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Tertiary a-Hydroxycarboxylic Acid Derivatives by
Phase-Transfer-Catalyzed Asymmetric Alkylation
of Diaryloxazolidin-2,4-diones**
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The direct alkylation of enolates is an important method for
the formation of carbon–carbon bonds in synthetic organic
chemistry. The concept of diastereoselective alkylation by
using chiral auxiliaries has played a dominant role over the
past three decades for rigorously controling the stereochem-
istry. The establishment of systems useful for a broad range of
substrates has resulted in chiral auxillaries attaining a
preeminent position in the field.[1] On the other hand,
complementary catalytic variants have been much less
developed despite their practical and fundamental impor-
tance.[2] In contrast to the recent emergence of highly efficient
transition-metal-catalyzed processes for asymmetric allyla-
tions,[2, 3] arylations,[2] and vinylations[4] of enolates, reliable
protocols for catalytic enantioselective alkylation involving
sp3-hybridized electrophiles, such as alkyl halides, are still
restricted.[2,5, 6] Although chiral phase-transfer catalysis has
made a significant contribution to this area,[2,6] the major
drawback of this strategy is that it is only effective for a
limited pool of substrates. In particular it has limited
applicability in accessing enantioenriched carbonyl com-
pounds of high value which possess quaternary a-carbon
stereocenters.[7] Our approach toward this largely unsolved
problem utilizes 3,5-diaryloxazolidin-2,4-diones 2 as novel
oxygen-containing substrates that undergo highly enantiose-
lective alkylation under mild phase-transfer conditions in the
presence of the N-spiro chiral quaternary ammonium bro-
mide 1e as catalyst (Scheme 1).[8] This substrate–catalyst
combination provides a new and practical entry to a wide
range of tertiary a-hydroxy-a-aryl carboxylic acid deriva-
tives.[9,10]

The requisite 3,5-diaryloxazolidin-2,4-diones 2 can be
readily prepared from racemic a-hydroxy esters by sequential
treatment with 1,1’-carbonyldiimidazole (CDI) and an appro-
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priate aromatic amine (Ar2NH2) in CH2Cl2.
[11] The feasibility

of the stereoselective alkylation of 2 was examined under
typical liquid–liquid phase-transfer conditions with 3,5-diphe-
nyloxazolidin-2,4-dione (2a, Ar2=Ph) as a representative
substrate and chiral quaternary ammonium bromide (S,S)-
1a[12a,b] as the catalyst. The reaction of 2a (Ar2=Ph) with
benzyl bromide (1.2 equiv) in the presence of 1a (1 mol%) in
toluene/50% aqueous solution of KOH was found to proceed
at 0 8C, and TLC analysis confirmed the consumption of all
the substrate 2a after 18 h. Subsequent addition of dioxane
and continuous stirring of the reaction mixture at room
temperature for 1 h facilitated the one-pot partial hydrolysis
to directly afford the corresponding tertiary a-hydroxy amide
3a (Ar2=Ph) in 79% yield, albeit with low enantiomeric
excess (19% ee ; Table 1, entry 1). Switching the 3,3’-aromatic
substituent (Ar) to a 3,5-bis(trifluoromethyl)phenyl group
(1b)[12c] resulted in a diminished yield with a similar degree of

enantioselectivity (entry 2). To our surprise, however, a
dramatic improvement in the selectivity was attained in the
reaction with 1c (which has radially disposed 3,5-bis[3,5-
bis(trifluoromethyl)phenyl]phenyl moieties) as a catalyst,[12d,e]

and furnished 3a (Ar2=Ph) in 85% yield and with 91% ee
(entry 3).

We then focused on modifying the catalyst further by
introducing an electron-withdrawing trifluoromethyl group at
the 6,6’-positions of each binaphthyl subunit. Evaluation of
the performance of the new chiral ammonium bromides 1d
and 1e revealed the superiority of 1e (entries 4 and 5); the
phase-transfer-catalyzed benzylation of 2a (Ar2=Ph) in the
presence of 1e gave the desired 3a (Ar2=Ph) with 96% ee.
Although the electronic nature of the aryl group (Ar2) on the
nitrogen atom of 2a subtly affected the enantioselectivity and
reaction efficiency (entries 6 and 7), we observed a beneficial
effect of using ethereal solvents such as cyclopentyl methyl
ether (CPME) and tert-butyl methyl ether (TBME). Sub-
stantial rate acceleration and virtually complete stereochem-
ical control were achieved by using TBME (entries 8 and 9). It
should be noted that the decreased chemical yield stems from
hydrolysis prior to the alkylation because of the increased
polarity of the solvent, which was overcome by reducing the
concentration of the base to an aqueous solution of 25%
KOH (entry 10).

With optimized conditions in hand, the scope of this new
asymmetric enolate alkylation protocol was thoroughly
investigated, and the representative results are summarized
in Table 2.[13] In general, 1 mol% of 1e with 1.2 equivalents of
alkyl halide was sufficient for smooth alkylation, and in some
cases the reaction was performed at lower temperature to
enable the catalyst to achieve its full stereocontrol. A series of
benzylic bromides of different steric and electronic properties
were tolerated, thus allowing the preparation of structurally
diverse, enantioenriched a-alkyl mandelic acid derivatives
(entries 1–5). Construction of stereogenic quaternary carbon
centers bearing allylic and propargylic substituents on 2 can
also be achieved in a similar manner (entries 6–8). Both

Scheme 1. Enantioselective alkylation of 3,5-diaryloxazolidin-2,4-diones
2 by phase-transfer catalysis of (S,S)-1 to afford optically active tertiary
a-hydroxy amides 3.

Table 1: Optimization of the phase-transfer-catalyzed asymmetric benzylation of 2a using (S,S)-1 as the catalyst.[a]

Entry Catalyst 2a (Ar2) Solvent t [h] Yield[b] [%] ee[c] [%]

1 1a Ph PhMe 18 79 19
2 1b Ph PhMe 20 65 19
3 1c Ph PhMe 19 85 91
4 1d Ph PhMe 20 83 92
5 1e Ph PhMe 19 87 96
6 1e p-F-C6H4 PhMe 18 84 87
7 1e p-MeO-C6H4 PhMe 17 81 94
8 1e Ph CPME 3 69 92
9 1e Ph TBME 5 75 99
10[d] 1e Ph TBME 7 82 99

[a] Unless otherwise specified, the reaction was carried out with 1.2 equiv of benzyl bromide in the presence of (S,S)-1 (1 mol%) in a mixture of organic
solvent and a 50% aqueous solution of KOH at 0 8C for the given reaction time, after which dioxane was added and stirring was continued at room
temperature for 1 h. [b] Yield of isolated product. [c] The enantiopurity of a-hydroxy amide 3a was determined by HPLC analysis on a chiral stationary
phase (DAICEL Chiralpak AS-H) with hexane/2-propanol as the solvent. The absolute configuration was deduced from that of 3g. [d] Aqueous 25%
KOH solution was used as a base.
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electron-withdrawing and electron-donating substituents on 2
were also tolerated (entries 9 and 10). Moreover, the catalytic
asymmetric quaternization of 2 possessing a heteroaromatic
group as Ar1 was feasible, and excellent enantioselectivity was
observed (entries 11 and 12).

The tertiary a-hydroxy amide 3 thus obtained can be
cleanly converted into the corresponding a-hydroxycarbox-
ylic acid by simple treatment with KOH in ethylene glycol at
150 8C as shown in Scheme 2, and no loss in the enantiomeric
excess of 4 was confirmed by HPLC analysis after further
derivatization to its methyl ester 5. The absolute configura-
tion of 4 was assigned to be S by comparison of the optical
rotation with the literature value.[14]

In conclusion, we have successfully introduced a new
catalyst 1e for realizing catalytic, highly enantioselective
alkylation of substrates 2 under mild phase-transfer condi-
tions. This system represents the first example of the catalytic
asymmetric alkylation of glycolates that establishes stereo-

genic quaternary carbon centers,
and offers direct access to various
optically active tertiary a-hydroxy
acids and their derivatives. These
compounds are an important class
of chiral building blocks, in partic-
ular for the preparation of complex
biologically active substances.[15]

Further investigations on expand-
ing the scope of our approach in
terms of both the nucleophiles and
electrophiles are currently under-
way.
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Table 2: Catalytic asymmetric alkylation of 3-phenyl-5-aryloxazolidin-2,4-dione (2) under phase-transfer
conditions.[a]

Entry 2 (Ar1) RBr T [8C] t [h] Yield[b] [%] ee[c,d] [%] Product

1 Ph (2a) R1=Me 0 9 83 94 3b
2 Ph (2a) R1=F �20 23 81 97 3c
3 Ph (2a) R1=Ph 0 8 80 94 3d

4 Ph (2a) 0 10 76 94 3e

5 Ph (2a) �20 22 80 96 3 f

6 Ph (2a) CH2=CHCH2Br 0 7 83 95 3g
7 Ph (2a) CH2=C(Me)CH2Br �20 24 80 97 3h
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10 p-MeO-C6H4 PhCH2Br �20 23 87 90 3k
11 2-furyl PhCH2Br 0 7 81 94 3 l
12 2-thienyl PhCH2Br �20 24 81 99 3m

[a] The reaction was carried out with 1.2 equiv of alkyl halide and 1 mol% of 1e in a mixture of TBME and
an aqueous 25% KOH solution under the given reaction conditions. [b] Yield of isolated product. [c] The
enantiomeric excess of 3 was determined by HPLC analysis on a chiral stationary phase. [d] The absolute
configuration of 3g was assigned to be S by comparison of the optical rotation with the reported value
after amide hydrolysis[13] (see Scheme 2).

Scheme 2. Conversion of tertiary a-hydroxy amide 3g into the corresponding
a-hydroxy acid 4 and ester 5.
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