

Communication

Acceleration of Enantioselective Cycloadditions Catalyzed by Second-Generation Chiral Oxazaborolidinium Triflimidates by Bis-Coordinating Lewis Acids.

Barla Thirupathi, Simon Breitler, Karla Mahender Reddy, and E. J. Corey

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b08018 • Publication Date (Web): 16 Aug 2016 Downloaded from http://pubs.acs.org on August 17, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Acceleration of Enantioselective Cycloadditions Catalyzed by Second-Generation Chiral Oxazaborolidinium Triflimidates by Bis-Coordinating Lewis Acids.

Barla Thirupathi,[‡] Simon Breitler,[‡] Karla Mahender Reddy,[‡] and E. J. Corey*

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

Supporting Information Placeholder

ABSTRACT: The activation of second-generation fluorinated oxazaborolidines by the strong acid triflimide in CH₂Cl₂ solution leads to highly active chiral Lewis acids which are very effective catalysts for (4+2)-cycloaddition. We report herein that this catalytic activity can be further enhanced by the use of triflimide (Tf₂NH) in combination with the biscoordinating Lewis acid TiCl₄ or SnCl₄ as co-activator. The effective increase in acidity of an exceedingly strong protic acid is greater for the bis-coordinating TiCl₄ and SnCl₄ than for mono-coordinating salts, even the strong Lewis acids AlBr, or BBr, in CH,Cl, or CH,Cl,-toluene. The increase in effective acidity of triflimide can be understood in terms of a stabilized cyclic anionic complex of Tf_2N^- and $TiCl_4$, which implies a broader utility than that described here. The utility of Tf₂NH-TiCl₄ activation of fluorinated oxazaborolidines is documented by examples including the first enantioselective (4+2)-cycloaddition to α,β -unsaturated acid chlorides.

The introduction of chiral oxazaborolidinium ions has greatly broadened the scope and utility of catalytic enantioselective (4+2)-cycloaddition reactions,¹ especially with the advent of second generation fluorine-enhanced oxazaborolidines such as 1-4 (Figure 1).²

Figure 1. Second Generation Oxazaborolidines 1-4

Very powerful cationic catalysts are available from 1-4 by activation using one equivalent of the strong protic acid triflimide (Tf₂NH) but not from weaker acids such as CH₃SO₃H. Aluminum tribromide is also an effective activator of 1-4, but other (weaker) Lewis acids are not. The fluorine substituents in the pre-catalysts 1-4 strongly decrease the electrondensity of the donor nitrogen and enhance the electrophilic power of the activated catalysts. Triflic acid activation is not quite as effective as triflimide activation, whereas AlBr₃coordination to 1-3 leads to distinctly higher catalytic power than protonation by Tf₂NH.² These facts led us to entertain the idea that the reactive species in the case of aluminum bromide activation is a cationic complex with dienophile in which the coordinating group on nitrogen is actually the equivalent of the unknown mono-coordinated cation $AlBr_2^+$ – for instance structure **5** (Figure 2) in the case of an acrylate ester as dienophile.

Figure 2. Possible Reactive Complexes between an AlBr₃activated Catalyst 1 and an α,β -Unsaturated Dienophile

Strong evidence in favor of this possibility was obtained from experiments which demonstrated that the rates of the AlBr₃-oxazaborolidine catalyzed (4+2)-cycloaddition could be considerably enhanced by the further addition of one equivalent of AgSbF₆ per AlBr₃ which led to the precipitation of AgBr and generation of AlBr₂⁺-coordinated oxazaborolidine, which in turn can complex with, e.g. an acrylate ester, to generate the super-reactive species **6**.²

Although a reaction pathway via cationic species such as 6 can explain the effectiveness of AlBr₃ activation, it remained unclear why protic acid activation (which also could generate a cation) was less effective than the AlBr₃ or AlBr₃/AgSbF₆ process. This concern led us to the surmise that the protonactivated oxazaborolidine catalyst might be either a hydrogen-bonded complex of triflimide and 1,2,3 or 4 or a contact ion pair. That possibility seemed not unreasonable because the reaction medium for catalytic cycloadditions is generally non-polar - specifically CH₂Cl₂ or CH₂Cl₂-toluene mixtures. It was thought that a bis-coordinating Lewis acid such as TiCl₄ or SnCl₄ might be especially effective in separating triflimidate ion from a protonated oxazaborolidine because of coordination to form the complex 7 (Figure 3), in which the negative charge is far more delocalized than in the triflimidate ion.

$$\begin{bmatrix} F_{3}C & G_{1} & C_{1} \\ F_{3}C & G_{2} & G_{2} & G_{1} & C_{1} \\ N & G_{2} & G_{2} & G_{2} \\ F_{3}C & G_{2} & C_{1} \end{bmatrix} \Theta$$

Figure 3. Possible $Tf_2N/TiCl_4$ -ate complex 7

We were gratified to find by experiment that triflimide activation of various oxazaborolidines could in fact be markedly enhanced simply by the use of TiCl_4 as co-activator (1:1 $\text{Tf}_2\text{NH/TiCl}_4$ ratio, 0.7 equiv based on oxazaborolidine). The experimental results for the (4+2)-cycloaddition of cyclopentadiene to the relatively unreactive dienophile ethyl crotonate using five different oxazaborolidines are summarized in Table 1. All experiments were conducted under exactly the same reaction conditions and so the % conversion to product is an unambiguous indicator of the potency of the catalytic mixture. It is clear from Table 1 that TiCl_4 is a very useful

Table 1. Acceleration of (4+2)-Cycloaddition Using Various Oxazaborolidines with Tf_2NH and $TiCl_4$ or $SnCl_4$ as Co-activators

co-activator. There is only a modest further acceleration of these cycloadditions by increasing the $TiCl_4/Tf_2NH$ ratio from 1 to 2.

In this reaction, TiCl₄ alone is not an effective activator of oxazaborolidines such as **8–12**. The combination of Tf_2NH and TiCl₄ is especially beneficial with the **F10/F0** catalyst **12**. The weaker Lewis acid SnCl₄ can also accelerate the reaction, although not as effective as TiCl₄. On the other hand, it is notworthy that the mono-coordinating Lewis acids AlBr₃ and SbCl₅ are considerably less effective coactivators, although they are very strong Lewis acids.³

The interaction between oxazaborolidinium triflimidates and TiCl₄ could also be detected by ¹H-NMR spectroscopy. Shown in Tables 2A and 2B are ¹H-NMR chemical shift data for the **Fo/F3 (8)** and the **F10/F0 (12)** oxazaborolidines alone and in the presence of one equivalent of Tf₂NH or one equivalent each of Tf₂NH and TiCl₄. As expected, the protons attached alpha to the pyrrolidine nitrogen, which are shifted downfield by one equivalent of Tf₂NH, are further shifted downfield by the 1:1 Tf₂NH/TiCl₄ combination. As a working hypothesis, we suggest that the oxazaborolidinium triflimidate can be thought of as a contact ion pair and the TiCl₄enhanced species as a solvent-separated oxazaborolidiniuim triflimidate-TiCl₄ complex.

Table 2A and 2B. ¹H-NMR Data for Two Oxazaborolidines without and with Tf₂NH or Tf₂NH/TiCl₄

 The augmented catalytic potency shown by 1:1 mixtures of triflimide and TiCl₄ in (4+2)-cycloadditions mediated by chiral oxazaborolidines could also be observed in entirely different chemical reactions, for example the Tf₂NH-catalyzed cyclization of **13** to **14** (Scheme 1) which proceeds very rapidly in CH₂Cl₂ solution (0.05 M) at -40 °C using 1 mol% of Tf₂NH.

Scheme 1. Proton-Catalyzed Cyclization of 13 to 14

The rate of the strictly pseudo-first order reaction was followed by gas chromatography.⁴ The first order rate constant was determined to be 7.1×10^{-4} s⁻¹ for Tf₂NH alone versus 1.2×10^{-2} s⁻¹ for 1:1 Tf₂NH/TiCl₄, which corresponds to a 17-fold acceleration due to TiCl₄. There is no cyclization under these conditions with TiCl₄. In a similar experiment comparing Tf₂NH and 1:1 Tf₂NH/SnCl₄, an acceleration of 13-fold was measured for the latter cyclization reaction. It seems reasonable to think of the accelerated cyclization of **13** to **14** as involving: (1) H-bonded π -complexation of Tf₂NH and the ole-finic linkage of **13** and (2) reaction of this olefin–Tf₂NH complex with TiCl₄ (or SnCl₄) which leads to accelerated generation of the product **14**.

We propose that many reactions can be effected by using 1 mol% if a 1:1 mixture of $Tf_2NH/TiCl_4$ which normally require much larger amounts of more conventional Brønsted acids such as H_2SO_4 , HCl, CH_3SO_3H or CF_3CO_2H , with obvious advantages operationally.⁵

The beneficial effect of TiCl_4 as co-activator together with Tf_2NH is especially pronounced with **F10**-oxazaborolidines (4, Figure 1). These are easy to make,² use and recover for reuse. Furthermore, their use can be effective even at the 1–2 mol% level, as illustrated by the following examples (Scheme 2).

Scheme 2. Diels-Alder Cycloaddition using 1-2 mol% of $F_{10}/F_{0}T_{12}NH/TiCl_{4}$ Catalyst

β,β-Disubstitution in an α,β-unsaturated carbonyl substrate is well-known to prevent (4+2)-cycloaddition reactions with 1,3-dienes. Indeed, β,β-dimethyl acrolein was found to be unreactive even with cyclopentadiene using firstgeneration oxazaborolidine catalysts,^{1b} and even several of the second-generation catalysts. Nonetheless, smooth (4+2)cycloaddition of cyclopentadiene to β,β-dimethyl acrolein was observed using just 5 mol% of **F10/F0** catalyst **12** together with Tf₂NH/TiCl₄ for activation at -78 °C, allowing an efficient route to the bicyclic alcohol **15** (Scheme 3).⁶ Scheme 3. Enantioselective (4+2) Cycloaddition of Cyclopentadiene to β , β -Dimethyl acrolein

The rapid enantioselective construction of a product with seven contiguous stereocenters was also accomplished efficiently using a polysubstituted diene, as shown in Scheme 4.

Scheme 4. Enantioselective (4+2) Cycloaddition with a Heavily Substituted Diene

Direct comparison of the F_{10}/F_0 catalyst 12 with the F_2/F_2 catalyst 10 showed these two oxazaborolidines to be comparably effective, *e.g.* in the addition of the less reactive 1,3-cyclohexadiene to trifluoroethyl fumarate, as shown in Scheme 5. It is important to note that the F_{10}/F_0 oxazaborolidine is simpler to make than the F_2/F_2 compound.

Scheme 5. Comparison of F10/F0 and F2/F2 in the (4+2)-Cycloaddition of 1,3-Cyclohexadiene to Trifluo-roethyl fumarate

In earlier research we found that the use of the firstgeneration oxazaborolidines for (4+2)-cycloaddition of acryloyl chloride or other acid chlorides to dienes proceeded with poor (or no) enantioselectivity due to two unfavorable factors: (1) the intrinsically high reactivity and non-catalyzed cycloaddition rates and (2) the lower carbonyl electrondensity which translated into poorer binding to the catalyst.⁷ Recently, we have discovered a dramatic effectiveness of the **F10/F0**·Tf2NH/TiCl4 catalytic system with α , β -unsaturated acid chlorides that has allowed access to the highly reactive and useful products shown in Figure 4 with the use of just 5 mol% of catalyst in CH₂Cl₂ at -78 °C.⁸

Figure 4. Acid chlorides available using 5 mol% of the F10/F0-Tf2NH/TiCl4 catalyst

We also found that these same products could be prepared with approximately the same yields and enantioselectivities using the F₂/F₂ catalyst 10 and the Tf₂NH/TiCl₄ activator combination. This combination appeared to be superior to the F10/F0 precatalyst 12 for the Tf₂NH/TiCl₄-promoted reactions of acid chlorides and *acyclic* dienes (see Supporting Information).

Acid fluorides are much less reactive than acid chlorides in oxazaborolidinium-catalyzed (4+2)-cycloadditions and, in fact, seem to be surprisingly inert. A 1:1 mixture of acryloyl chloride and fluoride with the **F10/F0** catalyst and excess cyclopentadiene at –78 °C formed exclusively the acid chloride adduct as determined by ¹H-NMR and ¹⁹F-NMR analysis of the total reaction product. Moreover, no catalytic reaction occurred between cyclopentadiene and acryloyl fluoride even at o °C over several hours. It is possible that acryloyl fluoride does not coordinate to the catalyst.

α,β-Unsaturated acid chlorides were found to be the most reactive dienophiles that we have studied using the **F10/F0**·Tf2NH/TiCl4 catalytic system. A comparison of the catalytic (4+2)-cycloaddition of cyclopentadiene with several crotonate derivatives (CH₃CH=CHCOX) showed the following times to completion at -78 °C: X = Cl: 0.7 h; X = CF₃CH₂O, 2 h; X = ClCH₂O, 3 h; X = NCCH₂O, 4.5 h; X = C₂H₅O, ca. 8 h at -20 °C.⁹

One advantage to the use of acid chlorides as dienophiles is the possibility of using the reactive Diels-Alder adducts directly for conversion into a wide range of useful compounds, *e.g.* amides, Wolff-rearrangement products via diazoketone or Curtius rearrangement products via acyl azides (Scheme 6). Such compounds cannot be obtained directly from Diels-Alder reactions of the corresponding dienophiles.

Scheme 6. Derivatizations of Acid Chloride Diels-Alder Adducts

In summary, this research has demonstrated an unprecedented increase in the activation of chiral oxazaborolidines by triflimide combined with an equimolar amount of TiCl₄. The Tf₂NH/TiCl₄ reagent would appear to have considerable potential for other applications in CH₂Cl₂ or CH₂Cl₂-toluene requiring strong protic acid catalysis. We suggest that the effectiveness of the Tf₂NH/TiCl₄ combination is driven by the greater stability of complex 7 in comparison with Tf₂N⁻.

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and characterization data for novel reactions and products including copies of ¹H- and ¹³C-NMR spectra and chiral HPLC traces. This material is available free of charge via the In-ternet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*corey@chemistry.harvard.edu

Author Contributions

‡These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful to the following for research grants: Pfizer, Gilead and Bristol-Myers Squibb. S. B. acknowledges a post-doctoral fellowship from the Swiss National Science Foundation.

REFERENCES

(1) (a) Corey, E. J. Angew. Chem. In. Ed. **2002**, *41*, 1650-1667. (b) Corey, E. J. Angew. Chem. In. Ed. **2009**, *48*, 2100-2117.

(2) Reddy, K. M.; Bhimireddy, E.; Thirupathi, B.; Breitler, S.; Yu, S.; Corey, E. J. *J. Am. Chem. Soc.* **2016**, *138*, 2443-2453.

(3) For a complete list of results in Table 1 see Supporting Information.

(4) For full details see Supporting Information.

(5) A reviewer has suggested the citation of a paper on acceleration of Mukayama-aldol reactions by reagents such as Me_3SiOTf/Et_2AlCl , see Oishi, M.; Aratake, S.; Yamamoto, H. J. Am. Chem. Soc. **1998**, 120, 8271-8272.

(6) The bicyclic alcohol **15** was prepared for comparison from camphene by hydroboration-oxidation, see Biellmann, J.-F.; d'Orchymont, H. *J. Org. Chem.* **1982**, *47*, **2882**-**2886**.

(7) Ryu, D. H.; Zhou, G.; Corey, E. J. Org. Lett. 2005, 7, 1633-1636.

(8) For determination of yields and enantioselectivities after *in situ* quenching with various reagents, see Supporting Information.

(9) The reactivity of the various esters in the series $CH_3CH=CHCOX$ with dienes and $Tf_2NH/TiCl_4$ -acitvated oxazaborolidines parallels the infrared stretching frequencies (cm⁻¹) of the C=O group (COCl = 1758, 1740; COOCH_2CF_3 = 1736; COOCH_2Cl = 1737; COOCH_2CN = 1727; COOCH_2CH_3 = 1716). On the other hand, it was observed that the hexafluoroisopropyl and 2,6-dichlorophenyl esters were quite unreactive, possibly because of steric deceleration. For details see Supporting Information.

