
Synthesis of the Saccharomicin
Fucose −Aglycon Conjugate and
Determination of Absolute Configuration
Joseph M. Pletcher and Frank E. McDonald*

Department of Chemistry, Emory UniVersity, Atlanta, Georgia 30322

fmcdona@emory.edu

Received August 15, 2005

ABSTRACT

Schmidt glycosylation of the appropriately protected 3,4-dihydroxycinnamate methyl ester with 2,3,4-triacetoxyfucopyranosyltrichloroaceti midate
gives aryl glycoside in high yield and diastereoselectivity. 2-Sulfation of fucose, installation of taurine, and global deprotection of the remain ing
protecting groups affords the fucose −aglycon conjugate of saccharomicin. This synthesis which arises from L-fucose also establishes the
absolute configuration of the reducing terminus of the saccharomicin oligosaccharide.

Saccharomicins A and B were isolated in 1998 by Kong and
co-workers from the antibiotic complex designated LL-
C19004, produced by the rare actinomyceteSaccharothrix
espanaensis.1 This new class of antibiotics exhibits in vitro
and in vivo antibacterial activity against a panel of pathogenic
Gram-positive organisms, including strains of multiresistant
staphylococci and enterococci bacteria.2 The mechanism of
action is currently unclear, but studies suggest that the
saccharomicin oligosaccharide disrupts the bacterial cell
membrane, allowing for intracellular potassium leakage and
subsequent cell death. Although the saccharomicins have a
small therapeutic window with regard to lethal dosage, the
oligosaccharide backbone and its conformation appears to

be critical to the observed biological activity and may provide
a template for the design of future therapeutics. Aside from
the medicinal impetus for a study of the saccharomicins, their
molecular architectures present a myriad of synthetic chal-
lenges worthy of exploration and an opportunity for develop-
ment of new methods of chemical synthesis.

Chemical degradation and spectroscopic characterization
were the primary techniques used for structural elucidation
of saccharomicins A and B, revealing connectivity patterns
and relative configurations of all 17 sugars. However, the
absolute stereochemistry of each monosaccharide unit was
arbitrarily assigned based on their most abundant natural
forms and remains ambiguous. As a starting point, we sought
to synthesize the reported structures of degradation products
and compare their optical rotations to the naturally derived
materials, thereby providing information vital to the pursuit
of a stereoselective total synthesis.
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The fucose-aglycon conjugate (3) (Figure 1) was one of
two UV-active degradation products isolated from mild acid
hydrolysis, and although Kong and co-workers assigned a
D-configuration to the fucose, for convenience we chose to
prepare the antipodeent-3, containing readily available
L-fucose. The fucose-aglyconâ-linkage led us to envision a
stereoselective glycosylation between an activated fucosyl
donor and a selectively protected cinnamic acid derivative.
Strategic protective group manipulations would then permit
selective installation of the 2′-sulfate and taurine moieties
of the degradation product3.

Stereoselective glycosylations of several 3-protected de-
rivatives of 3,4-dihydroxycinnamate methyl ester43 were
accomplished with the 2,3,4-tri-O-acetyl L-fucosyl trichlo-
roacetimidate54 to give good yields of theâ-fucosides6
(Scheme 1). By way of contrast, the 1,2-glycal epoxide from
dimethyldioxirane epoxidation of 3,4-bis-O-TBS-fucal af-

forded the undesiredR-glycoside as the major product under
a variety of conditions,5 consistent with precedents involving
glycosylation of phenols with glycal epoxides.6 We also
observed that the 3,4-acetonide-protected analogue of5
was unreactive to glycosylation with phenolic nucleophile
4c.

As removal of the methyl ether of6c (R ) Me) was
difficult to achieve in the presence of the glycosidic linkage,
the majority of our successful efforts stemmed from the
benzylic ether-protected glycosides6a,b. Removal of acetate
protective groups and acid-catalyzed reaction of the resulting
triols with 2,2-dimethoxypropane7 afforded regioselective
protection of thecis-3′ and 4′-hydroxyls in 7a,b (Scheme
2). The remaining hydroxyl substituent at C2′ was then
converted into the sulfate esters8a,b in excellent yield.

In the course of our synthetic work, we were concerned
about the eventual removal of protective groups in the
presence of potentially sensitive functional groups. We were
pleased to observe that the acetonide protective group could
be removed by acidic hydrolysis at several stages of this
synthesis. Althoughp-toluenesulfonic acid-catalyzed depro-
tection of 8a gave a 37% yield of9 (accompanied with
byproducts resulting from hydrolysis of sulfate ester and/or
glycoside), Dowex 50WX8 ion-exchange resin provided a
74% isolated yield of9. However, deprotection of the benzyl
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Figure 1. Structures of saccharomicins A and B (1, 2) and the fucose-aglycon conjugate3 from mild acidic hydrolysis.

Scheme 1. Synthesis of Phenolic Fucosides6
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ether of8aor 9 was much more difficult. Despite precedents
which suggested that selective removal of the benzyl ether
might be achieved under transfer hydrogenation condi-
tions,8 all attempts at reductive debenzylation resulted in
concomitant saturation of the conjugated alkene functionality.
Other procedures for deprotection of benzyl ethers such as
FeCl39 were incompatible with the glycosidic linkage.
Fortunately, thep-methoxybenzyl (PMBn) ether8b was acid
labile and could be cleanly deprotected at the same time as
the removal of the acetonide to provide10 in 76% isolated
yield, without significant cleavage of the glycosidic linkage
or sulfate ester.

Thus, the synthesis was successfully completed from the
PMBn-protected glycoside8b, which was converted into the
carboxylic acid11 by basic hydrolysis of the methyl ester
(Scheme 3). The taurine amide was then introduced by
employing the intermediacy of an isobutyl mixed anhydride
1210,11 to provide13. This synthetic intermediate was diffi-
cult to purify from triethylammonium salts, but subse-
quent treatment with Dowex 50WX8 in water at room-
temperature affected removal of both the acetonide and
PMBn protecting groups to afford the saccharomicin fucose-
aglycon conjugate, as theL-enantiomer (ent-3). The modest
yield of ent-3 is attributed to incomplete formation and/or

partial hydrolysis of mixed anhydride12, as some of the
carboxylic acid11 was recovered albeit contaminated with
triethylammonium salts. Compoundent-3 was obtained pure
after C18 silica gel chromatography with slow elution H2O/
MeOH (9:1) and gives identical1H and 13C NMR spectra
when compared to the naturally derived fucose-aglycon
conjugate.12

Optical rotation of the synthetic fucose-aglycon conjugate
ent-3 derived fromL-fucose gave a positive sign of rota-
tion: [R]D ) +63 (c 0.22 in MeOH); [R]D ) +53 (c 0.26 in
H2O), whereas that of the naturally derived material was [R]D

) -60.1 (c 0.052 in H2O),13 indicating an absolute config-
uration of D-fucose in the saccharomicins. WhileD-fucose
is considerably more expensive thanL-fucose, we note that
D-fucose glycal can be easily prepared using alkynyl alcohol
cycloisomerization methodology14 and can likely be incor-
porated in a projected synthesis of saccharomicin oligosac-
charides.

In conclusion, we have completed a short synthesis of
the fucose-aglycon substructure of saccharomicins,
which compares favorably to the enantiomer of compound
3 arising from acid-catalyzed degradation of saccharomi-
cins.
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