1 g (20-40 mesh) catalyst in the stainless steel autoclave was reduced in H2 (> 99.999 %) of 1 MPa at 250 °C for 4 h, then the autoclave was cooled to room temperature under H₂ and methyl L-phenylalaninate diluted in ethanol (> 99.999 %) ⁹⁵ was introduced. The typical reaction condition is at 80 °C and 3 MPa of H₂ for 5 h, and the mass ratio of catalyst/Lphenylalaninate (Cat./L-p) is 1. Reactants and products were analyzed by High Performance Liquid Chromatograph (HPLC) equipped with an ultraviolet detector and fitted with a column 100 (eclipse XDB-C18, 150×4.6 mm, 5 µm column P/N 993967-902). The operated conditions of HPLC were that, mobile phase was 0.05 mol/L ammonium acetate (pH = 5)/methanol (30/70) of 0.6 mL/min, detection wavelength of 254 nm, injection volume of 6 µL, and column temperature of 20 °C. The conversion of 105 methyl phenylalaninate (X) and chemoselectivity to methyl L-

phenylalaninol (S) was calculated respectively as follows:

X (%) = (molar amount of L-phenylalaninate converted/total molar amount of L-phenylalaninate in the feed) \times 100

S (%) = (molar amount of L-phenylalaninol formed/total molar s amount of L-phenylalaninate in the feed) × 100

Yield of L-phenylalaninol (%) = $X \times S$

3. Results and Discussion

3.1. Textural and structural properties of catalysts

In preparation of $Cu/ZnO/Al_2O_3$ catalysts, the molar 10 compositions of Cu, Zn and Al in synthesis solutions and prepared copper-based catalysts are listed in Table 1. It can be seen that the compositions of Cu, Zn and Al in Cu/ZnO/Al_2O_3 catalysts are similar to those in synthesis solutions.

Table 1. The molar compositions of Cu, Zn and Al in Cu/ZnO/Al₂O₃ $_{\rm 15}$ catalysts

Catalyst	In synthesis gel			In solid catalyst ^a			
	Cu	Zn	Al	Cu	Zn	Al	
C0	1	0	1	1.07 (49.9) ^b	0	1	
C1	1	0.1	1	1.08 (47.3)	0.10	1	
C3	1	0.3	1	1.03 (41.2)	0.32	1	
C4	1	0.4	1	1.03 (38.8)	0.44	1	
C5	1	0.5	1	1.07 (37.6)	0.55	1	
C7	1	0.7	1	1.05 (34.4)	0.73	1	
^{a)} It was analyzed by ICP; ^{b)} The value in brackets is Cu amount (wt.%) in the catalyst.							

The XRD patterns of the Cu/ZnO/Al₂O₃ catalysts are shown in ²⁰ Fig.1. It can be seen that, there are no diffraction peaks of Al₂O₃, which shows that Al₂O₃ in the Cu/ZnO/Al₂O₃ catalysts is amorphous or high-dispersed in both fresh and reduced Cu/ZnO/Al₂O₃ catalysts. In the XRD patterns (Fig. 1A) of fresh catalysts, the characteristic diffraction peaks of CuO can be ²⁵ observed at $2\theta = 35.56$, 38.77, 48.66, 53.74, 58.29, 61.53, 66.07 and 68.19° (PDF 48-1548). For the reduced catalysts, the peaks of CuO disappear and the peaks of metallic copper can be observed at $2\theta = 43.24$ and 50.33° (PDF 04-0836) (Fig. 1B), indicating that CuO has been reduced to Cu⁰. Similar XRD

- ³⁰ results have been reported by Y.H. Feng et al. for Cu/ZnO/MO_x ($MO_x = Al_2O_3$, TiO₂, and ZrO₂) catalysts^[35]. In the XRD patterns of both fresh and reduced catalysts, the characteristic peaks of ZnO appear at 2 θ = 31.71, 33.95, 36.26, 47.72, 56.71 and 62.83° (PDF 36-1451) when the ZnO amount reaches Zn/Cu = 0.7 (mol),
- ³⁵ which show that ZnO in Cu/ZnO/Al₂O₃ catalysts cannot be reduced under this reduction condition. When Zn/Cu < 0.7 (mol) in the catalyst, such as the C5 catalyst, no diffraction peaks of ZnO can be observed, which should be ascribed to its high dispersion in the catalyst.
- ⁴⁰ The average crystallite size of Cu^0 in the reduced catalyst was calculated based on the XRD patterns by the Scherrer equation and their results are shown in Table 2. We can find that the crystallite size of Cu^0 is varied with the ZnO amount. When the Zn/Cu < 0.7 (mol) in the catalyst, the average crystallite size of
- ⁴⁵ Cu⁰ in the reduced catalyst is decreased with an increase in the Zn amount, in which the diffraction peaks of ZnO cannot be

observed. For the reduced C7 catalyst with Zn/Cu = 0.7 (mol), the diffraction peaks of ZnO can be obviously observed. The crystallite size of Cu^0 is decreased conversely with an increase in ⁵⁰ the Zn amount. This is attributed to the separation of ZnO and View Article Online

CuO phases in the Cu/ZnO/Al₂O₃ catalyst when the Zn amount is higher (Fig.1A).

 $_{55}$ Fig.1. XRD patterns of (A) fresh and (B) reduced Cu/ZnO/Al_2O_3 and Cu/Al_2O_3 catalysts. (a—ZnO; b—CuO; c—Cu 0)

The BET surface areas of Cu/ZnO/Al₂O₃ catalysts derived from nitrogen physisorption are listed in Table 2. The results show that with an increase in the ZnO amount, BET surface areas 60 of catalysts firstly increase and then decrease. The minimum surface area was obtained for C5 and C7, which is 77 m²/g, and C3 exhibits the maximum surface area of 160 m²/g.

The metallic copper surface area (S_{Cu}) of catalyst was investigated by means of the reactive N₂O adsorption technique, ⁶⁵ and the results are shown in Table 2. We can find that the variation trend of metallic copper surface area with an increase in the ZnO amount is similar to that of BET surface area. The minimum surface area of metallic copper was obtained for C5 and C7, which is 34~37 m²/g_{cat}, and C3 has the maximum surface ⁷⁰ area of metallic copper (113 m²/g_{cat}). It is well-known, the value of metallic copper surface area reflects the dispersion of Cu in the catalyst ⁴⁶, that is to say, the smaller the metallic coppers surface area and the lower the dispersion of Cu is. Therefore the C3 possesses the highest dispersion of Cu, which is agreed with the data

This journal is © The Royal Society of Chemistry [year]

Table 2. BET surface areas (S_{BET}), metallic copper surface areas (S_{Cu}), dispersions of Cu (D_{Cu}) and Cu crystallite sizes (d) of Cu/ZnO/Al₂O₃ catalysts.

Catalyst	$S_{ m BET} \ (m^2/g)$	$\frac{S_{\mathrm{Cu}}}{(\mathrm{m}^2/\mathrm{g_{Cu}})}$	$\frac{S_{\rm Cu}}{({\rm m}^2/{ m g}_{\rm Cat})}$	$D_{ m Cu}$ (%)	d (nm) ^a	
C0	112	189	93.3	27.7	16.8	
C1	150	197	93.2	29.1	7.37	
C3	160	275	113	40.7	6.93	
C4	149	233	90.4	34.5	4.72	
C5	77	97.4	36.6	14.4	3.52	
C7	77	100	34.4	14.8	6.55	
^{a)} It is the Cu average crystallite size in reduced catalyst and calculated						

based on XRD patterns by Scherrer equation.

According to the above results, we can see that the Cu dispersion is correlated with the loading amount of ZnO in ¹⁰ Cu/ZnO/Al₂O₃ catalyst. The interaction between ZnO promoter and Cu can increase the Cu dispersion, while ZnO has occupied the Cu sites on the catalyst surface, resulting in the decrease of the effective surface area of Cu. Therefore, we may surmise that when the loading amount of ZnO is lower (Zn/Cu \leq 0.3, mol), the ¹⁵ interaction between ZnO and Cu is stronger to make the Cu dispersion increase, and when the loading amount of ZnO is higher (Zn/Cu \geq 0.3, mol), much more ZnO has occupied the Cu sites to make the effective surface area of Cu decrease.

3.2. The reduction properties of catalysts

- ²⁰ The H₂-TPR technique was used to investigate the reduction behaviour of the Cu/ZnO/Al₂O₃ catalysts, and the results are shown in Fig. 2. The results show that the reduction profiles of all samples with different ZnO amounts exhibit a broad peak of H₂ consumption at 200–320 °C, in which the reduced peaks for C0, ²⁵ C5 and C7 can be disassembled to α and β peaks.
- It is well-known, ZnO and Al₂O₃ cannot be reduced at below 500 °C, and the presence of ZnO can promote the reduction of CuO by hydrogen spillover ⁴⁷; the α and β peaks are ascribed to the reduction of two kinds of Cu species or CuO with two kinds ³⁰ of sizes. In the former the reduction peak at lower temperature is corresponding to Cu²⁺ \rightarrow Cu⁺ and the peak at higher temperature is corresponding to Cu²⁺ \rightarrow Cu⁰, and in the latter the reduction of two peaks are corresponding to Cu²⁺ \rightarrow Cu⁰, in which the peak at lower temperature is due to the reduction of high dispersed CuO
- ³⁵ and the peak at higher temperature is due to the reduction of bulk CuO ^{48–50}. In the TPR curve of C0 (CuO/Al₂O₃), there are two peaks and the α peak area is obviously unequal to that of β peak, so that it can be conclude that the α peak is ascribed to the reduction of high dispersed CuO on the catalyst surface and the β
- ⁴⁰ peak is ascribed to the reduction of bulk CuO in the catalyst. After adding ZnO with lower loading (as C1, C3 and C4 samples), the two peaks in the TPR curve of C0 are overlapped, which indicates that the presence of ZnO makes CuO homogeneously disperse by forming the solid solution of Cu-Zn-O⁴⁹ that can be
- ⁴⁵ reduced at markedly lower temperatures compared to CuO ⁵¹. Therefore, the reduction peak temperature in C1, C3 and C4 catalysts are lower than that of β peak in the C0 catalyst. With a further increase in the ZnO loading, the ZnO phase was formed in Cu/ZnO/Al₂O₃ catalyst (as the XRD spectra of C7 in Fig.1), the

⁵⁰ interaction between Cu and ZnO weakened, resulting in decreasing the dispersion of CuO in the Cu/ZnO/Al₂O₃ catalyst and the presence of β peak due to the reduction of bulk CuO ⁴⁶. Among the Cu/ZnO/Al₂O₃ catalysts, the C3 catalyst (Cu/Zn/Al = 1/0.3/1, mol) shows the lowest temperature of reduction peak. ⁵⁵ The smaller the CuO particles and the lower the reduction temperature should be ⁵². It is in good agreement with the highest surface area of Cu (S_{Cu}) and surface dispersion of Cu (D_{cu} , Table 2).

The TPR results above prove that ZnO can promote the $_{60}$ dispersion of copper oxide and enhance the reducibility of the copper phase; the low temperature peak (α peak) is attributed to the reduction of highly dispersed CuO strongly interacting with ZnO, and the peak at higher temperature (β peak) is due to the reduction of bulk CuO 46 .

Fig. 2. H₂-TPR profiles of the Cu/ZnO/Al₂O₃ catalysts.

3.3. Catalytic performance of Cu/ZnO/Al₂O₃

3.3.1. Effect of the Zn content

65

The effect of ZnO content on the catalytic performance of the 70 Cu/ZnO/Al₂O₃ catalyst for hydrogenation of methyl Lphenylalaninate was investigated at 80 °C and 3 MPa of H2 for 5 h and the results are shown in Fig. 3. The results show that the Cu/ZnO/Al₂O₃ and Cu/Al₂O₃ catalysts exhibit a high activity, that is, ~100% conversion of L-phenylalaninate can be obtained at 75 this reaction condition. However, the yield of desired product (methyl L-phenylalaninol) is different for the different catalysts and strongly related to the ZnO content in the Cu/ZnO/Al₂O₃ catalyst, because of the ZnO content affecting the Cu surface area and Cu dispersion. The results in Fig.3 show that, the methyl L-⁸⁰ phenylalaninol chemoselectivity (CS-nol) over the Cu/Al₂O₃ catalyst is 10.7 %, and after adding ZnO in the Cu/Al₂O₃ catalyst, CS-nol is increased obviously. When Zn/Al = 0.3(mol), that is using the C3 catalyst, the maximal CS-nol (42.4 %) can be obtained, and further increasing the ZnO content in the 85 Cu/ZnO/Al₂O₃ catalyst, CS-nol is instead decreased.

As shown in Table 2, the Cu surface area of the Cu/ZnO/Al₂O₃ catalyst is increased with the BET surface area, and the Cu dispersion is increased with the Cu surface area. Based on the BET surface area, Cu surface area and Cu dispersion of the ⁹⁰ Cu/ZnO/Al₂O₃ catalyst, we can find that CS-nol is increased with the Cu dispersion that is enhanced by increasing Cu surface area.

4 | *Journal Name*, [year], **[vol]**, 00–00

Fig. 3. The effect of Zn/Cu in Cu/ZnO/Al₂O₃ (Cat./L-p = 1/1) on the conversion and chemoselectivity of methyl L-phenylalaninol for the catalytic hydrogenation of methyl L-phenylalaninate at 70 °C and 3 MPa s of H₂ for 5 h.

3.3.2. Effects of reaction conditions

Published on 12 December 2012 on http://pubs.rsc.org | doi:10.1039/C2CY20763J

Downloaded by Duke University on 12 December 2012

Based on the results above, among the prepared Cu/ZnO/Al₂O₃ catalysts, the C3 catalyst is an optimized catalyst for methyl L-phenylalaninate hydrogenation to methyl L-phenylalaninol. ¹⁰ Therefore the C3 catalyst was used as a model catalyst to investigate the effect of the reaction condition, such as the reaction temperature, time, pressure and the Cat./L-p mass ratio on the yield of methyl L-phenylalaninol (that is the chemoselectivity to methyl L-phenylalaninol in 100% conversion ¹⁵ of methyl L-phenylalaninate).

The influence of the reaction temperature on the yield of methyl L-phenylalaninol was investigated at 70 ~ 150 °C and 3 MPa of H₂ for 5 h and Cat./L-p = 1, and the results are shown in Fig. 4A. The results show that the yield of methyl L-²⁰ phenylalaninol is increased with the reaction temperature, but when the reaction temperature is more than 110 °C, the increase of yield is unobvious. Therefore, the appropriate reaction temperature is 110 °C.

- The influence of the reaction time on the yield of L-²⁵ phenylalaninol at 110 °C and 3 MPa of H₂ and Cat./L-p = 1 are shown in Fig. 4B. It shows that with an increase in the reaction time from 3 to 5 h, the yield of methyl L-phenylalaninol is increased, and after 5 h, it is decreased. As the conversion of methyl L-phenylalaninate is ~100 %, the chemoselectivity to by-
- $_{30}$ products is increased with the reaction time after 5 h. Therefore the appropriate reaction time is 5 h when the reaction is operated at 110 °C.
- The effect of the hydrogen pressure on the catalytic hydrogenation of L-phenylalanate was studied at 110 °C and ³⁵ Cat./L-p = 1 for 5 h, and the results are shown in Fig. 4C. It is observed that the yield of methyl L-phenylalaninol is increased with the H₂ pressure, and when the H₂ pressure is more than 4 MPa, the yield almost remain constant. Hence the appropriate reaction pressure is 4 MPa.
- ⁴⁰ Fig. 4D shows the effect of the catalyst content (Cat./L-p) on the yield of methyl L-phenylalaninol. We can see that, when Cat./L-p is less than 1/1.5, the yield of methyl L-phenylalaninol is increased with increasing the catalyst amount; when Cat./L-p is more than 1/1.5, the yield of methyl L-phenylalaninol is hardly
- 45 changed with the catalyst amount.

- ⁵⁰ Fig. 4. Influence of reaction conditions on the yield of methyl L-phenylalaninol over the C3 catalyst: (A) temperature, (B) time, (C) pressure and (D) Cat./L-p. (Reaction condition: (A) Cat./L-p = 1, at 3 MPa of H₂ for 5 h, (B) Cat./L-p = 1, at 110 °C and 3 MPa of H₂; (C) Cat./L-p = 1, at 110 °C for 5 h, and (D) at 110 °C and 4 MPa of H₂ for 5 h).
- 55 Based on the results mentioned above, the more optimal reaction conditions for the selective hydrogenation of methyl Lphenylalaninate to methyl L-phenylalaninol over the

This journal is © The Royal Society of Chemistry [year]

Ph).

Cu/ZnO/Al₂O₃ catalyst can be determined, which are 110 °C, 4 MPa of H₂, 5 h and Cat./L-p = 1/1.5. At this reaction condition, the yield of methyl L-phenylalaninol can reach 69.2 %. The e.e. value of the product is 99.84 % obtained by HPLC (with the

⁵ separation column of Chiralcel OD, 250 × 4.6 mm) after the chiral amine of methyl phenylalaninol was protected by benzyl chloroformate ⁵³. The ¹H NMR spectrum of methyl Lphenylalaninol was obtained on a Bruker AVANCE-III 500. ¹HNMR(CDCl₃): 7.16~7.29 (5H, m, Ph-H), 3.41~3.66 (2H, m, -¹⁰ CH₂-O-), 3 3.15~3.20 (1H, m, CHNH₂), 2.51~2.82 (2H, m, CH₂)

3.3.3. Turn over frequency of catalyst for hydrogenation of methyl L-phenylalaninate

¹⁵ Turn over frequencies (TOFs) for product ⁵⁴ and average reaction rates of Cu/ZnO/Al₂O₃ catalysts for the selective hydrogenation

of methyl L-phenylalaninate to methyl L-phenylalaninol are shown in Table 3. It can be seen that, the C3 catalyst exhibits the highest yield (69.2 %) and the largest reaction rate (1.16 ²⁰ mmol/g_{cat}·h), because of C3 possessing the most active sites per gram catalyst. For TOF, Cu/ZnO/Al₂O₃ is higher than Cu/Al₂O₃ indicating that the presence of Zn enhances the catalytic activity of Cu sites. However, TOF of C7 is higher than that of C3, which gives us enlightenment that the higher effective active sites can ²⁵ be designed and prepared by highly loading Zn to modify Cu sites, to form more surface defects of metallic Cu (such as step, kink, edge and so on), because these defect Cu sites exhibit only catalytic activity. And the higher effective Cu/ZnO/Al₂O₃ catalyst can be prepared by increasing the Cu surface area of ³⁰ Cu/ZnO/Al₂O₃, because the larger the surface area of Cu, the more the active sites of Cu is and higher its catalytic activity is.

Table 3. TOFs, reaction rates and product yields for hydrogenation of methyl L-phenylalaninate over Cu/ZnO/Al₂O₃ catalysts ^a.

Catalyst	Yield of methyl L-phenylalaninol (%)	Number of active sites $(\times 10^{20}/g_{cat})$	TOF $(h^{-1})^{b}$	Average rate $(mmol/g_{cat} h)^{c}$
C0	12.8	13.1	0.099	0.21
C1	53.2	13.0	0.413	0.89
C3	69.2	15.8	0.441	1.16
C4	61.9	12.7	0.491	1.04
C5	31.0	5.12	0.610	0.52
C7	45.3	4.82	0.947	0.76

^{a)} Reaction conditions: 1.5 g methyl L-phenylalaninate, 1.0 g Cu/ZnO/Al₂O₃ catalyst (Cat./L-p = 1/1.5), 110 °C, 4 MPa of H₂, 5 h. ^{b)} Turn over frequencies for methyl L-phenylalaninol formed, mol product per Cu per hour at 110 °C ⁵⁴. ^{c)} The average reaction rate for 5 h.

35 4. Conclusions

Published on 12 December 2012 on http://pubs.rsc.org | doi:10.1039/C2CY20763J

Downloaded by Duke University on 12 December 2012

In summary, the Cu/ZnO/Al₂O₃ catalyst that shows the highest catalytic activity and e.e. selectivity to product for hydrogenolysis of methyl L-phenylalaninate to methyl L-phenylalaninol, was designed and prepared by a co-precipitation method. The metallic

- ⁴⁰ copper plays the role of active site for hydrogenation reactions, and ZnO can promote the dispersion of copper (oxide) and enhance the reducibility of the copper oxide phase. The appropriate molar ratio of Zn/Cu should be ~ 0.3 .
- The Cu/ZnO/Al₂O₃ catalyst with a Cu/Zn/Al molar ratio of 1/0.3/1 shows the highest activity and e.e. selectivity to methyl L-phenylalaninol. Over this catalyst, methyl L-phenylalaninate was hydrogenated at 110 °C and 4 MPa of H₂ for 5 h, the yield of methyl L-phenylalaninol can reach 69.2 %, and its e.e. = 99.84 %. Since the Cu/ZnO/Al₂O₃ catalysts is very cheap and prepared
- 50 easily for the selective hydrogenation, further investigation regarding the catalytic reaction mechanism and improvement of the chemoselectivity are in progress and will be reported in due course.

Acknowledgements

- ⁵⁵ We would like to acknowledge the financial support from the National Basic Research Program of China (2010CB732300), and the "Shu Guang" Project (10GG23) and Leading Academic Discipline Project (J51503) of Shanghai Municipal Education Commission and Shanghai Education Development Foundation,
- 60 and The School to Introduce Talents Project (YJ2011-46).

Notes and references

^a Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 200235, P. R. China. Fax:(+86)-21-64253824, E-mail:

- 65 gzhlu@ecust.edu.cn.
- ^b Key Laboratory for Advanced Materials and Research Institute of Industrial catalysis, East China University of Science and Technology, Shanghai 200237, P. R. China.
- E. J. Corey, S. Shibata and R. K. Bakashi, J. Org. Chem., 1988, 53, 2861.
- 2 C. B. Li, J. Zhang, P. Y. Zhao and M. Lu, J. Tianjin Univ., 2004, 37(10), 923.
- 3 S. J. Lv, R. Jiang, H. Y. Zhou, Y. Zheng and H. X. Fu, *Chin. J. Mol. Catal.*, 1995, 9(5), 358.
- 75 4 J. M. Andres, Y. Martin, R. Pedrosa and A. P. Encabo, *Tetrahedron*, 1997, **53**, 3787.
 - 5 D. Pini and A. Mastantuono, Tetrahedron: Asymmetry, 1994, 5, 1875.
 - 6 G. J. Lee, T. H. Kim, J. N. Kim, *Tetrahedron: Asymmetry*, 2002, **13**, 9
- 80 7 M. Kawai, Y. Omori and H. Yamamura, *Tetrahedron: Asymmetry*, 1992, 3, 1019.
 - 8 J. R. Luly, J. J. Plattner, H. Stein, N. Yi, J. Soderquist, P. A. Marcotte, H. D. Kleinert, T. J. Perun, *Biochem. Biophys. Res. Commun.*, 1987, 143, 44.
- 85 9 J. M. Cassal, A. Fuerst, *Helv. Chim. Acta*, 1976, **59**, 1917.
- 10 C. F. Stanfield, J. E. Parker and P. Kanellis, J. Org. Chem., 1981, 46, 4799.
- 11 D. A. Dickman and A. I. Meyers, Org. Synth., 2001, 7, 530.
- 12 Q. Hua, J. Z. Lin and Q. Jiang, Chin. Chem. Reag., 1993, 15, 123.
- 90 13 B. Bai, X. Y. Li, Y. Li and H. J. Zhu, *Bioorg. Med. Chem. Lett.*, 2011, 21, 2302.
 - 14 Z. X. Shen, Y. H. Li, H. B. Qin and Y. W. Zhang, *Chin. Chem. Reag.*, 2004, **15**, 23.

45

atalysis Science & Technology Accepted Manuscri

- 15 H. H. He, D. C. Gong and P. Wei, *Chin. Chem. Reag.*, 2005, **27**(2), 115.
- 16 C. H. Zhang, N. F. Yang and L. W. Yang, *Chin. J. Org. Chem.*, 2004, 24, 343.
- 5 17 C. F. Gan, R. Feng, J. C. Fan and J. G. Cui, *Chin. Chem. World*, 2007, 9, 538.
- 18 Z. X. Wang and Y. Q. Fu, J. Luoyang Normal Univ., 2007, 5, 69.
- F. Massimo, P. Andrea and T. Maurizio, *Tetrahedron Lett.*, 1999, 40, 4395.
- 10 20 D. C. Gong, P. Wei, H. H. He, H. Zhou and P. K. Ouyang, *Chin. Fine Chem.*, 2005, **22**(5), 384.
- 21 Y. Z. Li, C. X. Guo, X. Y. Lu, L. C. Shen and H. M. Huang, J. Jilin Univ. (Sci. Ed.)., 1998, (1), 85.
- 22 S. Narasimhan, S. Madhavan and K. G. Prasad, J. Org. Chem., 1995, 5 **60**, 5314.
- 23 J. M. Herbert, A. T. Hewson and J. E. Peace, Synth. Commun., 1998, 28, 823.
- 24 T. Kashiwagi, S. Kotani, M. Sugiura and M. Nakajima, *Tetrahedron*, 2011, 67, 531.
- 20 25 A. Abiko and S. Masamune, Tetrahedron Lett., 1992, 33, 5517.
 - 26 M. Studer, S. Burkhardt and H. U. Blaser, Adv. Synth. Catal., 2001, 343, 802.
 - 27 G. Ovakimim, M. Kuna, P.A. Levene, J. Biol. Chem., 1940, 135, 91.
 - 28 W. Kuriyama, Y. Ino, O. Ogata, N. Sayo and T. Saito, Adv. Synth.
- *Catal.*, 2010, **352**, 92.
 D. S. Brands, E. K. Poels, A. Bliek, *Appl. Catal. A*, 1999, **184**, 279.
- D. S. Branes, E. K. Foers, A. Brick, *Appl. Catal. A*, 1999, 104, 279.
 V. D. Kumari, M. Subrahmanyam, A. Ratnamala, D. Venugopal, B. Srinivas, M. V. P. Sharma, S. S. Madhavendra, B. Bikshapathi, K. Venkateswarlu, T. Krishnudu, K. B. S. Prasad and K. V. Raghavan, *Catal. Commun.*, 2002, 3, 417.
- 31 U. Costantino, F. Marmottini, M. Sisani, T. Montanari, G. Ramis, G. Busca, M. Turco and G. Bagnasco, *Solid State Ionics*, 2005, **176**, 2917.
- 32 A. Indarto, D. R. Yang, J. Palgunadi, J. W. Choi, H. Lee and H. K. 35 Song, *Chem. Eng. Prog.*, 2008, **47**, 780.
 - 33 M. Behrens, D. Brennecke, F. Girgsdies, S. Kiβner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler and R. Schlögl, *Appl. Catal. A*, 2011, 392, 93.

- 40 34 H. F. Wang, L. G. Chen, G. Y. Bai, D. Z. Luan, Y. Li, X. L. Yan, Y. C. Zhang and J. D. Xing, *Catal. Commun.*, 2007, 8, 145.
 - 35 Y. H. Feng, H. B. Yin, A. L. Wang, L. Q. Shen, L. B. Yu and T. S. Jiang, *Chem. Eng. J.*, 2011, **168**, 403.
 - 36 Z. M. Zhou, X. Li, T. Y. Zeng, W. B. Hong, Z. M. Cheng and W K. Yuan, Chin. J. Chem. Eng., 2010, 18(3), 384.
 - 37 F. T. van de Scheur, B. van der Linden, M. C. M. Hazeleger, J. G. Nazloomian and L. H. Staal, *Appl. Catal.* A, 1994, **111**, 63.
 - 38 P. Claus, M. Lucas, B. Lücke, T. Berndt and P. Birke, *Appl. Catal. A*, 1991, **79**, 1.
- 50 39 J. C. Frost, Nature, 1988, 334, 577.
 - 40 D. S. Brands, E. K. Poels and A. Bliek, Stud. Surf. Sci. Catal., 1996, 101, 1085.
 - 41 D. S. Brands, E. K. Poels, T. A. Krieger, O. V. Makarova, C. Weber, S. Veer and A. Bliek, *Catal. Lett.*, 1996, **36**, 175.
- 55 42 T. M. Yurieva, L. M. Plyasova, O. V. Makarova and T. A. Krieger, J. Mol. Catal. A, 1996, 113, 455.
 - 43 Y. Kawamura, K. Yamamoto, N. Ogura, T. Katsumata and A. Igarashi, J. Power Sources, 2005, 150, 20.
 - 44 Z. L. Yuan, L. N. Wang, J. H. Wang, S. X. Xia, P. Chen, Z. Y. Hou and X. M. Zheng, *Appl. Catal. B*, 2011, **101**, 431.
- 45 C. J. G. Van Der Grift, A. F. H. Wielers, B. P. J. Jogh, J. V. Beunum, M. De Boer, M. V. Helder and J. W. Geus, *J. Catal.*, 1991, **131**, 178.
- 46 X. M. Guo, D. S. Mao, G. Z. Lu, S. Wang and G. S. Wu, J. Catal., 2010, 271, 178.
- 65 47 I. M. Cabrera, M. L. Granados and J. L. G. Fierro, J. Catal., 2002, 210, 273.
 - 48 M. F. Luo, P. Fang, M. He and Y. L. Xie, *J. Mol. Catal. A*, 2005, **239**, 243.
- 49 Z. Li, H. Y. Zheng and K. C. Xie, Chin. J. Catal., 2008, 29(5), 431.
- 70 50 G. Z. Lu and R. Wang, *Chin. J. Catal.*, 1991, **12**, 83.
- 51 F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro and F. Frusteri, J. Catal., 2007, 249, 185.
- 52 Y. P. Zhang, J. H. Fei, Y. M. Yu and X. M. Zheng, *Energy Convers. Manage.*, 2006, **47**, 3360.
- 75 53 J. Clariana, S. G. Granda, V. Gotor, A. G. Fernandez, A. Luna, M. M. Manas and A. Vallribera, *Tetrahedron: Asymmetry*, 2007, 48, 8323.
 - 54 S. X. Xia, R. F. Nie, X. Y. Lu, L. N. Wang, P. Chen, Z. Y. Hou, J. Catal., 2012, **296**, 1.

30

80

This journal is © The Royal Society of Chemistry [year]