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Abstract: Aryl imidazol-1-ylsulfonates are efficiently
cross-coupled with potassium aryl- and alkenyltri-
fluoroborates in neat water under microwave heating
(40 W, 110 8C) using 0.5 mol% of oxime palladacycle
1a, hexadecyltrimethyl ammonium bromide (CTAB)
as additive, and triethylamine as base. Under these
simple phosphane-free reaction conditions a wide

array of biaryl, stilbene and styrene derivatives has
been prepared in good to high yields and with high
regio- and diastereoselectivities in only 30 min.
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Introduction

In the past several decades, the Suzuki–Miyaura
cross-coupling has become one of the most useful
tools to construct carbon-carbon bonds in both labo-
ratory and industry.[1] Although aryl and alkenyl hal-
ides are most commonly employed as the electrophilic
partner in the Suzuki reaction, much effort has been
directed to search for alternative electrophiles.
Oxygen-based electrophiles are particularly attractive
partners in cross-coupling reactions due to their high
stability and the ubiquitous presence of the O-based
starting materials both in nature and in synthetic sys-
tems. Phenolic derivatives offer a valuable alternative
given that phenols are typically inexpensive and read-
ily available materials.[2,3] The Suzuki–Miyaura cross-
coupling reaction of enols, phenols, and hydroxylated
arenes usually involves their transformation into tri-
flates due to the superior performance of these deriv-
atives as electrophilic partners.[4] However, triflates
are substrates with limited stability, so recent studies
have focused on the development of less common
phenol-based electrophiles,[5] such as mesylates,[6] to-
sylates,[6e,7] ethers,[8] esters,[6c,9] carbamates,[10] carbon-ACHTUNGTRENNUNGates,[10b] phosphonium salts,[11] phosphoramides and
phosphates,[12] N,N-dialkyl O-sulfamates,[6f,10b,f,13] and
borates[14] since these substrates are usually more
robust and allow functionalization by regioselective
C�H activation and directed ortho metalation proces-
ses.[10a,13a,15] With the exception of aryl mesylates and

tosylates, these electrophiles are typically unreactive
towards Pd catalysis, with phosphane-derived nickel
complexes, such as NiCl2ACHTUNGTRENNUNG(PCy3)2 being the most active
catalysts, usually working in organic or aqueous sol-
vents (Scheme 1). Very recently, aryl imidazolylsulfo-
nates have been demonstrated as efficient electrophil-
ic coupling partners in the Suzuki reaction with aryl-
boronic acids employing bidentate phosphane ligands,
such as 1,1’-bis(diphenylphosphino)ferrocene (dppf)
and 2,2’-bis(diphenylphosphino)-1,1’-binaphthalene

Scheme 1. Suzuki coupling of phenol-derived electrophiles.
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(BINAP), under high catalyst loadings (5–10 mol%
Pd).[16,17]

In our group, we have disclosed a phosphane-free
oxime-palladacycle[18,19]-catalyzed Suzuki reaction of
aryl imidazolylsulfonates with aryl- and alkenylboron-
ic acids and potassium trifluoroborates in aqueous
methanol, a reaction which can be performed using
conventional or microwave heating, under low load-
ing conditions (1 mol% Pd).[20] In this work, the lack
of efficiency in the Suzuki coupling under aqueous
conditions of other C�O electrophiles, such as carbo-
nates, carbamates, phosphates, and N,N-dialkylsulf-ACHTUNGTRENNUNGamates, was also demonstrated.

Despite the significant advances in the pool of
available electrophiles and their Suzuki cross-cou-
pling, much effort remains to generalize the transfor-
mation. To date, no examples of Pd- or Ni-catalyzed
C�O activation in water have been reported
(Scheme 1).[21] In this work, we present the first
Suzuki–Miyaura coupling of aryl imidazolylsulfamates
with potassium aryl- and alkenyltrifluoroborates using
oxime palladacycle 1a as precatalyst in water under
microwave irradiation and phosphane-free conditions.

Results and Discussion

Initially, we investigated the microwave-promoted
Suzuki coupling of naphthalen-1-yl 1H-imidazole-1-
sulfonate (2aa, 1 equiv.) with phenylboronic acid
(1.5 equiv.) catalyzed by palladacycle 1a (1 mol% Pd)
at 110 8C in water. A first base optimization study,[22]

which was performed in the presence of the surfactant
polyoxyethanyl-a-tocopheryl sebacate (PTS) (4a,
15% w/w),[23] showed triethylamine (TEA) as the
most effective base, affording 5a in a 56% isolated
yield (Scheme 2). Under these conditions, a subse-
quent surfactant study[22] using other non-ionic [poly-
oxyethylene lauryl ether (Brij 35, 4b), 4-(1,1,3,3-tetra-
methylbutyl)phenylpolyethylene glycol (Triton X100,
4c), and macrogol (25)-cetostearyl ether (Cremophor
A25, 4d)], as well as ionic [hexadecyltrimethylammo-
nium bromide (CTAB, 4e) and tetrabutylammonium
bromide (TBAB, 4f)] additives, did not improve this
result, affording 5a in much lower yields than for 4a
(7–39%).[22]

Next, an exhaustive nucleophile/surfactant screen-
ing[22] was carried out for the microwave-promoted ar-

ylation of 2aa in the presence of TEA as base using
different boron nucleophiles 3 and surfactants 4
(Table 1). As shown in entries 1–4 for the best results,
the Suzuki cross-coupling of the imidazolylsulfonate
2aa afforded compound 5a in good to excellent yields
(53–91%) irrespective of the electrophile used, potas-
sium phenyltrifluoroborate and CTAB (4e) being the
match combination (Table 1, entry 4). The cross-cou-
pling reaction was not so effective when it was carried
out with conventional heating at 110 8C for 24 h,
yielding compound 5a in a 38% isolated yield
(entry 6).

Regarding the catalyst, a 66% yield of compound
5a was obtained under the optimized reaction condi-
tions when oxime palladacycle 1b (1 mol% Pd) was
employed (Table 1, entry 7). Other Pd sources such as
Pd ACHTUNGTRENNUNG(OAc)2 and Pd2ACHTUNGTRENNUNG(dba)3 were much less effective as
shown in entries 8–10. Phosphane-derived nickel com-
plexes, such as NiCl2ACHTUNGTRENNUNG(PCy3)2 have been demonstrated

Scheme 2. Suzuki coupling of 2aa with PhB(OH)2 in water.
Reaction conditions study

Table 1. Suzuki coupling of 2 in water. Reaction conditions
study.

Entry 2 Xn Pd catalyst 4 Yield [%][a]

1 2aa (OH)2 1a 4a 56
2 2aa [OC ACHTUNGTRENNUNG(Me2)]2 1a 4e 76
3 2aa ACHTUNGTRENNUNG(OCOCH2)2NMe 1a 4c 53
4 2aa F3K 1a 4e 91
5 2aa (OH)2 1a 4e 39
6 2aa F3K 1a 4e 38[b]

7 2aa F3K 1b 4e 66
8 2aa F3K Pd ACHTUNGTRENNUNG(OAc)2 4e 33
9 2aa F3K Pd ACHTUNGTRENNUNG(OAc)2

[c] 4e 40
10 2aa F3K Pd2ACHTUNGTRENNUNG(dba)3 4e <5
11 2aa F3K –[d] 4e <5
12 2ab F3K 1a 4e <5
13 2ac F3K 1a 4e <5
14 2ad F3K 1a 4e <5
15 2ae F3K 1a 4e <5
16 2af F3K 1a 4e <5

[a] Isolated yield after flash chromatography.
[b] Reaction performed with conventional heating at 110 8C

for 24 h.
[c] Reaction performed in the presence of [HP ACHTUNGTRENNUNG(t-Bu)3]BF4

(2 mol%).
[d] Reaction performed using 1 mol% of NiCl2ACHTUNGTRENNUNG(PCy3)2.
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as the most effective catalysts to carry out the Suzuki
coupling of phenol derivatives in organic solvents.[6c]

However, the coupling between imidazolylsulfonate
2aa and potassium phenyltrifluoroborate catalyzed by
NiCl2ACHTUNGTRENNUNG(PCy3)2, led to a negligible reaction conversion
(Table 1, entry 11). Finally, we also tested the reactivi-
ty of the electrophiles 2ab, 2ac, 2ad, 2ae, and 2af in
the process under the optimized reaction conditions.
As depicted in entries 12–16, none of these deriva-
tives showed any reactivity and only starting material
was recovered from the crude reaction mixture.[24,25]

To test the effectiveness of the catalytic system in
the Pd-catalyzed Suzuki reaction in water, a range of
potassium aryl- and alkenyltrifluoroborates was exam-
ined in the coupling with imidazolylsulfonate 2aa
under the optimized reaction conditions (Table 2).

Regarding aryltrifluoroborates, both activated and
deactivated nucleophiles afforded the corresponding
cross-coupled products in good yields as demonstrat-
ed with the coupling of potassium 4-tolyltrifluorobo-
rate and potassium 4-(trifluoromethyl)phenyltrifluoro-ACHTUNGTRENNUNGborate (Table 2, entries 2 and 3). Heterocyclic nucleo-
philes such as, potassium pyrid-3-yltrifluoroborate
and potassium thien-3-yltrifluoroborate were also sub-

mitted to the coupling with naphthalen-1-yl 1H-imida-
zole-1-sulfonate under the optimized reaction condi-
tions. As shown in Table 2, entries 4 and 5, these com-
pounds afforded the corresponding adducts 5d and 5e
in 55 and 60% isolated yields, respectively. Good
yields were also observed for the coupling of 2aa with
potassium trans-2-phenylvinylboronic acid (entry 6)
and potassium trans-1-decen-1-yltrifluoroborate
(entry 7), reactions that afforded compounds 5f and
5g in 84 and 62% yield, respectively. These reactions
were highly regioselective, and no ipso coupling was
observed, a process often found in Pd-catalyzed alke-
nylations of aryl chlorides.[26]

We next extended the substrate scope of the reac-
tion to the arylation and alkenylation of other differ-
ent aryl imidazolylsulfonates (Table 3). Concerning
arylation, electron-rich, electron-poor, sterically hin-
dered, and heterocyclic electrophiles showed good re-
activity when coupling with potassium
phenyltrifluoro ACHTUNGTRENNUNGborate, affording the corresponding bi-
phenyl derivatives in good to excellent yields
(Table 2, entries 1–4). ortho-Cyano-substituted elec-

Table 2. Suzuki arylation and alkenylation of 2aa.[a]

[a] Reaction conditions: A mixture of 2aa (0.055 g,
0.2 mmol), RBF3K (0.3 mmol), Et3N (0.056 mL,
0.4 mmol), 4e (0.030 g, 15% w/w in water), 1a (0.0006 g,
1 mol% Pd) in H2O (1.7 mL) was heated in air at 110 8C
for 30 min with the aid of an initial 40 W irradiation.

[b] Isolated yield after flash chromatography.

Table 3. Substrate scope of the Suzuki reaction.

[a] Isolated yield after flash chromatography.
[b] 80 W, 150 8C, 1 h.
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trophile 2be reacted very efficiently with potassium p-
toluenetrifluoroborate, producing 2-cyano-4’-methyl-
biphenyl (5l), a key intermediate in the synthesis of
angiotensin II receptor antagonists that are used for
the treatment of hypertension,[27] with an 86% yield
(Table 3, entry 5).

With respect to alkenylations, slightly lower yields
were obtained in the coupling reaction of different
imidazolylsulfonates 2 with potassium trans-2-phenyl-
vinyltrifluoroborate and potassium trans-1-decen-1-yl-
trifluoroborate, which regioselectively led to stilbene
derivatives 5m–5p in 55 to 84% isolated yields
(Table 3, entries 6–9).

Finally, concerning the Suzuki coupling of halogen-
ated imidazolylsulfonates, the C�Cl bond did not par-
ticipate in the coupling event as demonstrated in the
arylation of p-chlorophenyl imidazolylsulfonate (2bc)
with potassium phenyltrifluoroborate, a reaction that
afforded 4-chlorobiphenyl (5j) in a 74% yield
(Table 3, entry 3). However, the weaker C�Br bond
did react in the process, and the reaction of electro-
phile 2bg (1 equiv.) with potassium phenyltrifluorobo-
rate (1.5 equiv.)[28] afforded as a major product
1,1’:4’,1’’-terphenyl (6) in 55% yield, together with
a 28% yield of 1,1’-biphenyl-4-yl 1H-imidazole-1-sul-
fonate (2bh) (Scheme 3). On the other hand, only
(E)-4-styrylphenyl 1H-imidazole-1-sulfonate (2bi) was
isolated, from the 1a-catalyzed alkenylation of 2bg
with potassium trans-2-phenylvinyltrifluoroborate
(Scheme 3).[29]

Conclusions

In conclusion, we have disclosed a general phos-
phane-free palladium-catalyzed Suzuki cross-coupling
reaction of electron-rich, electron-poor, and sterically
hindered aryl imidazolylsulfonates with aryl- and al-
kenylpotassium trifluoroborates using water as sol-

vent under microwave irradiation. This reaction is car-
ried out in the presence of hexadecyltrimethylammo-
nium bromide as additive and is catalyzed by only
1 mol% Pd of bench stable oxime palladacycle 1a.
Further studies to demonstrate the ability of imidazo-
lylsulfonates as electrophiles in cross-coupling reac-
tions in water are underway in the group.

Experimental Section

Typical Procedure for the Suzuki Coupling in Water
under MW Irradiation Conditions

A 10-mL MW vessel was charged with 1-naphthalen-1-yl-
1H-imidazole-1-sulfonate (2aa) (0.055 g, 0.2 mmol, 1 equiv.),
potassium 4-(trifluoromethyl)phenyltrifluoroborate (0.079 g,
0.3 mmol), Et3N (0.056 mL, 0.4 mmol), CTAB (0.030 g, 15%
w/w in water), catalyst 1a (0.6 mg, 1 mol% Pd), and H2O
(1.7 mL). The vessel was sealed with a pressure lock, and
the mixture was heated in air at 110 8C for 30 min with the
aid of an initial MW irradiation of 40 W in a CEM Discover
MW reactor. Then, after cooling to room temperature, the
reaction mixture was extracted with EtOAc (3 �10 mL), and
the organic layers were washed with H2O (3� 10 mL), dried
over MgSO4, and concentrated under reduced pressure. The
crude residue was purified by flash chromatography
(hexane/EtOAc: 4/1) to afford 5c ; yield: 0.033 g (68%);
white solid; mp 48–49 8C (hexane); Rf 0.34 (hexane). IR
(KBr): n=3068, 3045, 1616, 1404, 1323, 1166, 1123, 1069,
1019, 850, 804, 700 cm�1; 1H NMR (CDCl3, 400 MHz): dH =
8.09–7.99 (m, 3 H), 7.90 (d, J=8.4 Hz, 2 H), 7.72 (d, J=
8.4 Hz, 2 H), 7.69–7.57 (m, 3 H), 7.54 (d, J=8.4 Hz, 1 H);
13C NMR (CDCl3, 100 MHz): dC =144.9, 138.7, 133.8, 131.3,
130.4, 129.5 (q, J=32.3 Hz), 128.44, 128.39, 127.0, 126.4,
126.0, 125.5, 125.3, 125.2 (q, J= 3.3 Hz), 124.4 (q, J=
270.5 Hz); MS: m/z (%) =273 (M+ +1, 18), 272 (M+ , 100),
271 (M+-1, 23), 251 (15), 203 (50), 202 (54).
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