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Abstract Chiral (R)-1-phenylethylamine was success-

fully employed in a tandem aza-Henry addition–reduction

reaction to give chiral b-nitro a-trifluoromethyl amines. A

subsequent coupling reaction with N-Boc-protected amino

acids leads to obtain optically pure CF3-modified dipep-

tides carrying two different N-protecting groups. These

peptidomimetic units are characterized by the presence of

the [CH(CF3)NH] group as mimetic of the natural [CONH]

peptidic bond and can be used for the synthesis of more

complex CF3-modified peptides after selective deprotection

of one of the two amine functions. 2D NMR spectral

analyses were employed to determine the absolute config-

urations of all newly synthesized chiral compounds.

Keywords Amino acids � NMR techniques �
Organo-fluorine chemistry � Peptidomimetics

Introduction

The special nature of fluorine imparts a variety of properties

to certain molecules making them potential drug candi-

dates, including enhanced-binding interactions, metabolic

stability, changes in physical properties, and selective

reactivity (Cahard and Bizet 2014; O’Hagan 2013; Zhang

et al. 2012; Filler and Saha 2009; Couve-Bonnaire et al.

2007; Müller et al. 2007). Selective incorporation of fluo-

rinated residues into proteins is actually considered a

powerful strategy to modulate the properties of those pep-

tides which show great potential as highly active pharma-

ceuticals (Salwiczek et al. 2012; March et al. 2012; Merkel

and Budisa 2012; Buer and Marsh 2012; Mikami et al.

2011; Qiu and Qing 2011; Acena et al. 2010; Kukhar et al.

2009). The success of substitution with fluorine stems from

its unique properties: small size, very low polarizability and

strong inductive effect. As a consequence, the presence of

fluorine within a peptide often favorably modifies the bio-

physical, biological and chemical properties such as

hydrophobicity, acidity/basicity, reactivity and conforma-

tion. Numerous examples can be found where fluorine has

effectively replaced either hydrogen or oxygen in com-

pounds that have retained comparable activities, albeit with

different properties (Buer et al. 2012; McKinney and Urban

2010; Fustero et al. 2009; Molteni et al. 2004). An impor-

tant modification consists in the incorporation of a

[CH(CF3)NH] unit as a surrogate of the natural [CONH]

peptidic bond, due to the fact that the trifluoromethyl group

is an effective xenobiotic function for the peptide backbone

modification (Cho et al. 2013; Jagodzinska et al. 2009;

Zanda 2004; Sani et al. 2003; Molteni et al. 2003; Volon-

terio et al. 2002) (Fig. 1).

Unfortunately, the synthetic accessibility of fluorinated

peptides is limited by the availability of appropriate

building blocks both for the liquid and for the solid-phase

synthesis.

(E)-Trifluoromethyl aldimines (Bégué et al. 2005), can

be easily synthesized through a solvent-free reaction

starting from commercial trifluoroacetaldehyde ethyl

hemiacetal (Gong and Kato 2004) and several primary
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amines (Carroccia et al. 2010, 2011) and can be considered

interesting precursors for the construction of small fluori-

nated peptides, already containing both the CF3 group and

the nitrogen atom. Then, starting from our recent studies on

the ZrCl4-catalyzed aza-Henry addition of different nitro

alkanes on (E)-trifluoromethyl aldimines (Fioravanti et al.

2012), the synthesis of N,N0-diprotected CF3-modified

dipeptides by a short procedure was considered

(Scheme 1).

Results and discussion

Chiral (R)-1-phenylethylamine (1) is considered as a suit-

able starting primary amine due to the presence of the

benzylic group that can be easily removed under mild

hydrogenolytic conditions. Considering that the imine

synthesis was performed under solvent-free conditions as

well as the aza-Henry addition, a one-pot reaction was

attempted. So, to the commercial amine 1 trifluoroacetal-

dehyde ethyl hemiacetal in equimolar ratio was added,

heating to 120 �C and the reaction was followed by 19F

NMR spectroscopy (4 h) (Carroccia et al. 2010). After

bringing the reaction to room temperature, ZrCl4 (50 % M)

and the appropriate nitro alkane 2 (5 eq) were added

directly in the same vessel (Scheme 2).

The aza-Henry reactions were followed by 19F NMR

spectroscopy and the results are reported in Table 1.

In all cases, complete disappearance of the CF3 signal of

the non-isolated intermediate imine was observed by 19F

NMR spectra and the expected b-nitro a-trifluoromethyl

amines were obtained in satisfactory yields after flash

chromatography on silica gel. In hope of enhancing the

stereoselective outcome, the reactions were repeated by

varying the temperature (0 and -20 �C), but no significant

changes in the diastereomeric ratios (dr) were determined

by the 19F NMR analysis performed on the crude mixtures.

As reported in Table 1, when using nitromethane 2a a

moderate diastereomeric ratio was observed (entry 1) and,

when the aza-Henry reactions were performed using nitro

alkanes 2b or 2c (entries 2 and 3), all the four possible

diastereomers were obtained, although in different ratios

(Fig. 2).

Nevertheless, we underline that complete stereoselec-

tivity can paradoxically result in a limitation in the stra-

tegic synthesis of CF3-modified dipeptides. In fact, it is

important to access each of the new diastereomeric pro-

ducts, because of the possible drastic difference of reac-

tivity in biological matrices among stereoisomers.

Fortunately, the diastereomers from the reaction mixture

could be easily separated by column chromatography to

obtain diastereomerically pure compounds.

To univocally assign the chirality of the newly formed

stereocenters, 2D NOESY 1H NMR spectra (Fig. 3) were

acquired on the purified 3a (a) and 30a (b).

These experiments permit to determine interproton dis-

tances through the measure of cross-peak volumes and thus

determine molecular geometry (Aliev et al. 2012; Falk

et al. 2001; Silvi et al. 2013; Carroccia et al. 2012; Aresu

et al. 2013b, c). In fact, as reported (Jeener et al. 1979)

starting from a reference cross peak whose interproton
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Fig. 1 [CH(CF3)NH] unit as mimetic of natural [CONH] peptidic

bond

Scheme 1 Procedure for the

synthesis of N,N0-diprotected

CF3-modified dipeptides

Scheme 2 One-pot synthesis of b-nitro a-trifluoromethyl amines

under solvent-free conditions

Table 1 Results of the tandem Zr-catalyzed aza-Henry addition

Entry 2 R0 T (h) Products Yield

(%)a
Drb

1 a H 3 3,30a 80 80:20

2 b Me 18 syn-4,40b 24 72:28

anti-5,50b 52 72:28

3 c Et 18 syn-4,40c 24 67:33

anti-5,50c 48 67:33

a After flash chromatography on silica gel
b Diastereomeric ratios by 19F NMR spectra performed on the crude

mixtures
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distance is known, it is possible to calculate the distances

between other protons according to the following equation:

VX

VR

¼ dR

dX

� �6

;

in which VR is the volume of the reference cross peak, dR

is the corresponding interproton distance and VX is the

volume relative to the unknown distance dX.

Considering that the chiral center on the amine residue

is always in R configuration, the interproton distance

between Hb and the protons Hc in both 3 and 30a can be

considered as a fixed value and employed as a ruler to

determine the distance between Ha and Hb. On the basis of

the optimized geometries of both diastereomers, 2.66 Å

was found as the medium value of the interproton distance

(dR) between Hb and the protons Hc and the corresponding

volume VR was set at 10 arbitrary units (au). Therefore, the

volumes relative to the cross peaks between Ha and Hb (VX)

were found to be 0.92 au for 3a and 1.37 au for 30a, and the

corresponding interproton distances (3.96 and 3.70 Å,

respectively, with a confidence level of *3 %) (Jones

et al. 2011) were calculated. Thus, comparing the collected

data (Fig. 4), the absolute configurations of the new chiral

centers, S for 3a and R for 30a, were univocally assigned.

The results showed that the nucleophilic attack takes

place preferentially on the less hindered Si face of the

intermediate non-isolated (E,R)-trifluoromethyl imine I,

probably following the mechanism reported in Scheme 3

for the synthesis of the major isomer (R,S)-3a, that involves

the formation of the chiral metallic intermediate II.

Finally, 2D NOESY 1H NMR spectra were performed

also on syn-4,40b,c anti-5,50b,c, and the absolute

Fig. 2 19F NMR spectra

performed on the crude

mixtures of 3,30a and syn-4,40b
and anti-5,50b

Fig. 3 2D NOESY of 3a (a) and 30a (b). In both spectra the cross peaks corresponding to the interproton correlations Ha/Hb and Hb/Hc are

evidenced
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configurations of all new chiral centers of diastereomeri-

cally pure b-nitro a-trifluoromethyl amines were assigned

(Fig. 5).

The obtained chiral b-nitro amines were considered in a

selective reduction reaction of the nitro group to form the

corresponding chiral b-diamines whose primary amine

group may give a coupling reaction with N-protected a-

amino acids under classical reaction conditions.

To test the procedure, the racemic mono-benzyl 1,2-

diamine 7, obtained from the corresponding b-nitro a-tri-

fluoromethyl amine 6 (Fioravanti et al. 2012), was con-

sidered in a coupling reaction with N-Boc-Gly or N-Boc-l-

Val performed in the presence of N,N0–dicyclohexylcar-

bodiimide (DCC) and 4-dimethylaminopyridine (DMAP)

(Scheme 4).

The use of N-Boc-l-Val leads to diastereomers (S,S)-9

and (R,S)-90 (Grishina et al. 2005) that were obtained as

optically pure CF3-modified dipeptides by flash

chromatography on silica gel (eluent: hexane/ethyl ace-

tate = 8:2). The absolute configurations were assigned on

the basis of NOESY analyses, following the above reported

methodology and choosing like distance ruler the one

between the proton of NH Boc-protected and the proton on

the L-Valine chiral center. Due to the presence of two

different N-protecting groups on the synthesized com-

pounds, on the basis of the planned synthetic strategy it is

possible to choose the further site of growth and molecular

diversification. In fact, a hydrogenolysis reaction permits to

remove the benzyl group, while an acidic hydrolysis leads

to remove the Boc group.

Then, the complete synthetic procedure was successfully

performed starting from the optically pure b-nitro a-tri-

fluoromethyl amines 3a and 30a to obtain directly optically

pure (R,S)-11 and (R,R)-110a (Scheme 5).

A subsequent hydrogenolysis reaction (Grishina et al.

2005) leads to the corresponding (S)-12 and (R)-120a, as chiral

CF3-modified dipeptides, in which the presence of a primary

amine function can allow a further molecular growth.

Conclusion

In conclusion, the synthesis of optically pure trifluoro-

methyl-modified dipeptides has been reported here. The

process involves a tandem Zr-catalyzed aza-Henry addi-

tion–reduction reaction aiming to replace the natural

[CONH] peptidic bond with the [CH(CF3)NH] mimetic

unit. Starting from the commercially cheap (R)-1-

Fig. 4 Optimized geometries of (R,S)-3a and (R,R)-30a

Scheme 3 Proposed pathway

for the synthesis of the major

isomer (R,S)-3a

Fig. 5 Absolute configurations of syn-4,40b and anti-5,50b
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phenylethylamine, a chiral metal complex was proposed as

an intermediate to explain the stereoselective reaction

outcome. The synthesis can be considered a green proce-

dure, the one-pot key step taking place under solvent-free

conditions. Moreover, the obtained compounds are suitable

for potential combinatorial applications and for industrial

use as building blocks for drug discovery, such as other

different peptidomimetic structures reported by us (Fio-

ravanti et al. 2010a, b; Aresu et al. 2013a).

Experimental

IR spectra were recorded on a Perkin-Elmer 1600 FT/IR

spectrophotometer in CHCl3 as the solvent. 1H NMR and 13C

NMR spectra were recorded on a VARIAN XL-300 spec-

trometer at 300 and 75 MHz or by a Bruker Avance III at 400

and 101 MHz, respectively, at room temperature. CDCl3 was

used as the solvent and CHCl3 and CDCl3 as the internal

standard for 1H and 13C, respectively. 19F NMR spectra were

recorded on a VARIAN XL-300 spectrometer at 282.2 MHz,

using CDCl3 as the solvent and C6F6 as the internal standard.

The NOESY experiments were performed by a Bruker

Avance III at 400 MHz using CDCl3 as the solvent and CHCl3
as the internal standard and used to assist in structure eluci-

dation (Claridge 2009). HR-MS analyses were performed

using a Micromass Q-TOF Micro quadrupole-time of flight

(TOF) mass spectrometer equipped with an ESI source and a

syringe pump. The experiments were conducted in the posi-

tive ion mode. Optical rotation was determined at 25 �C with a

JASCD DIP-370 polarimeter at a wavelength of 589 nm,

using a quartz cell of 1 cm length.

One-pot synthesis of b-nitro a-trifluoromethyl amines

under solvent-free conditions: general procedure

A stirred equimolar solution (1 mmol) of trifluoroacetal-

dehyde ethyl hemiacetal (90 % aq. solution, 160 mg) and

(R)-1-phenylethylamine (122 mg) was heated at 120 �C

Scheme 4 Coupling reaction

with N-Boc-Gly or N-Boc-l-Val

Scheme 5 Synthetic procedure

for N-Boc-protected optically

pure CF3-modified dipeptides
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under solvent-free conditions in a flask fitted with a cal-

cium chloride tube. After 4 h, the reaction mixture was

cooled to room temperature and ZrCl4 (0.5 mmol, 116 mg)

and nitro compound 2 (5 mmol) were added under stirring.

The reactions were followed by 1H and 19F NMR (3–18 h,

see Table 1). Then, after addition of water (5 mL), the

crude mixtures were extracted three times with Et2O. The

collected organic layers were dried over anhydrous Na2SO4

and the solvent was evaporated under vacuum. The crude

mixtures were purified by flash chromatography on silica

gel.

Synthesis of 3 and 30a. Yield: 80 % (210 mg). Separated

by flash chromatography on silica gel (eluent: hexane/ethyl

acetate = 9:1).

(2S)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]propan-2-amine (3a)

Yellow pale oil (64 %, 168 mg). IR: 3,328, 1,570 cm-1.

[a]D
25 -79.0 (c = 4, CHCl3). 1H NMR (400 MHz, CDCl3)

d 1.36 (d, J = 6.4 Hz, 3H), 1.79 (br, 1H), 3.91–4.02 (m,

1H), 4.05 (q, J = 6.4 Hz, 1H), 4.45 (dd, J = 12.8, 7.8 Hz,

1H), 4.65 (dd, J = 12.8, 4.6 Hz, 1H), 7.27–7.39 (m, 5H).
13C NMR (101 MHz, CDCl3) d 23.22, 55.5, 56.03 (q,

J = 28.6 Hz), 73.9, 124.9 (q, J = 283.4 Hz), 126.6 (2C), 127.7,

128.6 (2C), 143.7. 19F NMR (282 MHz, CDCl3) d -77.3 (d,

J = 7.0 Hz). HR-MS (ESI/Q-TOF) m/z calcd for C11H14F3N2-

O2 [M ? H]? 263.1007, found 263.1011; m/z calcd for C11-

H13F3N2NaO2 [M ? Na]? 285.0827, found 285.0834.

(2R)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]propan-2-amine (30a)

Yellow pale oil (16 %, 42 mg). [a]D
25 -15.3 (c = 3,

CHCl3). 1H NMR (400 MHz, CDCl3) d 1.32 (d, J = 6.5,

3H), 1.77 (br, 1H), 3.59–3.80 (m, 1H), 4.11 (q, J = 6.4,

1H), 4.29 (dd, J = 12.6, 9.3, 1H), 4.44 (dd, J = 12.6, 4.3,

1H), 7.15–7.38 (m, 5H). 13C NMR (101 MHz, CDCl3) d
24.8, 55.2 (q, J = 28.8 Hz), 55.9, 74.7, 125.3 (q,

J = 286.2 Hz), 127.0 (2C), 127.9, 128.7 (2C), 142.5. 19F

NMR (282 MHz, CDCl3) d -75.9 (d, J = 6.6 Hz). HR-

MS (ESI/Q-TOF) (m/z) calcd for C11H14F3N2O2

[M ? H]?: 263.1007, found 263.1002; (m/z) calcd for

C11H13F3N2NaO2 [M ? Na]?: 285.0827, found 285.0821.

Synthesis of syn-4,40b and anti-5,50b. Yield: 76 %

(210 mg). Separated by flash chromatography on silica gel

(eluent: hexane/ethyl acetate = 92:8). IR: 3,990, 1,550 cm-1.

(2S,3R)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]butan-2-amine (syn-4b)

Yellow oil (17 %, 46 mg). [a]D
25 -8.8 (c = 3, CHCl3). 1H

NMR (400 MHz, CDCl3) d 1.26 (d, J = 6.5 Hz, 3H), 1.45

(d, J = 6.8 Hz, 3H), 1.74 (br, 1H), 3.65–3.78 (m, 1H), 3.89

(q, J = 6.3 Hz, 1H), 4.55–4.45 (m, 1H), 7.16–7.28 (m,

5H). 13C NMR (101 MHz, CDCl3) d 12.5, 22.7, 55.9, 58.4

(q, J = 27.6 Hz), 80.4, 124.3 (q, J = 284.9 Hz), 127.1

(2C), 127.7, 128.6 (2C), 142.5. 19F NMR (282 MHz,

CDCl3) d -73.6 (d, J = 6.9 Hz). HR-MS (ESI/Q-TOF)

(m/z) calcd for C12H16F3N2O2 [M ? H]?: 277.1164, found

277.1159; (m/z) calcd for C12H15F3N2NaO2 [M ? Na]?:

299.0983, found 299.0978.

(2R,3S)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]butan-2-amine (syn-40b)

Yellow oil (7 %, 21 mg). [a]D
25 -16.4 (c = 3, CHCl3). 1H

NMR (400 MHz, CDCl3) d 1.28 (d, J = 6.7 Hz, 3H), 1.42

(d, J = 7.7 Hz, 3H), 1.57 (br, 1H), 3.11–3.26 (m, 1H), 3.89

(q, J = 6.4 Hz, 1H), 4.50–4.59 (m, 1H), 7.08–7.17 (m,

5H). 13C NMR (101 MHz, CDCl3) d 16.1, 22.7, 56.1, 59.6

(q, J = 28.5 Hz), 82.2, 124.3 (q, J = 284.9 Hz), 126.5,

127.3 (2C), 127.8 (2C), 142.7. 19F NMR (282 MHz,

CDCl3) d -73.1 (d, J = 6.7 Hz). HR-MS (ESI/Q-TOF)

(m/z) calcd for C12H16F3N2O2 [M ? H]?: 277.1164, found

277.1171; (m/z) calcd for C12H15F3N2NaO2 [M ? Na]?:

299.0983, found 299.0986.

(2S,3S)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]butan-2-amine (anti-5b)

Yellow oil (37 %, 105 mg). [a]D
25 -7.8 (c = 3, CHCl3). 1H

NMR (400 MHz, CDCl3) d 1.21 (d, J = 6.4 Hz, 3H), 1.52

(d, J = 6.8 Hz, 3H), 1.89 (br, 1H), 3.90 (q, J = 6.3 Hz,

1H), 4.12–4.01 (m, 1H), 4.58–4.67 (m, 1H), 7.17–7.28 (m,

5H). 13C NMR (101 MHz, CDCl3) d 12.4, 22.8, 55.8, 58.7

(q, J = 28.3 Hz), 80.6, 124.8 (q, J = 284.1 Hz), 126.7,

127.7 (2C), 128.6 (2C), 144.0. 19F NMR (282 MHz,

CDCl3) d -75.10 (d, J = 7.4 Hz). HR-MS (ESI/Q-TOF)

(m/z) calcd for C12H16F3N2O2 [M ? H]?: 277.1164, found

277.1168; (m/z) calcd for C12H15F3N2NaO2 [M ? Na]?:

299.0983, found 299.0977.

(2R,3R)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]butan-2-amine (anti-50b)

Yellow oil (15 %, 38 mg). [a]D
25 -8.0 (c = 3, CHCl3).

1H

NMR (400 MHz, CDCl3) d 1.24 (d, J = 6.5 Hz, 3H), 1.60 (d,

J = 8.0 Hz, 3H), 1.75 (br, 1H), 4.67–4.58 (m, 1H), 3.98 (q,

J = 6.4 Hz, 1H), 4.63–4.74 (m, 1H), 7.14–7.30 (m, 5H). 13C

NMR (101 MHz, CDCl3) d 16.1, 22.7, 56.1, 59.3 (q,

J = 28.4 Hz), 82.9, 124.6 (q, J = 284.5 Hz), 126.7 (2C),

127.7, 128.6 (2C), 144.1. 19F NMR (282 MHz, CDCl3)d-74.1

(d, J = 7.1 Hz). HR-MS (ESI/Q-TOF) (m/z) calcd for C12-

H16F3N2O2 [M ? H]?: 277.1164, found 277.1165; (m/z) calcd

for C12H15F3N2NaO2 [M ? Na]?: 299.0983, found 299.0984.
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Synthesis of syn-4,40c and anti-5,50c. Yield: 72 %

(210 mg). Separated by flash chromatography on silica gel

(eluent: hexane/ethyl acetate = 92:8). IR: 3,350,

1,560 cm-1.

(2S,3R)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]pentan-2-amine (syn-4c)

Yellow oil (16 %, 44 mg). [a]D
25 -14.5 (c = 3, CHCl3). 1H

NMR (400 MHz, CDCl3) d 0.93 (t, J = 7.3 Hz, 3H), 1.37

(d, J = 6.5, 3H), 1.56 (br, 1H), 1.95–2.07 (m, 2H),

3.56–3.62 (m, 1H), 4.05 (q, J = 6.4, 1H), 4.38–4.43 (m,

1H), 7.29–7.37 (m, 5H). 13C NMR (101 MHz, CDCl3) d
10.2, 24.2, 24.6, 55.9, 58.6 (q, J = 28.4 Hz), 88.5, 124.3

(q, J = 284.7 Hz), 126.5, 127.2 (2C), 128.7 (2C), 142.6.
19F NMR (282 MHz, CDCl3) d -75.7 (d, J = 7.4 Hz).

HR-MS (ESI/Q-TOF) (m/z) calcd for C13H18F3N2O2

[M ? H]?: 291.1132, found 291.1137.

(2R,3S)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]pentan-2-amine (syn-40c)

Yellow oil (8 %, 25 mg). [a]D
25 ?17.1 (c = 4, CHCl3). 1H

NMR (400 MHz, CDCl3) d 0.74 (t, J = 7.4 Hz, 3H), 1.30

(d, J = 6.5 Hz, 3H), 1.48 (br, 1H), 1.57–1.67 (m, 2H),

3.05–3.15 (m, 1H), 4.05 (q, J = 6.4 Hz, 1H), 4.40 (m, 1H),

7.18–7.30 (m, 5H). 13C NMR (101 MHz, CDCl3) d 10.2,

24.2, 24.7, 55.8, 58.0 (q, J = 27.8 Hz), 88.5, 124.3 (q,

J = 284.6 Hz), 127.5 (2C), 127.8, 128.6 (2C), 142.8. 19F

NMR (282 MHz, CDCl3) d -73.6 (d, J = 6.9 Hz). HR-

MS (ESI/Q-TOF) (m/z) calcd for C13H18F3N2O2

[M ? H]?: 291.1132, found 291.1128.

(2S,3S)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]pentan-2-amine (anti-5c)

Yellow oil (32 %, 90 mg). [a]D
25 -9.8 (c = 4, CHCl3). 1H

NMR (400 MHz, CDCl3) d 1.03 (t, J = 7.3 Hz, 3H), 1.34

(d, J = 6.5, 3H), 1.69 (br, 1H), 1.92–2.05 (m, 2H),

3.79–3.89 (m, 1H), 4.05 (q, J = 6.4, 1H), 4.52–4.57 (m,

1H), 7.27–7.35 (m, 5H). 13C NMR (101 MHz, CDCl3) d
10.5, 22.8, 23.0, 56.1, 59.0 (q, J = 28.2 Hz), 88.0, 124.5

(q, J = 284.4 Hz), 126.8 (2C), 127.7, 128.7 (2C), 143.9.
19F NMR (282 MHz, CDCl3) d -75.7 (d, J = 7.4 Hz).

HR-MS (ESI/Q-TOF) (m/z) calcd for C13H18F3N2O2

[M ? H]?: 291.1132, found 291.1125.

(2R,3R)-1,1,1-Trifluoro-3-nitro-N-[(1R)-1-

phenylethyl]pentan-2-amine (anti-50c)

Yellow oil (16 %, 50 mg). [a]D
25 -13.6 (c = 4, CHCl3). 1H

NMR (400 MHz, CDCl3) d 1.03 (t, J = 7.4 Hz, 3H), 1.32

(d, J = 6.6, 3H), 1.70 (br, 1H), 2.12–2.25 (m, 2H),

3.56–3.64 (m, 1H), 4.10 (q, J = 6.4, 1H), 4.57–4.62 (m,

1H), 7.31–7.37 (m, 5H). 13C NMR (101 MHz, CDCl3) d
10.5, 21.8, 22.0, 56.3, 59.4 (q, J = 28.6 Hz), 90.1, 124.9

(q, J = 284.2 Hz), 126.8 (2C), 127.8, 128.3 (2C), 144.3.
19F NMR (282 MHz, CDCl3) d -74.7 (d, J = 6.8 Hz).

HR-MS (ESI/Q-TOF) (m/z) calcd for C13H18F3N2O2

[M ? H]?: 291.1132, found 291.1139.

Reduction reactions: synthesis of (R,S)-10a and (R,R)-

100a

To a solution of 3a or 30a (262 mg, 1 mmol) in anhydrous

MeOH, under an inert atmosphere (Ar), anhydrous

ammonium formate (310 mg, 5 mmol) and Pd/C 10 %

(95 mg) were added. The reaction mixture was kept at

reflux for 1.5 h and then filtered off to remove the catalyst.

The solvent was evaporated under vacuum and 5 mL of

water was added; the mixture was extracted three times

with Et2O. The collected organic layer was dried over

anhydrous Na2SO4 and the solvent evaporated under

vacuum.

(2S)-3,3,3-Trifluoro-N2-[(1R)-1-phenylethyl]propane-1,2-

diamine [(R,S)-10a]

Yellow oil. Yield: 81 % (188 mg). Purified by flash chro-

matography on silica gel (eluent: hexane/ethyl ace-

tate = 8:2). [a]D
25 ?12.7 (c = 5, CHCl3). IR: 3,488,

3,395 cm-1. 1H NMR (300 MHz, CDCl3) d 1.30 (d,

J = 6.4 Hz, 3H), 1.89 (br, 3H), 2.76 (dd, J = 13.4, 5.7 Hz,

1H), 2.87–3.03 (m, 2H), 3.97 (q, J = 6.4 Hz, 1H),

7.17–7.33 (m, 5H). 13C NMR (75 MHz, CDCl3) d 23.8,

39.4, 55.2, 57.9 (q, J = 26.1 Hz), 126.2 (q, J = 284.3 Hz),

126.7 (2C), 127.3, 128.5 (2C), 144.8. 19F NMR (282 MHz,

CDCl3) d -76.4 (d, J = 7.7 Hz). HR-MS (ESI/Q-TOF)

(m/z) calcd for C11H16F3N2 [M ? H]?: 233.1266, found

233.1272.

(2R)-3,3,3-Trifluoro-N2-[(1R)-1-phenylethyl]propane-1,2-

diamine [(R,R)-100a]

Yellow oil. Yield: 80 % (186 mg). Purified by flash chro-

matography on silica gel (eluent: hexane/ethyl ace-

tate = 8:2). [a]D
25 ?14.2 (c = 4.5, CHCl3). mmax 3,488,

3,395 cm-1. 1H NMR (300 MHz, CDCl3) d 1.36 (d,

J = 6.5 Hz, 3H), 1.57 (br, 3H), 2.59 (dd, J = 12.3, 7.5 Hz,

1H), 2.68–2.85 (m, 2H), 4.09 (q, J = 6.3 Hz, 1H),

7.35–7.20 (m, 5H). 13C NMR (75 MHz, CDCl3) d 24.8,

40.9, 56.2, 58.2 (q, J = 25.7 Hz), 126.4 (q, J = 284.6 Hz),

127.0 (2C), 127.4, 128.5 (2C), 144.4. 19F NMR (282 MHz,

CDCl3) d -76.1 (d, J = 6.5 Hz). HR-MS (ESI/Q-TOF)

(m/z) calcd for C11H16F3N2 [M ? H]?: 233.1266, found

233.1258.
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Coupling reactions: general procedure

To a solution of 7 (33 Fioravanti et al. 2012), (R,S)-10a or

(R,R)-100a (0.5 mmol) in 10 mL of CH2Cl2 equimolar

amounts of a-amino acid N-Boc-protected, N,N0-dicyclo-

hexylcarbodiimide (DCC) and catalytic amounts of

4-dimethylaminopyridine (DMAP, 10 % M) were added.

After 24 h of stirring at room temperature, the crude mixture

was filtered off to remove the formed N,N0-dicyclohexylurea

(DCU) and the solvent was evaporated under vacuum.

tert-Butyl (2-{[2-(benzylamino)-3,3,3-

trifluoropropyl]amino}-2-oxoethyl)carbamate (8)

White viscous oil. Yield: 90 % (202 mg). Purified by flash

chromatography on silica gel (eluent: hexane/ethyl ace-

tate = 85:25). mmax 3,450, 3,342, 1,718, 1,677 cm-1. 1H NMR

(300 MHz, CDCl3) d 1.45 (s, 9H), 2.67 (br, 1H), 3.07–3.31 (m,

2H), 3.57–4.12 (m, 5H), 5.06 (br, 1H), 6.48 (br, 1H), 7.15–7.44

(m, 5H). 13C NMR (75 MHz, CDCl3) d 24.8, 28.1 (3C), 44.2,

51.5, 57.7 (q, J = 27.0 Hz), 80.2, 125.9 (q, J = 283.8 Hz)

127.3 (2C), 128.2, 128.4 (2C), 139.1, 156.0, 170.2. 19F NMR

(282 MHz, CDCl3) d -76.8 (d, J = 5.9 Hz). HR-MS (ESI/Q-

TOF) (m/z) calcd for C17H25F3N3O3 [M ? H]?: 376.1770,

found 376.1778; (m/z) calcd for C17H24F3N3NaO3

[M ? Na]?: 398.1667, found 398.1659.

tert-Butyl [(2S)-1-{[(2S)-2-(benzylamino)-3,3,3-

trifluoropropyl]amino}-3-methyl-1-oxobutan-2-

yl]carbamate (S,S-9)

Purified by flash chromatography on silica gel (eluent: hex-

ane/ethyl acetate = 8:2). White viscous oil. Yield: 42 %

(105 mg). [a]D
25 -14.1 (c = 3, CHCl3). mmax 3,440, 3,342,

1,708, 1,670 cm-1. 1H NMR (300 MHz, CDCl3) d 0.81 (d,

J = 6.8 Hz, 3H), 0.85 (d, J = 6.7 Hz, 3H), 1.36 (s, 9H), 2.01

(br, 1H), 3.04–3.18 (m, 1H), 3.63–4.00 (m, 6H), 4.96 (br, 1H),

6.29 (br, 1H), 7.15–7.33 (m, 5H). 13C NMR (75 MHz,

CDCl3) d 19.3 (2C), 28.2 (3C), 30.6, 37.5, 51.5, 57.1–59.0 (q,

J = 26.7 Hz), 60.1, 82.3, 125.6 (q, J = 284.1 Hz), 127.4,

128.2 (2C), 128.6 (2C), 139.1, 172.0, 179.5. 19F NMR

(282 MHz, CDCl3) d -76.6 (d, J = 5.0 Hz). HR-MS (ESI/

Q-TOF) (m/z) calcd for C20H31F3N3O3 [M ? H]?:

418.2239, found 418.2243; (m/z) calcd for C20H30F3N3NaO3

[M ? Na]?: 440.2137, found 440.2129.

tert-Butyl [(2S)-1-{[(2R)-2-(benzylamino)-3,3,3-

trifluoropropyl]amino}-3-methyl-1-oxobutan-2-

yl]carbamate (R,S-90)

Purified by flash chromatography on silica gel (eluent:

hexane/ethyl acetate = 8:2). White viscous oil. Yield:

44 % (110 mg). [a]D
25 -10.5 (c = 4, CHCl3). mmax 3,440,

3,343, 1,710, 1,671 cm-1. 1H NMR (300 MHz, CDCl3) d
0.77 (d, J = 6.8 Hz, 3H), 0.87 (d, J = 6.3 Hz, 3H), 1.38 (s,

9H), 2.13 (br, 1H), 3.02–3.19 (m, 1H), 3.64–3.98 (m, 6H),

4.89 (br, 1H), 6.31 (br, 1H), 7.15–7.33 (m, 5H). 13C NMR

(75 MHz, CDCl3) d 19.3 (2C), 28.3 (3C), 30.4, 37.6, 51.4,

57.7 (q, J = 26.9 Hz), 60.0, 80.1, 125.8 (q, J = 284.3 Hz),

127.5, 128.4 (2C), 128.6 (2C), 139.1, 155.8, 171.9. 19F

NMR (282 MHz, CDCl3) d -76.7 (d, J = 5.3 Hz). HR-

MS (ESI/Q-TOF) (m/z) calcd for C20H31F3N3O3

[M ? H]?: 418.2239, found 418.2242; (m/z) calcd for

C20H30F3N3NaO3 [M ? Na]?: 440.2137, found 440.2131.

tert-Butyl (2-oxo-2-{(2S)-3,3,3-trifluoro-2-[(1R)-1-

phenylethylamino]propylamino}ethyl) carbamate

[(R,S)-11a]

Purified by flash chromatography on silica gel (eluent:

hexane/ethyl acetate = 8:2). White viscous oil. Yield:

91 % (212 mg). Purified by flash chromatography on

silica gel (eluent: hexane/ethyl acetate = 8:2). [a]D
25

?10.4 (c = 3, CHCl3). mmax 3,450, 3,342, 1,708,

1,667 cm-1. 1H NMR (300 MHz, CDCl3) d 1.26 (d,

J = 6.5 Hz, 3H), 1.85 (s, 9H), 1.86 (br, 1H), 3.66–3.86

(m, 4H), 3.96–4.02 (m, 2H), 5.29 (br, 1H), 6.64 (br, 1H),

7.18–7.31 (m, 5H). 13C NMR (75 MHz, CDCl3) d 24.2,

24.7, 28.2 (3C), 44.5, 55.3, 56.0 (q, J = 26.8 Hz), 80.4,

126.5 (q, J = 284.6 Hz), 126.8 (2C), 127.3, 128.5 (2C),

144.4, 156.1, 169.4. 19F NMR (282 MHz, CDCl3) d -

77.0 (d, J = 7.8 Hz). HR-MS (ESI/Q-TOF) (m/z) calcd

for C18H27F3N3O3 [M ? H]? 390.2005, found 390.1997;

(m/z) calcd for C18H26F3N3NaO3 [M ? Na]?: 412.1824,

found 412.1831.

tert-Butyl (2-oxo-2-{(2R)-3,3,3-trifluoro-2-[(1R)-1-

phenylethylamino]propylamino}ethyl) carbamate

[(R,R)-110a]

Purified by flash chromatography on silica gel (eluent:

hexane/ethyl acetate = 8:2). White viscous oil. Yield:

89 % (208 mg). Purified by flash chromatography on silica

gel (eluent: hexane/ethyl acetate = 8:2). [a]D
25 ?8.9

(c = 3, CHCl3). mmax 3,457, 3,352, 1,728, 1,668 cm-1. 1H

NMR (300 MHz, CDCl3) d 1.33 (d, J = 6.5 Hz, 3H), 1.45

(s, 9H), 1.89 (br, 1H), 3.50–3.77 (m, 4H), 3.96–4.12 (m,

2H), 5.13 (br, 1H), 6.46 (br, 1H), 7.41–7.17 (m, 5H). 13C

NMR (75 MHz, CDCl3) d 24.4, 24.9, 28.2 (3C), 44.2, 56.4

(q, J = 26.9 Hz), 60.3, 80.3, 126.8 (q, J = 284.5 Hz),

126.9 (2C), 127.6, 128.7 (2C), 144.1, 156.0, 169.7. 19F

NMR (282 MHz, CDCl3) d -77.2 (d, J = 5.6 Hz). HR-

MS (ESI/Q-TOF) (m/z) calcd for C18H27F3N3O3

[M ? H]?: 390.2005, found 390.1999; (m/z) calcd for

C18H26F3N3NaO3 [M ? Na]?: 412.1824, found 412.1819.
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Synthesis of N-Boc-protected CF3-modified dipeptides

(S)-12 and (R)-120a

In a two-neck flask trifluoromethyl dipeptides (R,S)-11 and

(R,R)-110a (0.4 mmol) were dissolved in 5 mL of anhy-

drous MeOH and 60 mg of 10 % Pd/C were added. The

reaction mixtures were hydrogenated under atmospheric

pressure at room temperature for 24 h after which the crude

mixtures were filtered off to remove the catalyst and the

solvent was removed by evaporation at reduced pressure.

tert-Butyl (2-{[(2S)-2-amino-3,3,3-trifluoropropyl]amino}-

2-oxoethyl)carbamate [(S)-12a]

Yellow pale oil. Yield: 95 % (150 mg). [a]D
25 –5.5

(c = 3.5, CHCl3). IR: 3,390, 3,342, 1,708, 1,667 cm-1. 1H

NMR (300 MHz, CDCl3) d 1.45 (s, 9H), 3.75–3.85 (m,

4H), 4.05–4.30 (m, 1H), 5.13 (br, 2H), 6.60 (br, 2H). 13C

NMR (75 MHz, CDCl3) d 28.1 (3C), 33.6, 41.0, 53.6 (q,

J = 27 Hz), 80.3, 124.8 (q, J = 283.7 Hz), 156.8, 162.5.
19F NMR (282 MHz, CDCl3) d -76.3 (d, J = 3.9 Hz).

HR-MS (ESI/Q-TOF) (m/z) calcd for C10H18F3N3O3

[M ? H]?: 286.1300, found 286.1305; (m/z) calcd for

C10H18F3N3NaO3 [M ? Na]?: 308.1198, found 308.1205.

tert-Butyl (2-{[(2R)-2-amino-3,3,3-trifluoropropyl]amino}-

2-oxoethyl) carbamate [(R)-120a]

Yellow pale oil. Yield: 93 % (141 mg). [a]D
25 ?5.5 (c = 3,

CHCl3).
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