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Abstract: Two versatile syntheses of 1- and 1,2-disubstituted 2-
benzazepinones are presented, using N-acyliminium ions as reac-
tive intermediates. The methodology for 1-substitution is based on
the synthesis of benzotriazole adducts, which are cyclized upon
addition of AlCl3. The simultaneous introduction of 1- and 2-sub-
stitions is realized by an N-acylation of an imine.
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The tetrahydro-2-benzazepine skeleton is present in
several bioactive compounds such as ACE, NEP, farne-
syltransferase and factor Xa inhibitors, integrin and fibrin-
ogen receptor antagonists, and analgesics.1,2 Synthetic
methods that allow the introduction of a variety of sub-
stituents at different positions are therefore highly valu-
able in medicinal chemistry. The methods available,
however, do not allow an easy introduction of a sub-
stituent at the 1-position.2 We now report our results on
versatile synthetic methods for the preparation of 1- and
1,2-disubstituted 4-amino-1,2,4,5-tetrahydro-2-benz-

azepin-ones 1, based on N-acyliminium ion cyclizations
(Scheme 1).

The synthesis of the 1-substituted benzazepinones 1 was
achieved through pathways A and B. Both synthetic
pathways are based on the formation of N-acyliminium
ion intermediates (2 and 3). Method A is based on the in-
tramolecular cyclization developed by Katritzky et al. for
the synthesis of substituted isoquinolines.3,4 A benzotriaz-
ole adduct serves an a precursor for the N-acyliminium
intermediate. Petrini and coworkers published a similar
strategy using benzenesulfonyl derivatives.5,6

We prepared the benzotriazole adducts 5 (Scheme 2),
starting from the corresponding N-phthaloyl-phenylala-
nine amide 9a (R2 = H) or 9b (R2 = OMe),7 using benzo-
triazole (BtH) and an aldehyde in acid-catalyzed
conditions by azeotropic removal of water.8

The equilibrium shift towards the N-acyliminium ion 3 is
induced by the addition of a Lewis acid catalyst. The use
of SnCl4, SbCl5, TFMSA and Yb(OTf)3 resulted in the
complete conversion of 513 back into the starting material
9 (Table 1).
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We obtained compounds 8 (entry 1–3) using AlCl3
3,8

under reflux conditions in dichloromethane in yields vary-
ing around 30%. By activation of the aromatic ring of the
amino acid a much better yield was obtained (entries 4 and
5). The starting racemic amide for this entry was obtained
through phase-transfer catalysis using ethyl N-(diphenyl-
methylene)glycinate and 3-methoxybenzylbromide with
n-Bu4N

+HSO4
– as the catalyst.2c In all cases the cycliza-

tion of the acyliminium ions 3 resulted in only one stereo-
isomer. The X-ray diffraction structure of 9a indicated
that the cis isomer was obtained (Figure 1).

A direct way to 1,2-disubstituted benzazepinones 1 con-
sists of the N-acylation of an imine 7 (method B,
Scheme 3). This reaction yields an N-acyliminium ion af-
ter addition of SbCl5,

9 which cyclizes to 10 after an over-
night reaction.

The use of SnCl4 and AgBF4 resulted in lower yields,
whereas other metal halides (TiCl4, SbCl5) led to the
hydrolysis of the N-acyliminium species 11.

The reaction time for N-acylation was strongly dependent
on the R4 substituent: whereas the reaction with R4 =
benzyl or ethyl acetate required 45 minutes, the methyl
propanoate substituent (entry 6, Table 2) needed 5 hours,
probably due to increased steric hindrance. Literature
proposes that the N-acylation step is an equilibrium step
strongly dependent of the kind of imine used.10 Steric
hindrance might disfavor the N-acylated form.

In contrast to method A, no diastereoselectivity is ob-
served: the 1,2-disubstituted benzazepinones 10 are ob-
tained in a 1:1 to 2:1 ratio (Table 2). One stereoisomer of
10 (entry 2, Table 2) was obtained by crystallization, and
was shown by X-ray diffraction to be the trans isomer.
We could observe that this isomer was formed selectively
(1:10, cis/trans) when SbCl5 was used in excess, but with
yields <20% (Figure 2).

Table 1 Synthesis of 1-Substituted Benzazepinones 814,15,17

Entry Substrate R3 Yield of 8 (%)

1 9a Ph 31

2 9a 4-ClPh 30

3 9a 4-BrPh 31

4 9b Ph 71

5 9b 4-BrPh 68
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It was impossible to obtain yields higher then 10% (HPLC
quantification) for the 1-cyclohexyl analogue (entry 7).
As apparent from Table 2, only non-enolizable aldehydes
could be used to introduce a 1-substituent (R3). The use of
a cyclohexanecarboxaldehyde (entry 7) led to the forma-
tion of enamide 13 which could not be cyclized success-
fully (Scheme 4). Ring closure by protonation with
TFMSA11 did not result in the desired product.

Upon work up of the reaction a partial hydrolysis of the
unreacted N-acyliminium ion intermediate 11 was ob-
served. Ganesan et al. reported a similar iminium ion hy-
drolysis in Pictet–Spengler reactions using metal chloride
Lewis acid catalysis.11 Metal triflates (M(OTf)n) were re-
ported to avoid this side reaction and to result in high
yields for the synthesis of tetrahydro-b-carboline ring sys-
tems. We investigated the use Yb(OTf)3, In(OTf)3 and
Sn(OTf)2 but unfortunately these catalysts were not effec-
tive, leading to no conversion to the ring-closed products
10 whatsoever.

As in method A, the reaction yields are much improved by
having an activating methoxy substituent (entries 8–11).
No side-product due to the hydrolysis of the acyliminium

intermediate was observed on HPLC analysis, and after
purification by flash chromatography satisfying yields
(69–75%) were obtained. When on the other hand Pht-
pBr-Phe, Pht-pI-Phe or Pht-pCl-Phe were used, only the
hydrolyzed products were observed, due to a decreased
reactivity of the aromatic ring.

The selectivity for the formation of the cis isomer during
the iminium ion cyclization of 3 is consistent with a pre-
viously reported example (R3 = COOCH3) for which the
preferred transition state 14 was proposed (Scheme 3).2a

A major aspect in 14 is that it results in an equatorial dis-
position of the imino substituent when the aromatic ring
approaches from the top side.

Scheme 5

When an R4 substituent is present, the N-acyliminium in-
termediate 11 does not exist in a single E configuration,
but as the E/Z mixture 15 and 16 (Scheme 5). Cyclization
then results in a diastereomeric mixture.

In conclusion we have developed two versatile strategies
for the 1-substitution (pathway A) and 1,2-disubstitution
(pathway B) of 4-amino-1,2,4,5-tetrahydro-2-benza-
zepin-3-ones 1. Good yields are obtained, provided that
the aromatic ring has an activating substituent, which is in
agreement with other studies.12 The cis product is solely
formed using the benzotriazole pathway, whereas the
strategy through a N-acylation of an imine gave a dia-
stereomeric mixture.
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