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A B S T R A C T

New phospholipid analogues incorporating sn-2-peptide substituents have been prepared to probe the
fundamental structural requirements for phospholipase A2 catalyzed hydrolysis of PLA2-directed
synthetic substrates. Two structurally different antiviral oligopeptides with C-terminal glycine were
introduced separately at the sn-2-carboxylic ester position of phospholipids to assess the role of
the a-methylene group adjacent to the ester carbonyl in allowing hydrolytic cleavage by the enzyme. The
oligopeptide-carrying phospholipid derivatives were readily incorporated into mixed micelles consisting
of natural phospholipid (dipalmitoyl phosphatidylcholine, DPPC) and Triton X-100 as surfactant.
Hydrolytic cleavage of the synthetic peptidophospholipids by the phospholipase A2 occurred slower, but
within the same order of magnitude as the natural substrate alone. The results provide useful information
toward better understanding the mechanism of action of the enzyme, and to improve the design and
synthesis of phospholipid prodrugs targeted at secretory PLA2 enzymes.
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1. Introduction

Phospholipases A2 (PLA2s) comprise a superfamily of intracel-
lular and secreted enzymes that catalyze the hydrolysis of the
sn-2-ester bond of glycerophospholipids to yield fatty acids such as
arachidonic acid and lysophospholipids (Dennis et al., 2011;
Eq. (1)).
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(1)
The products are precursors of signaling molecules with a wide
range of biological functions (Murakami and Lambeau, 2013).
Along these lines arachidonic acid is converted to eicosanoids that
have been shown to be involved in immune response,
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inflammation, pain perception and sleep regulation (Funk, 2001;
Murakami et al., 2011a), while lysophospholipids are precursors of
lipid mediators such as lysophosphatidic acid (LPA) and platelet
activating factor (PAF). Specifically, LPA is involved in cell
proliferation, survival and migration (Rivera and Chun, 2008;
Zhao and Natarajan, 2009), while PAF is involved in inflammatory
processes (Prescott et al., 2000).
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Secretory phospholipases A2 (sPLA2s) occur widely in nature
(Murakami et al., 2011b). The members of the sPLA2 family were
first isolated from insects and snake venoms, and subsequently
they were found in plants, bacteria, fungi, viruses and mammals as
well. To date more than 30 isozymes have been identified in
mammals, and they have been classified based on their structures,
catalytic mechanisms, localization, and evolutionary relationships
(Schaloske and Dennis, 2006). The mammalian PLA2 family
pholipids: Synthesis, phospholipase A2 catalyzed hydrolysis, and
ds (2014), http://dx.doi.org/10.1016/j.chemphyslip.2014.06.001
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cludes 10 catalytically active isoforms (Lambeau and Gelb, 2008).
cretory PLA2s isolated from a variety of sources share a series of
mmon structural features. They are low molecular weight
4–18 kDa) secreted proteins, with a compact structure stabilized

 six conserved disulfide bonds and two additional disulfides that
e unique to each member (Dennis et al., 2011). Studies focusing

 their mechanism of action have shown that an active site
stidine and a highly conserved neighboring aspartate form a
talytic dyad involved in the reaction, requiring Ca2+ for activation
urakami et al., 2011b).
Mammalian sPLA2s have been implicated in a variety of
ysiological and pathophysiological processes including lipid
gestion, cell-proliferation, neurosecretion, antibacterial defense,
ncer, tissue injury, and atherosclerosis (Murakami and Lambeau,
13). Furthermore, it has become apparent that individual
cretory phospholipase A2 enzymes play important and diverse
les in biological events by acting through multiple mechanisms:
) involving production of lipid mediators, and (2) executing their
n unique action on their specific extracellular targets in lipid
ediator-independent processes (Murakami et al., 2011b). In this
ntext sPLA2s can also act on non-cellular phospholipids, such as
ose in microvesicles, lipoproteins, microbial membranes and
trient phospholipids.
Secretory PLA2s are present extensively in a number of

ammalian tissues including pancreas, kidney, and cancer
rouri et al., 2013). In addition, it has been found that sPLA2

zymes, particularly subtype IIA, are overexpressed in several
ncer types, specifically in prostate, pancreas, breast, and colon
ncers (Yamashita et al., 1994), and that they may also be
sociated with tumorigenesis and tumor metastasis (Tribler

 al., 2007; Scott et al., 2010). Thus, with the recognition that
ospholipase A2 activity has been demonstrated in a number

 pathological conditions, the idea of designing sPLA2-targeted
odrugs seemed a promising approach to improve the
armacodynamic properties of tissue-directed drugs (Arouri

 al., 2013). The concept was originally based upon replace-
ent of the sn-2-ester group of the natural phospholipid 1,
ig. 1), by an ester group carrying the pharmacophore, directed
 the tissue specific sPLA2 isozyme, with the objective that
drolysis by the enzyme will release the drug. Along these lines
number of sPLA2-targeted prodrugs have been prepared, with
e main emphasis on incorporation of pharmacophores with
ticancer activities (Andresen et al., 2005; Arouri et al., 2013).
. 1. Design of the phospholipase A2-directed peptidophospholipids: the naturally o
A2 catalysis 2, and the designed phosphatidylcholine conjugates carrying oligopept

Please cite this article in press as: Rosseto, R., Hajdu, J., Peptidopho
application to development of phospholipid prodrugs, Chem. Phys. Lip
One of the recently developed methods of delivery involved the
use of phospholipid prodrugs capable of liposome formation,
that were pre-mixed with natural phospholipids to provide
enhanced formulation stability and performance (Arouri and
Mouritsen, 2012), This strategy has been developed as an
improved alternative to conventional liposome delivery that
circumvents issues of limited efficiency of drug loading, and
premature and uncontrolled drug release. However, a significant
percentage of these PLA2-targeted prodrugs turned out to be
“PLA2 resistant”, (i.e., failed to undergo hydrolysis by the
enzyme, Arouri et al., 2013)

In comparing the structures of the “PLA2-labile” vs.
“PLA2-resistant” variants of the prodrugs, it becomes apparent,
that in the course of designing the compounds rather limited
attention was directed towards one key substrate requirement for
efficient PLA2 hydrolysis, i.e., the need for the presence of an
a-methylene group adjacent to the sn-2-ester carbonyl of
the substrate (Bonsen et al., 1972). Specifically, among the
PLA2 resistant series, the anticancer prodrug derived from
ATRA (all-trans-retinoic acid; Christensen et al., 2010) has a
carbon–carbon double bond, and the one targeting RAR (retinoic
acid receptor; Pedersen et al., 2010) carries an aromatic ester group
at the sn-2-position. The phospholipid derivative of the NSAID
ibuprofen (Kurz and Scriba, 2000) carries a methyl group in place
of one of the a-methylene hydrogens, and the acyl chain of valproic
acid (an anticonvulsant; Kurz and Scriba, 2000; Dahan et al., 2008)
has a branching propyl group at the a-position adjacent to the
sn-2-ester carbonyl. Indeed, due to the structural differences
between these prodrugs and the requirements for PLA2 catalysis
none of these compounds was hydrolyzed by the enzyme.

In this communication we set out to test the working
hypothesis that sPLA2 enzymes can hydrolyze phospholipid-based
prodrugs equipped with an intact a-methylene group at the
sn-2-ester function. Based on the minimum structural require-
ments for PLA2 catalysis 2 (Fig. 1).

We have designed two structurally modified phosphatidylcho-
line analogues 3 incorporating antiviral oligopeptides (Callebaut,
et al., 1993; Epand et al., 1993; Epand, 2003) at the scissile
sn-2-position of the substrate. Replacement of the naturally
occurring fatty acyl chain with a membrane fusion inhibitory
peptidyl group appeared to yield promising new prodrug
candidates to test the feasibility of the release of their pharma-
cophores by a secretory PLA2 enzyme.
ccurring phosphatidylcholine 1; the proposed minimum structural requirement for
ides 3.

spholipids: Synthesis, phospholipase A2 catalyzed hydrolysis, and
ids (2014), http://dx.doi.org/10.1016/j.chemphyslip.2014.06.001
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Fig. 2. The structures of the selected antiviral peptides 4 and 5.
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2. Results and discussion

2.1. Syntheses

For construction of the PLA2-directed prodrugs we selected
peptides 4 and 5, shown in Fig. 2, as two antiviral peptides to
prepare the target peptidophospholipids.

Specifically, compound 4 is an inhibitor of dipeptidyl peptidase
IV, and it has been shown to inhibit entry of HIV-1 and HIV-2 into
T limphoblastoid and monocytoid cell lines (Callebaut et al., 1993),
while compound 5 is an antiviral peptide blocking viral infection
Scheme 1. Reagents and conditions: (a) BOC-gly-gly/DCC/DMAP, CHCl3 25 �C 4 h; (b) (i
CHCl3, rt, 36 h; (d) 4.0 M HCl/dioxane, 30 min; (e) BOC-phe-gly/DCC/DMAP, CHCl3, 25 �C, 3
72 h.

Please cite this article in press as: Rosseto, R., Hajdu, J., Peptidophos
application to development of phospholipid prodrugs, Chem. Phys. Lipi
by inhibiting membrane fusion, a required step in viral entry to the
cell (Epand, 2003). While the structures of the two peptides are
quite different, what they have in common is the a-methylene
group adjacent to the C-terminal carboxyl group, that when
incorporated into the phospholipid skeleton at the sn-2-position,
makes them suitable to test the working hypothesis regarding the
role of the methylene group in the hydrolytic cleavage of
PLA2-targeted prodrugs.

Our strategy for the synthesis of the target prodrugs relied on
introducing the peptidyl ester group at the sn-2-position in a
stepwise chain-extension sequence, shown in Scheme 1.
) 4.0 M HCl/dioxane, 40 min; (ii) Et3N; (c) BOC-gly-pro-p-nitrophenyl ester/DMAP,
 h; (f) 4.0 M HCl/dioxane, 2.5 h; (g) N-Cbz-D-phe-p-nitrophenyl ester/DMAP, CHCl3, rt

pholipids: Synthesis, phospholipase A2 catalyzed hydrolysis, and
ds (2014), http://dx.doi.org/10.1016/j.chemphyslip.2014.06.001
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Scheme 2. Catalytic hydrolysis of the peptidophospholipids by bee-venom phospholipase A2.
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In the first step of the sequence palmitoyl lysophosphatidylcho-
e 6 was acylated at the sn-2-hydroxyl group with the respective
C-protected dipeptides using dicyclohexyl carbodiimide (DCC)
ith 4-dimethylaminopyridine (DMAP) as catalyst. In order to
hieve efficient and migration-free acylation, we employed the
nditions that we have developed for acylation of lysophospho-
ids (Rosseto and Hajdu, 2005): (1) increasing the glass-surface of
e reaction vessel, where the reaction is believed to take place, by
dition of glass-beads, while using sonication rather than stirring
e reaction mixture, and (2) keeping the temperature below 25 �C

 prevent intramolecular acyl migration. Under these conditions
e reactions reached completion in 3–4 h. The products 7, and 11,
ere readily isolated and purified on silica gel chromatography
uted with a stepwise gradient of CHCl3-MeOH, followed by
Cl3-MeOH-H2O (65:25:4). We found that using the acid-labile
C protection of the amino group produced the sn-2-substituted
ospholipids in substantially higher yield (90–96%) than the
ethod employing the respective FMOC-derivatives (i.e., 110 was
tained in 58% yield). Subsequent acid catalyzed cleavage of the
rt.butoxycarbonyl group in anhydrous dioxane, followed by
eze-drying of the product solution was carried out in close to
antitative yield.
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Chain-extension of the dipeptidyl phospholipid derivatives was
rried out using the active ester method. Specifically, the
nitrophenyl ester of BOC-glycylproline was allowed to react with
ospholipid conjugate 8 in chloroform, in the presence of DMAP as
talyst, producing compound 9 in 96% yield. Next, acid catalyzed
moval of the BOC protecting group yielded the amine hydrochlo-
e of the peptidophospholipid prodrug 10 (96%). Similarly, the
-2-phenylalanylglycyl chain of compound 12 was extended in a
action with p-nitrophenyl Cbz-D-phenylalanine in chloroform,
talyzed by DMAP, to afford the corresponding target prodrug 13 in
% isolated yield.

2. Enzymatic hydrolysis

Catalytic hydrolysis of the antiviral phospholipid prodrugs 10
d 13 was carried out with bee-venom phospholipase A2, a widely
ed, readily available representative of secreted PLA2 enzymes
Please cite this article in press as: Rosseto, R., Hajdu, J., Peptidopho
application to development of phospholipid prodrugs, Chem. Phys. Lip
(Arouri and Mouritsen, 2012; Arouri et al., 2013; Valentin et al.,
2000) in an assay system containing Triton X-100-phospholipid
mixed micelles (Roodsari et al., 1999) in the presence of the
catalytically essential Ca2+ ions. Specifically, the phospholipid
component of the micelles included a combination of the antiviral
phospholipid prodrugs mixed with the natural phospholipid
dipalmitoyl phosphatidylcholine (DPPC) in molar ratios of 1:4,
and 1:3 respectively, using Triton X-100 as the surfactant. Both
synthetic phospholipid analogues were completely hydrolyzed by
the enzyme yielding lysophatidylcholine 6, and the antiviral
peptides 4 and 5. The products were readily identified by thin layer
chromatography. The disappearance of the synthetic substrates
occurred slower, but within the same order of magnitude as the
PLA2 catalyzed hydrolysis of diplamitoyl phosphatidylcholine
(DPPC) in the mixed micelles in the absence of the synthetic
peptidophospholipids (Scheme 2).

Finally, we tested the prediction of the idea presented earlier as
our working hypothesis, focusing on the need for the a-methylene
group adjacent to the sn-2-ester function of the substrate to
achieve PLA2 catalyzed hydrolysis, by following the PLA2 catalyzed
hydrolysis of the aminoacyl analogue 14 carrying BOC-protected
glycyl ester at the sn-2-position of the substrate 14. (Eq. (2))
Specifically, we found that compound 14 was readily hydrolyzed
by bee-venom PLA2 to yield the BOC-protected glycine 15 and
lysophosphatidylcholine 6, under similar assay conditions as those
used for the enzymatic hydrolysis of the antiviral peptidophos-
pholipids. Preliminary studies, using mixed micellar substrates
composed of compound 14 and palmitoyl phosphatidylcholine in
1:1 molar ratio with Triton X-100, indicate that hydrolysis of the
synthetic analogue 14 occurred slower, by a factor of two, compared
to the rate of PLA2catalyzed hydrolysis of mixed micelles containing
dipalmitoyl phosphatidylcholineand TritonX-100, in absence of the
synthetic compound 14.

3. Conclusions

In addition to the synthesis of a series of sPLA2 targeted antiviral
prodrugs the significance of the work here presented is in its
contribution to advance the design principles of secretory
spholipids: Synthesis, phospholipase A2 catalyzed hydrolysis, and
ids (2014), http://dx.doi.org/10.1016/j.chemphyslip.2014.06.001
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phospholipase A2 directed substrates, including the preparation of
phospholipid prodrugs. The principle that emerged from the work
is the prediction that successful design of PLA2 directed prodrugs
should include an a-methylene group at the sn-2-ester carbonyl to
achieve efficient catalytic hydrolysis by the enzyme. The results
also explain why some of the previously prepared phospholipid
prodrugs turned out to be “PLA2-resistant”, and opens the way to
design new “PLA2-labile” analogues. For example, oligopeptides
with aspartic and glutamic acid side-chains that carry the required
methylene groups are likely candidates to form PLA2-cleavable
sn-2-ester linkages as well, to incorporate new peptide-based
pharmacophores built on a phospholipid scaffold.

The principle, however, does not limit the scope of the design and
synthesis of successful PLA2-directed prodrugs, by excluding drugs
that lack the critical a-methylene group next to the carboxylic
function, to attach the pharmacophore at the sn-2-position.
Specifically, in that case, a suitable short-chain “spacer” equipped
with a methylene bridged carboxylate might be used to link the drug
molecule to the phospholipid skeleton (Pedersen et al., 2010;
Rosseto and Hajdu, 2010; Arouri and Mouritsen, 2012). The use of
such “linkers” can effectively target secretory PLA2 enzymes, that
will release the drug in the form of the respective conjugated
prodrug.

4. Experimental procedures

4.1. 1-Palmitoyl-2-(BOC-gly-gly)-sn-glycero-3-phosphocholine (7)

To a suspension of 1-palmitoyl-2-hydroxy-sn-glycero-3-phos-
phocholine (0.5002 g, 1 mmol) in 25 mL of CHCl3 was added BOC-
gly-gly (0.7012 g, 3 mmol), followed by DCC (0.6189 g, 3 mmol),
DMAP (0.3665 g, 3 mmol) and 1 g of glass beads. The reaction was
sonicated for 4 h at 25 �C. The mixture was then filtered to remove
DCC-urea and glass beads, the solvent collected was evaporated
under reduced pressure to one third of its volume and loaded on a
silica gel column, eluted with a stepwise gradient of CHCl3/MeOH
(5:1 and 5:2) to remove DMAP and the impurities, followed by
CHCl3/MeOH/H2O (65:25:4). The fractions corresponding to the
product were combined, evaporated, re-dissolved in benzene and
freeze-dried to give a white solid 7 (0.6702 g, 0.94 mmol, 94.4%). IR
(Nujol): 3300 br m, 1744 vs, 1709 s, 1686 vs, 1248 m cm�1. 1H NMR
(CDCl3, 200 MHz) d 0.87 (br t, 3H), 1.24 (br s, 24H), 1.41 (s, 9H), 1.56
(m, 2H), 2.29 (t, 2H, J = 7 Hz), 3.31 (br s, 9H), 3.37–3.83 (m, 4H), 4.01
(m, 4H), 4.22–4.26 (m, 4H), 4.57 (m, 1H), 5.22 (m, 1H), 5.73 (m, 1H).
13C NMR (CDCl3, 50 MHz) d 14.09, 22.66, 24.78, 27.93, 28.38,
29.16, 29.33, 29.52, 29.68, 31.89, 33.93, 41.17, 43.65, 54.18, 59.47,
62.22, 63.93, 66.01, 71.84, 79.49, 156.23, 169.80, 170.51, 173.56.
Rf (CHCl3/MeOH/H2O 65:25:4) 0.44. Anal. Cald for C33H64N3O11P�
2.5H2O: C, 52.50; H, 9.21; N, 5.57; found: C, 52.57; H, 8.88; N, 5.58.
HRMS MH+ C33H64N3O11PH Cald: 710.4351, found: 710.4320. [a]D25

+6.03 (c 0.96, CHCl3/MeOH 4:1).

4.2. 1-Palmitoyl-2-(BOC-N-gly-pro-gly-gly)-sn-glycero-3-
phosphocholine (9)

To a solution of 7 (0.3012 g, 0.42 mmol) in 20 mL of 1,4-dioxane
was added 4 M HCl in dioxane solution dropwise at room
temperature. After 40 min stirring the mixture became cloudy
and a pale yellow precipitate formed, while 7 completely
disappeared as observed by TLC (CHCl3/MeOH/H2O, 65:25:4/
Rf > 0.44). The precipitate was separated from solution and was
freeze-dried from a suspension of 30 mL of benzene. The pale
yellow product obtained was washed with CHCl3, yielding a white
solid (8). 1H NMR (CD3OD, 200 MHz) d 0.85 (br t, 3H), 1.25 (br s,
24H), 1.55 (m, 4H), 2.32 (br t, 2H), 3.36 (br s, 9H), 3.40–4.55 (br m),
5.35 (m, 1H). To this white precipitate dispersed in 15 mL CHCl3
Please cite this article in press as: Rosseto, R., Hajdu, J., Peptidophos
application to development of phospholipid prodrugs, Chem. Phys. Lipi
was added triethylamine until the pH of solution reached 8. When
pH 8 was reached, the mixture became clear. To this solution was
added BOC-gly-pro-p-nitrophenyl ester (0.2532 g, 0.64 mmol)
followed by DMAP (97 mg, 0.8 mmol). After 36 h stirring at room
temperature, to the mixture was added of Dowex-H+ (10 mL) and it
was stirred for an additional 15 min. The suspension was then
filtered and the resin was washed with 30 mL CHCl3/MeOH (1:1).
The solvents were collected, evaporated under reduced pressure to
one third of the volume and loaded on silica gel column, eluted first
with
CHCl3/MeOH (3:1) followed by CHCl3/MeOH/H2O (65:25:4). The
fractions corresponding to the product were combined, evaporat-
ed, re-dissolved in benzene and freeze-dried to give a white solid 9
(0.3472 g, 0.4 mmol, 95.7%). IR (Nujol): 3298 br m, 1743 br s, 1655
vs, 1534 w, 1245 m cm�1. 1H NMR (CDCl3, 200 MHz) d 0.85 (t, 3H,
J = 6.7 Hz), 1.23 (br s, 29H), 1.40 (s, 9H), 1.51 (m, 2H), 2.09 (m, 2H),
2.28 (t, 2H, 6.7 Hz), 3.26 (br s, 9H), 3.65 (m, 3H), 3.82–4.10 (m, 6H),
4.25 (m, 3H), 4.40–4.60 (m, 3H), 5.20 (m, 1H), 5.80 (m, 1H), 8.25 (m,
1H). 13C NMR (CDCl3, 50 MHz) d 14.05, 22.61, 24.74, 28.34, 29.14,
29.29, 29.50, 29.64, 31.84, 33.89, 42.70, 46.59, 54.10, 59.49, 60.78,
62.18, 63.96, 65.99, 71.75, 79.47, 156.05, 168.76, 169.64, 170.57,
172.60, 173.49. Rf (CHCl3/MeOH/H2O 65:25:4) 0.41. Anal. Cald for
C40H74N5O13P�2.5H2O C, 52.85; H, 8.76; N, 7.70; found: C, 53.04; H,
8.41; N, 7.74. HRMS MH+ C40H74N5O13PH Calcd: 864.5094, found:
864.5094. [a]D25 –12.06 (c 0.95, CHCl3/MeOH 4:1).

4.3. 1-Palmitoyl-2-(gly-pro-gly-gly)-sn-glycero-3-phosphocholine
hydrochloride (10)

Compound 10 was obtained from the analytical pure 7 by acid
catalyzed deprotection. To a solution of 9 (0.28 g, 0.28 mmol) in
15 mL 1,4-dioxane was added dropwise a solution of 4 M HCl in 1,4-
dioxane (3 mL) at room temperature. After 30 min stirring the
mixture became cloudy and an oily precipitate formed. To the
precipitate was added 20 mL benzene followed by freeze-drying.
The freeze-dried product was washed with chloroform, and then
dried in vacuum to give 8 as a white solid (215 mg, 0.26 mmol, 96%).
The 1H NMR (CD3OD, 200 MHz) was identical to the spectrum of 7,
except for the absence of the signal of the protons at d 1.40 (s, 9H)
assigned to the removed tBOC protecting group.

4.4. 1-Palmitoyl-2-(BOC-phe-gly)-sn-glycero-3-phosphocholine (11)

To a suspension of 6 (0.5002 g, 1 mmol) in 25 mL of CHCl3 was
added BOC-phe-gly-OH (1.0021 g, 3 mmol), followed by DCC
(0.6408 g, 3 mmol), DMAP (0.3798 g, 3 mmol), and 1 g of glass
beads. The reaction was sonicated for 3 h at 25 �C. After 3 h, the
sonication was stopped and to the mixture was added 10 mL of
Dowex-H+ and the suspension was stirred for 10 min. The mixture
was then filtered and the resin was washed with 40 mL of
CHCl3/MeOH (1:1). The solvents collected were evaporated under
reduced pressure to one third of the volume and then directly
loaded on a silica gel column for chromatography, using
CHCl3/MeOH (7:3) eluent, followed by CHCl3/MeOH/H2O
(65:25:4). The fractions corresponding to the product were
combined, evaporated, re-dissolved in benzene and freeze-dried
to give an off-white pale-yellow solid 11 (0.7194 g, 0.90 mmol,
90%). IR (Nujol): 3188 br w, 1742 vs, 1680 br vs, 1250 m cm�1.
1H NMR (CDCl3, 200 MHz) d 0.84 (br t, 3H), 1.25 (br s, 24H), 1.31 (br
s, 9H), 1.54 (m, 2H), 2.25 (t, 2H, J = 6.7 Hz), 2.78 (m, 2H), 3.27 (br s,
9H), 3.76 (m, 2H), 4.14 (m, 3H), 4.21–4.71 (m, 4H), 4.76 (m, 2H), 5.25
(m, 1H), 5.47 (m, 1H), 7.22 (br s, 5H), 8.62 (m, 1H). 13C NMR (CDCl3,
50 MHz) d 14.08, 22.64, 24.74, 28.25, 29.12, 29.28, 29.32, 29.50,
29.62, 29.67, 31.88, 33.89, 39.07, 41.21, 54.22, 55.06, 59.44, 62.32,
63.95, 66.17, 71.79, 79.43, 126.60, 128.29, 129.48, 136.95, 155.33,
169.65, 172.30, 173.52. Rf (CHCl3/MeOH/H2O 65:25:4) 0.40. Anal.
pholipids: Synthesis, phospholipase A2 catalyzed hydrolysis, and
ds (2014), http://dx.doi.org/10.1016/j.chemphyslip.2014.06.001
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ld for C40H70N3O11P�0.5H2O C, 59.39; H, 8.85; N, 5.19; found: C,
.07; H, 8.80; N, 5.33. FAB-MS MH+ C40H70N3O11PH Calcd:
0.4821, found: 800.4827. [a]D25 +1.44 (c 1.04, CHCl3/MeOH 4:1)

5. 1-Palmitoyl-2-(CBZ-D-phe-phe-gly)-sn-glycero-3-
osphocholine (13)

To a solution of 9 (0.3850 g, 0.48 mmol) in 20 mL 1,4-dioxane was
ded 4 M HCl in 1,4-dioxane (7 mL) dropwise at room temperature.
e reaction mixture was stirred for 2.5 h, followed by the addition

 30 mL benzene and it was freeze-dried to give the deprotected
ine 10 as a white solid. The 1H NMR (CD3OD, 200 MHz) spectrum

 the compound 12 showed the same pattern as the spectrum of
mpound 11, except for the absence of the signal assigned to the
otons at d 1.40 (s, 9H) of the removed BOC protecting group. To the
hite precipitate of 12 dissolved in 20 mL of CHCl3was added DMAP
.2987 g, 2.5 mmol) until pH of solution reached 8, followed by the
tive ester p-nitrophenyl N-Cbz-D-phenylalanine (0.2652 g,
63 mmol) at room temperature. After 24 h more active ester
.1802 g, 0.43 mmol) was added. After 48 h stirring at room
mperature, to the mixture was added 15 mL Dowex-H+ and it was
irred for 10 min. The suspension was filtered and the resin was
ashed with 30 mL CHCl3/MeOH (1:1). The solvents collected were
aporated under reduced pressure to one third of the volume and
aded on a silica gel column, eluted first with CHCl3/MeOH (3:1),
llowed by CHCl3/MeOH/H2O (65:25:4). The fractions correspond-
g to the product were combined, evaporated, re-dissolved in
nzene and freeze-dried to give a white solid 13 (0.3815 g,
39 mmol, 81.3%). IR (Nujol): 3292 w, 1728 s, 1693 m, 1643 vs, 1540
,1301 w cm�1.1H NMR (CDCl3, 200 MHz)d 0.85 (br t, 3H),1.25 (br s,
H),1.52 (m, 2H), 2.23 (t, 2H, J = 6.7 Hz), 2.73 (m, 2H), 3.05 (m, 2H),
7 (br s, 9H), 3.71 (m, 2H), 4.05–4.20 (m, 4H), 4.35 (m, 2H), 4.62 (m,
), 4.81–5.02 (m, 4H), 5.25 (m, 1H), 6.03 (m, 1H), 6.90–7.26 (m,
H), 8.01 (m, 1H), 8.32 (m, 1H). 13C NMR (CDCl3, 50 MHz) d 14.10,
.65, 24.74, 29.12, 29.33, 29.51, 29.63, 29.68, 31.89, 33.86, 37.69,
.43, 41.32, 54.21, 54.70, 55.89, 59.85, 62.08, 64.43, 65.93, 66.58,
.52, 126.66, 126.83, 127.65, 128.02, 128.33, 128.48, 129.33, 129.46,
6.47, 137.05, 155.97, 169.54, 171.60, 172.27, 173.55. Rf (CHCl3/
eOH/H2O 65:25:4) 0.55. Anal. Cald for C52H77N4O12P�4H2O C,
.30; H, 8.13; N, 5.32; found: C, 59.75; H, 7.78; N, 5.51. FAB-MS MH+

2H77N4O12PH Calcd: 981.5348, found: 981.5375. [a]D25 �6.57
 0.97, CHCl3/MeOH 4:1).

6. 1-Palmitoyl-2-(FMOC-phe-gly)-sn-glycero-3-phosphocholine
10)

To a suspension of 1-palmitoyl-2-hydroxy-sn-glycero-3-phos-
ocholine 6 (0.5002 g, 1 mmol) in 25 mL of CHCl3 were added
OC-phe-gly-OH (0.5393 g, 1.2 mmol), DCC (0.2498 g, 1.2 mmol),
AP (0.1479 g, 1.2 mmol) and 1 g of glass beads. The reaction was

nicated for 48 h at 25 �C, the mixture was then filtered to remove
C-urea and glass beads. The solvent was evaporated to one third

 the volume and then loaded on a silica gel column for
romatography. A stepwise gradient of CHCl3/MeOH (5:1 and 5:2)
as applied to elute DMAP and some impurities, followed by
Cl3/MeOH/H2O (65:25:4). The fractions corresponding to the
oduct were combined, evaporated, re-dissolved in benzene and
eze-dried to give 110 as a white solid (0.5352 g, 0.58 mmol, 58%).

 (Nujol): 3297 br m,1728 vs,1693 s,1654 vs,1536 m,1252 w cm�1.
 NMR (CDCl3, 200 MHz) d 0.85 (br t, 3H), 1.25 (br s, 24H), 1.50 (m,
), 2.20 (t, 2H, J = 6.7 Hz), 2.95 (m, 2H), 3.17 (br s, 9H), 3.67 (br s,
), 3.95–4.30 (br m, 10H), 4.44 (m, 2H), 5.36 (m, 1H), 6.15 (m, 1H),
1–7.47 (m, 11H), 7.72 (d, 2H, J = 7.4 Hz), 8.66 (m, 1H). 13C NMR
DCl3, 50 MHz) d 14.28, 22.85, 24.92, 29.31, 29.52, 29.71, 29.83,
.87, 32.08, 34.04, 38.94, 41.47, 47.13, 54.34, 55.90, 59.63, 62.44,
.18, 66.28, 67.07, 71.96, 120.08, 125.27, 125.47, 126.94, 127.26,
Please cite this article in press as: Rosseto, R., Hajdu, J., Peptidopho
application to development of phospholipid prodrugs, Chem. Phys. Lip
127.86, 128.57, 129.63, 137.05, 141.30, 143.90, 156.17, 169.83, 172.39,
173.72. Rf (CHCl3/MeOH/H2O 65:25:4) 0.48. Anal. Cald for
C50H72N3O11P�2.5H2O C, 62.09; H, 8.02; N, 4.34; found: C, 62.33;
H, 8.03; N, 4.04. FAB-MS MH+ C50H72N3O11PH Calcd: 922.4977,
found: 922.4981. [a]D25

�C –6.73 (c 0.98, CHCl3/MeOH 4:1).

4.7. 1-palmitoyl-2-(N-BOC-glycyl)-sn-glycero-3-phosphocholine (14)

To a suspension of 1-palmitoyl-2-hydroxy-sn-glycero-3-phos-
phocholine 6 (0.3704 g, 0.7 mmol) in 25 mL of CHCl3 was added
N-BOC-gly (0.5305 g, 3 mmol), followed by DCC (0.6204 g, 3 mmol),
DMAP (0.3704 g, 3 mmol) and 1 g of glass beads. The reaction was
sonicated for 1 h at 25 �C. Next, to the mixture were added 8 mL of
Dowex-H+ and stirred for 10 min. The resin was filtered and
washed with 30 mL of CHCl3:MeOH (1:1). The combined solution
was evaporated under reduced pressure to one third of volume and
then was promoted the chromatographic purification on silica gel
using as eluent. and then was loaded on a silica gel column, eluted
first with CHCl3/MeOH (7:3), folloed by CHCl3/MeOH/H2O
(65:25:4). The fractions corresponding to the product were
combined, evaporated, re-dissolved in benzene and freeze-dried
to give a white solid 14 (0.4325 g, 0.66 mmol, 94.5%). IR (Nujol):
3364 br m, 1746 vs, 1714 vs, 1253 m, 1168 m cm�1. 1H NMR (CDCl3,
200 MHz) d 0.85 (br t, 3H), 1.23 (br s, 24H),1.40 (s, 9H), 1.52 (m, 2H),
2.26 (t, 2H, J = 6.7 Hz), 3.26 (br s, 9H), 3.75–4.01 (m, 6H), 4.10–4.18
(m, 2H), 4.25 (m, 2H), 5.22 (m, 1H), 6.21 (m, 1H). 13C NMR (CDCl3,
50 MHz) d 14.01, 22.58, 24.71, 28.33, 29.08, 29.22, 29.25, 29.44,
29.56, 29.60, 31.82, 33.89, 42.31, 54.16, 59.36, 62.43, 63.62, 65.98,
71.50, 79.39, 156.04, 170.36, 173.47. Rf (CHCl3/MeOH/H2O 65:25:4)
0.38. Anal. Cald for C31H61N2O10P�H2O C, 55.50; H, 9.47;
N, 4.18, found: C, 55.50; H, 9.49; N, 4.04. FAB-MS MH+

C31H61N2O10PH Calcd: 653.4137, found: 653.4165. [a]D25
�C +8.80

(c 1.00, CHCl3/MeOH 4:1).

4.8. Enzymatic hydrolysis of the phospholipids

In a typical experiment prodrug 10 (4.7 mg, 5.8 mmol) was
added to a mixture containing dipalmitoyl phosphatidylcholine
(DPPC, 17.9 mg, 23.4 mmol), in 4.1 mL Tris buffer (0.05 M, pH 8.50),
with 0.1 mL Triton X-100 and CaCl2 (7.2 mg, 0.049 mmol) The
mixture was vortexed, for 5 min, followed by incubation of the
resulting dispersion at 40 �C for 10 min in a constant-temperature
water-bath. To the optically clear dispersion that resulted was
added bee-venom phospholipase A2 (40 mg in 200 mL buffer) to
initiate the reaction. The reaction mixture was kept at 40 �C,
and formation of the products was analyzed by thin layer
chromatography (CHCl3/MeOH/H2O, 65:25:4). The compounds
were visualized by iodine adsorption, molybdic acid spray and
ninhydrin spray. TLC analysis showed complete hydrolysis of the
phospholipids (DPPC and the synthetic phospholipid prodrug 10)
by PLA2 within 90 min, leading to the formation of lysophospha-
tidylcholine 6, and the oligopeptide 4. PLA2 catalyzed hydrolysis of
DPPC under the same conditions in absence of compound 10 was
completed in 10 min.

In a somewhat similar experimental setup, prodrug 13 (3.4 mg,
0.5 mmol) was added to a mixture containing DPPC (15 mg, 1.5 m
mol), in 4.1 mL Tris buffer (0.05 M, pH 8.50), with 0.1 mL
Triton X-100 and 50 mM CaCl2. The mixture was vortexed, for
5 min, kept at 40 �C for 10 min in a constant-temperature
water-bath. To the resulting dispersion was added bee-venom
phospholipase A2 (16 mg in 80 mL 0.05 M Tris buffer, pH 8.5) to
initiate the reaction. The reaction mixture was kept at 40 �C, and
formation of the products was analyzed by thin layer chromatog-
raphy (CHCl3/MeOH/H2O, 65:25:4). The compounds were
visualized by UV-absorption, iodine adsorption, and molybdic
acid spray. TLC analysis showed complete hydrolysis of the DPPC
spholipids: Synthesis, phospholipase A2 catalyzed hydrolysis, and
ids (2014), http://dx.doi.org/10.1016/j.chemphyslip.2014.06.001
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and the synthetic phospholipid prodrug 13 within 90 min,
producing lysophosphatidylcholine 6, and the oligopeptide 5.

The synthetic phospholipid analogue with sn-2-N-BOC-gly 14,
was hydrolyzed by bee-venom PLA2 under similar experimental
conditions to those used for the catalytic hydrolysis of the peptide
substituted analogues. TLC showed that the reaction was
completed in 20 min, while the hydrolysis of DPPC in the same
assay mixture without the aminoacyl phospholipid 14 was
completed in 10 min.

The prodrugs did not change in the absence of the enzyme.
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