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Abstract: ~-Sulfonopeptides bearing a taurine in place of a penultimate amino acid unit were designed and 
synthesized as inhibitors of D-alanyl-D-alanine transpepddases; N-nitration of the suffonamide bond in the 
presence of multiple carboxamide groups was selectively accomplished through use of NO2BF4. 
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In connection with our efforts to synthesize novel and potent inhibitors of penicillin-sensitive-enzymes, 

especially D-alanyl-D-alanine transpeptidases, 1 we earlier synthesized an a-aminosulfonopept ide ,  1; 

unfortunately, it proved to be exceedingly unstable in aqueous media. 2 D-Alanyl-D-alanine transpeptidases 

catalyze transfer reactions (or hydrolysis) of  the C-terminal alanine from the natural substrate UDP-N- 

acetylmuramyl-L-alanyl-D-glutarnyl-L-lysyl-D-alanyl-D-alanine, a precursor in bacterial cell wall biosynthesis. 1 

Based on recent reports that the synthetic substrate Ac2-L-Lys-D-Ala-D-Ala showed excellent activity as a 

substrate for the R61, R39, and albus G enzymes, whereas Ac-D-Ala-D-Ala was a poor substrate, 3 it appeared 

that substrate activity may be partly relatable to the blocking group of the N-terminal alanine unit. Along other 

lines, a few peptide analogs 4 containing a taurine unit have been introduced based on the principle of transition- 

state analogy. 

We now report the synthesis of a 13-sulfonopeptide, 2, in which the penultimate amino acid unit of D-ala- 

D-ala was replaced with a taurine residue and which was designed as an inhibitor of  the cross-linking enzymes 

involved in bacterial cell-wall construction. The introduction 5 of an N-nitro group into the sulfonamide moiety 

of Ac2-L-lysyltauryl-D-alanine (2a) activates the amide bond to reaction with the nucleophilic OH group of a 

critical serine residue in the active site of the transpeptidases. The expected stability of  the enzyme-sulfonate 
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ester formed could be expected to lead to irreversible inhibition of the target enzymes. 6 Further, the sulfonamide 

group 4 might serve as a transition-state analog 7 of the tetrahedral intermediate formed in the normal hydrolysis 

or transpeptidation of the D-Ala-D-AIa linkage. We report here the first synthesis of taurine-containing I~- 

sulfonopeptides in which the penultimate residue is activated with respect to reaction with nucleophiles by an N- 

nitro group. 

Our synthetic approach to prepare target molecule 2 through use of a simple and direct coupling of the 

alanine and taurine moieties (vide infra) is straightforward (Scheme 1) compared to the methods of Liskamp, et. 

al., 4 in which a halogen oxidation of cysteamine to form the corresponding sulfonylchloride was used followed 

by a coupling reaction with the amino acid moiety. Taurylalanine 8 was readily obtained by a direct coupling of 

D-alanine with Cbz-tauryl chloride 5 prepared from the reaction 9 of taurine and benzyl chloroformate followed 

by treatment with PC15. During the course of our studies on t~-sulfonopeptides (1) a convenient coupling of o~- 

ethoxycarbonylethanesulfonyl chloride and p-toluenesulfonic acid salts of amino acids through use of 

hexamethyldisilazane (HMDS) without organic bases was developed. 2 In a similar manner, N,O-bis- 

trimethylsilylalanine, prepared in situ from the p-toluenesulfonic acid salt of D-alanine (6) and HMDS at room 

temperature, was treated with sulfonyl chloride 5; aqueous work-up afforded almost pure solid product 7 (rap 

127-128oC) in 25-45% yields (impurities in 5 can seriously decrease this yield). Product S was used directly in 

the next step without further purification. Removal of the benzyloxycarbonyl group from 7 was effected cleanly 

by catalytic transfer hydrogenation 10 (cyclohexene ,10% Pd/C) to yield taurylalanine 8 (mp 205°C dec) in 

quantitative yield (25% overall yield from 3). Protection 11 of the free carboxyl group of 8 was achieved through 

treatment with benzyl alcohol in the presence of thionyl chloride to give 70% of benzyl ester 9. Nct, N e- 

Diacetyl-L-lysine (10) was prepared and used directly in the next step without further purification by the 

neutralization of L-lysine hydrochloride (2) with silver acetate, followed by treatment with acetic anhydride by 

the method of Greenstein, et al. 12 The coupling of benzyl ester 9 with diacetyllysine (10) in the presence of 1- 

hydroxybenzotriazole (HOBT) using the DCC method 13 produced the desired diacetyl-L-lysyltauryl-D-alanine 

benzyl ester (12) after silica gel column chromatography (57%). An alternate route to product 12 using 9 and 

active ester 11, prepared from acetyllysine 10 and o-nitrophenol in the presence of DCC, yielded 12 (60%), 

which was identical to the product obtained by the DCC method. Subsequent hydrogenolysis of 12 (H2 and 

10% Pd/C) gave the highly hygroscopic diacetyl-L-lysyltauryl-D-alanine (2a; mp 60-65°C; ~ 3.91, alanyl CH) 

in a quantitative yield. 16 

Our preliminary study of the N-nitration of sulfonopeptides under classic nitration conditions 

(HNO3/Ac20) resulted in non-selective N-nitration in low yields; the products were difficult to isolate due to 

rapid decomposition, possibly catalyzed by nitric acid during work-up. A direct nitration of 2a with dinitrogen 

pentoxide (N205), which has been extensively used for the nitration of a variety of substrates such as amines, 

amides, and ureas 14 was then investigated. The treatment of 2a with 2 equiv of N205 in CD3CN at 

temperatures ranging from -20°C to 25oc resulted in the formation of a mixture of N-nitrated products; N- 

nitration took place approximately equally at both the acetamido and sulfonamido positions. The use of pyridine 

or lutidine as base along with N205 led to more complicated product mixtures; again, no selectivity was 

observed. We next attempted the reaction of 2a with NO2SbF 6 in CDCN3 at 0°C. Surprisingly, the treatment 

of 2a with 1 equivalent of NO2SbF6 in CD3CN yielded a clear solution without any detectable N-nitrated 
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product; the addition of 2 more equivalents of NO2SbF6 gave a mixture of 2b (ca 50%) and unchanged 2a (ca 

50%); the use of 6 more equivalents of NO2SbF6 led cleanly to compound 2b. Thus, the selective N-nitration 

of the more acidic sulfonamide group of 2a was accomplished in the absence of bases (pyridine or 2,6-1utidine) 

(the presence of base is reported to generally give a mixture of N-nitroso and N-nitro compounds through the 

migration of nitroso and nitro groups to N after initial O-nitration). 5a However, the product obtained in the 

NO2SbF6 nitration, after aqueous work-up, contained a considerable amount of inorganic salts; a large amount 

of fluorine was detected by 19F NMR analysis. Attempted purification by an aqueous work-up failed to remove 

the impurity. Finally, treatment of 2a with 8 equivalents of the more water-soluble nitronium tetrafluoroborate 

(NO2BF4) at 0°C for 1 h, followed by aqueous work-up, gave rise to the desired 2b (mp 91°C dec; 8 5.34, 

alanyl CH) in the form of a complex with solvent (2b: ethyl acetate: ether = 1 : 1 : 0.5); recrystallization from 

acetonitrile and chloroform yielded white crystals in the form of a complex with ether (2b: ether = 1: 0.5). 

Subjecting this complex to a vacuum of 0.02 Torr for 72 h at 25°C did not result in the loss of the solvent. 16 

Decomposition of compound 2b in a pD 7.8, 0.5 mM phosphate buffer (D20), with a half-life of approximately 

16 h at 25°C, produced N-nitroalanine 15 and diacetyllysyltaurine (100%). The details of enzyme assay of 
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compound 2 and its derivatives will be reported elsewhere. 
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