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Improved Protocol for Thorpe Reaction:
Synthesis of 4-Amino-1-arylpyrazole using
Solid–Liquid Phase-Transfer Conditions

Nirmal D. Desai1 and Rina D. Shah2

1Loyola Center for Research and Development, Navrangpura,

Ahmedabad, India
2Organic Synthesis Laboratory, M. G. Science Institute, Navrangpura,

Ahmedabad, India

Abstract: Solid–liquid phase-transfer conditions were employed for the first time in

the Thorpe reaction to synthesize 4-amino-1-aryl-3,5-substituted-1H-pyrazoles 3.

Aryl amines were diazotized and coupled with various active methylene compounds

such as cyano acetamide, cyanoacetophenone, malononitrile, and ethyl cyanoacetate,

resulting into a-arylhydrazononitriles 1. Cyclization of 1 using a-bromo ketones or

esters resulted in compounds 3.

Keywords: 4-amino-1-arylpyrazole, a-arylhydrazononitriles, 18-crown-6, phase-transfer

catalyst, Thorpe reaction

INTRODUCTION

The intermolecular Thorpe[1] reaction and its intramolecular version, Thorpe–

Zeigler[2] reaction, are two of the most promising lines in the chemistry of

five-member amino heterocycles. They are base catalyzed, and sodium or

potassium alkoxide,[3a – e] sodium hydride,[3f,g] potassium hydroxide,[3h]

lithium hydroxide,[3i] and potassium carbonate[1a,b] were employed fre-

quently. Radical alternatives,[4a] solvent-free[4b] strategies, and iridium
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hydride complexes[4c] also have been applied to intramolecular as well as

intermolecular Thorpe reactions. Yet, a little to our surprise, no attempt has

been made to employ comprehensive strategies for the Thorpe reaction

involving phase-transfer conditions.

Pyrazoles are an important class of heteroaromatic ring systems that find

extensive use in the agrochemical industry and pharmaceutical industries.[5]

More recently, extensive studies have focused on pyrazoles for exhibiting

cyclooxygenase-2 (COX-2), nonnucleoside HIV-1 reverse transcriptase

inhibitory properties[6,7] and in a novel class of synthetic Hsp90 inhibitor.[8]

By far the most prevalent method of obtaining pyrazoles is by the reaction

of 1,3-diketones with hydrazine, hydrazine derivatives,[9] and the nitrene

insertion reaction.[10] However, if a diversity-oriented synthesis of

pyrazoles[11] is desired, this method becomes cumbersome as each 1,3-

diketone must be purified and is often obtained as a mixture of condensation

products. Furthermore, most electrophilic functional groups such as

aldehydes, nitriles, esters, and alkyl halides do not survive the transformation.

Other methods for the synthesis of pyrazoles that do not require 1,3-

diketones have been reported[12] but tend to have serious drawbacks such as

being step intensive. In light of this, and in continuation of our interest in

the use of phase-tansfer catalysis (PTC) in heterocycles,[13] described herein

are the results of a study that has culminated in the development of a

process for the efficient synthesis of 4-amino-1-aryl-3,5-substituted-1H-

pyrazoles 3. Comparative study of the Thorpe reaction with and without

phase-transfer catalyst was also carried out.

RESULTS AND DISCUSSION

Nonsubstituted and substituted aryl amines were diazotized and coupled with

cyanoacetamide, cyanoacetophenone, malononitrile, and ethyl cyanoacetate

according to the method prescribed in literature,[14] affording 2-arylhydrazo-

nocyanoacetamide 1a, ethyl 2-arylhydrazonocyanoacetophenone 1b, 2-aryl-

hydrazonomalononitriles 1c–e, and ethyl 2-arylhydrazonocyanoacetates

1f– l, respectively, in very good yields.

Thorpe reaction[1ab] of a-arylhydrazononitriles 1 with a-bromo ketone or

ester in DMF/K2CO3/Et3N resulted in 4-amino-1-aryl-3,5-substituted-1H-

pyrazoles 3 (Table 1). A similar reaction by Kaja et al.[15] resulted in very

poor yields, and moreover, reagents need to be used in excess to improve

the yields. In view of these findings, we decided to set an improved

protocol by introducing phase-transfer conditions for the Thorpe reaction.

All reactions were carried out at 60–708C or slightly warmer. Potassium

hydroxide along with 18-crown-6 was our choice of catalyst, and acetonitrile

was used as solvent. There was significant improvement in the reaction time

and yields, and workup was clean compared to the methods reported so

far.[1ab,15] However, any alteration in molar quantities of the catalyst
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Table 1. Synthesis of 4-amino-1-aryl-3,5-substituted-1H-pyrazoles 3a–o

Entry R R1 R2

Without PTC DMF/
K2CO3/Et3N

With PTC

Mp (8C) found/lit.

Liquid–liquid PTC

conditiona TBHSO4
b

Solid–liquid PTC

conditionc18-Crown-6

Time (h)

Yield

(%) Time (h) Yield (%)

Time

(h)

Yield (%)

Toluene MeCN

3a H CONH2 COC6H5 6–8 80 3.5 58 2.5 74 84 192–93 (lit. 189–90)[1a]

3b H CONH2 COOC2H5 6–8 60 3 49 2 67 80 199–200 (lit. 194–96)[1a]

3c H COC6H5 COC6H5 6–8 68 3.5 55 2.5 66 79 138–39 (lit. 134–36)[1a]

3d H COC6H5 COOC2H5 6–8 88 3.5 66 2.5 86 94 143–44 (lit. 140–42)[1a]

3e H CN COOC2H5 6–8 86 3.5 52 2.5 64 91 123 (lit. 120–22)[1a]

3f 3-Br CN COOC2H5 6–8 27 3.5 35 2.5 60 67 125–26 (lit. 121–23)[15]

3g 3-Cl-4-F CN COOC2H5 — — 3.5 40 2.5 58 65 132–33

3h H COOC2H5 COC6H5 6–8 80 3 65 2 79 87 173–74 (lit. 170–72)[1a]

3i H COOC2H5 COOC2H5 6–8 70 3.5 50 2 72 81 110–11 (lit. 91–92)[1a]

3j 3-Cl COOC2H5 COOC2H5 — — 3 47 2.5 70 78 100

3k 4-Cl COOC2H5 COOC2H5 — — 3.5 40 2 73 87 127–28

3l 4-F COOC2H5 COOC2H5 — — 3.5 42 2.5 53 62 109–10

3m 4-OCH3 COOC2H5 COOC2H5 — — 3 43 2 70 90 149–50

3n 4-CH3 COOC2H5 COOC2H5 — — 3.5 50 2 69 86 118

3o 3-Cl-4-F COOC2H5 COOC2H5 — — 3 55 2.5 78 89 155–56

Note: PTC ¼ phase-transfer catalyst.
aCH2Cl2/KOH (aq. 40% w/v).
bTetrabutylammoniumhydrogensulfate.
c18-Crown-6, KOH (solid), CH3CN.
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resulted in undesired by-products; a similar observation was made for the

solvent.

Given the frequent appearance of pyrazole fragments in pharmaceutical

compounds, we sought to expand the scope of this potentially useful

phase-transfer method and optimize its efficiency. To optimize the synthesis

of 3, different phase-transfer catalysts and solid–liquid and liquid–liquid

phase-transfer conditions were examined (Table 1). For liquid–liquid

phase-transfer conditions, CH2Cl2/KOH (aq. 40% w/v), lack of reactivity

was observed in the presence of catalysts such as tetrabutylammonium

bromide (TBAB) and triethylbenzylammonium chloride (TEBA). Results

also showed concomitant decomposition of both reactants after prolonged

heating (24 h, 60–708C). Employing tricaprylmethylammonium chloride

(Aliquatw) was also unsuccessful. However, under similar conditions, tetrabu-

tylammonium hydrogen sulfate (TBHSO4) proved to be a better catalyst, and

compounds 3 were obtained in yields of 35–66%. Reducing the catalyst

loading or changing the solvent resulted in a significant decrease in the

yields. Increasing the temperature past 708C had little effect on the yields.

Finally, in solid–liquid phase-transfer conditions, the use of 18-crown-6

KOH along with acetonitrile or toluene as a solvent resulted in the

formation of the product 3a–o; however, in acetonitrile, the yields were

excellent (Scheme 1).

A plausible mechanism for the Thorpe reaction is proposed in Scheme 2.

The initial HBr removal from a-bromo ketone or ester and a-arylhydrazono-

nitriles 1 resulting into the intermediate 2, followed by intramolecular nucleo-

philic addition of -CH- onto the nitrile group, gave imines that could yield an

enamine and also aromatic system for the formation of 4-amino-1-aryl-3,5-

substituted-1H-pyrazoles 3.

In conclusion, we have described a simple, clean, and convenient

synthesis of 4-amino-1-aryl-3,5-substituted-1H-pyrazole 3, which is an

important building block for the construction of various fused heterocycles.

A comparison of conventional method, liquid–liquid PTC, and solid–liquid

PTC suggests that the solid–liquid PTC conditions using 18-crown-6 is the

method of choice with excellent yields. The ease with which the phase-

transfer catalyst reacts presents new opportunities for expanding the Thorpe

reaction for the synthesis of numerous heterocycles, a use that remains

almost unexplored.

EXPERIMENTAL

Melting points were determined by an electrothermal method in an open

capillary tube and are uncorrected. The IR spectra were recorded in

centimeters21 for KBr pellets on a Buck-500 spectrophotometer. The 1H

NMR spectra were recorded on a Bruker 300-MHz spectrophotometer in

CDCl3 using TMS as internal standard, and the chemical shifts are
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expressed in d ppm. MS spectra were recorded on a Jeol SX-102 mass spec-

trophotometer under electron-impact (EI) ionization. Elemental analyses were

performed on a Carlo Erba 1108 microanalyzer or Elementar’s Vario EL III

microanalyzer. The purity of the compounds was routinely checked by thin-

layer chromatography (TLC) using silica gel G, and spots were exposed in

iodine vapor.

Synthesis of 4-Amino-1-aryl-3,5-substituted-1H-pyrazole 3a–o,

General Procedures

Method 1: Solid–Liquid Phase-Transfer Catalysis Conditions

a-Arylhydrazononitrile 1 (5 mmol) was added to the well-stirred solution of

toluene or MeCN (20 mL), powdered KOH (0.700 g, 12.5 mmol), and 18-

crown-6 (0.132 g, 0.5 mmol) and stirred for 30 m. To this a-bromo ketone

or ester (8 mmol) were added portionwise. The reaction mixture was further

stirred at 70–808C for 1.5–2 h (TLC). The solvent was distilled under

reduced pressure, and the reaction mixture was poured onto crushed ice

Scheme 1.
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(20 g) and neutralized with acetic acid (50% v/v). The products thus obtained

were filtered, washed with water, dried, and crystallized from absolute ethyl

alcohol.

Method 2: Liquid–Liquid Phase-Transfer Catalysis Conditions

a-arylhydrazononitrile 1 (5 mmol) was added to the stirred mixture of CH2Cl2
(15 mL), KOH solution (5 mL, 40% w/v), and TBHSO4 (1.69 g, 5 mmol) at

room temperature. To this, a-bromo ketone or ester (8 mmol) was added por-

tionwise in 30 m. The reaction mixture was stirred further at room temperature

for 2.5–3 h (TLC). The organic phase was separated and washed with water,

acetic acid (10% v/v), and water. The solvent was distilled under reduced

pressure and cooled to 5–108C; the solid thus obtained was filtered, washed

with chilled methanol, and crystallized from absolute ethyl alcohol.

Data

4-Amino-5-benzoyl-1-phenyl-1H-pyrazole-3-carboxamide (3a)[1a]

IR (KBr): n ¼ 3590, 3450, 3370, 3200 (NH), 1696, 1640 (C55O), 1616, 1504

(C55C, C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.35 (t, J ¼ 7.2 Hz

Scheme 2.
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3H, OCH2CH3), 4.29 (q, 2H, OCH2CH3), 5.60 (br S, 2H, NH2 at C4), 7.30–

7.90 (m, 5H, Ar-H þ NH2 exchangeable with D2O). MS (EI): m/z ¼ 306 (Mþ).

Anal. calcd. for C17H14N4O2 (306.32): C, 66.66; H, 4.61; N, 18.29. Found: C,

66.84; H, 4.44; N, 18.10.

Ethyl 4-Amino-3-carbamoyl-1-phenyl-1H-pyrazole-5-carboxylate (3b)[1a]

IR (KBr): n ¼ 3490, 3450, 3360, 3190 (NH), 1712, 1686 (C55O), 1604, 1500

(C55C, C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.30 (t, J ¼ 7.2 Hz

3H, OCH2CH3), 4.25 (q, 2H, OCH2CH3), 5.65 (br S, 2H, NH2 at C4),

7.32–7.88 (m, 5H, Ar-H þ NH2 exchangeable with D2O). MS (EI): m/z ¼ 274

(Mþ). Anal. calcd. for C13H14N4O3 (274.28): C, 56.93; H, 5.14; N, 20.43.

Found: C, 56.95; H, 5.34; N, 20.32.

4-Amino-3,5-dibenzoyl-1-phenyl-1H-pyrazole (3c)[1a]

IR (KBr): n ¼ 3500, 3400 (NH), 1652, 1624 (C55O), 1616, 1500 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 5.55 (br S, 2H, NH2),

7.30–7.90 (m, 15H, Ar-H). MS (EI): m/z ¼ 367 (Mþ). Anal. calcd. for

C23H17N3O2 (367.4): C, 75.19; H, 4.66; N, 11.44. Found: C, 75.35; H, 4.86;

N, 11.30.

Ethyl 4-Amino-3-benzoyl-1-phenyl-1H-pyrazole-5-carboxylate (3d)[1a]

IR (KBr): n ¼ 3490, 3370 (NH), 1732, 1684 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.30 (t, J ¼ 7.2 Hz 3H,

OCH2CH3), 4.27 (q, 2H, OCH2CH3), 5.52 (br S, 2H, NH2), 7.33–7.89

(m, 10H, Ar-H). MS (EI): m/z ¼ 335 (Mþ). Anal. calcd. for C19H17N3O3

(335.36): C, 68.05; H, 5.11; N, 12.53. Found: C, 68.15; H, 5.01; N, 12.65.

Ethyl 4-Amino-3-cyano-1-phenyl-1H-pyrazole-5-carboxylate (3e)[1a]

IR (KBr): n ¼ 3460, 3350 (NH), 2220 (CN), 1708 (C55O), 1616, 1500 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.35 (t, J ¼ 7.2 Hz 3H,

OCH2CH3), 4.29 (q, 2H, OCH2CH3), 5.48 (br S, 2H, NH2), 7.30–7.85

(m, 5H, Ar-H). MS (EI): m/z ¼ 256 (Mþ). Anal. calcd. for C13H12N4O2

(256.26): C, 60.93; H, 4.72; N, 21.86. Found: C, 61.05; H, 4.88; N, 21.92.

Ethyl 4-Amino-3-cyano-1-(3-bromophenyl)-1H-pyrazole-5-

carboxylate (3f)[15]

IR (KBr): n ¼ 3440, 3320 (NH), 2210 (CN), 1712 (C55O), 1616, 1500 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.33 (t, J ¼ 7.2 Hz 3H,

OCH2CH3), 4.31 (q, 2H, OCH2CH3), 5.50 (br S, 2H, NH2), 7.22–7.78
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(m, 4H, Ar-H). MS (EI): m/z ¼ 335 (Mþ). Anal. calcd. for C13H11BrN4O2

(335.16): C, 46.59; H, 3.31; N, 16.72. Found: C, 46.45; H, 3.41; N, 16.82.

Ethyl 4-Amino-3-cyano-1-(3-chloro-4-fluorophenyl)-1H-pyrazole-5-

carboxylate (3g)

IR (KBr): n ¼ 3460, 3310 (NH), 2210 (CN), 1716 (C55O), 1612, 1508 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.32 (t, J ¼ 7.2 Hz 3H,

OCH2CH3), 4.34 (q, 2H, OCH2CH3), 5.45 (br S, 2H, NH2), 7.32–7.88

(m, 3H, Ar-H). MS (EI): m/z ¼ 308 (Mþ). Anal. calcd. for C13H10ClFN4O2

(308.7): C, 50.58; H, 3.27; N, 18.15. Found: C, 50.45; H, 3.41; N, 18.12.

Ethyl 4-Amino-5-benzoyl-1-phenyl-1H-pyrazole-3-carboxylate (3h)[1a]

IR (KBr): n ¼ 3520, 3380 (NH), 1732, 1684 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.35 (t, J ¼ 7.2 Hz 3H,

OCH2CH3), 4.29 (q, 2H, OCH2CH3), 5.75 (br S, 2H, NH2), 7.30–7.90

(m, 10H, Ar-H). MS (EI): m/z ¼ 335 (Mþ). Anal. calcd. for C19H17N3O3

(335.36): C, 68.05; H, 5.11; N, 12.53. Found: C, 68.12; H, 5.27; N, 12.45.

Diethyl 4-Amino-1-phenyl-1H-pyrazole-3,5-dicarboxylate (3i)[1a]

IR (KBr): n ¼ 3520, 3410 (NH), 1730, 1712 (C55O), 1612, 1504 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.14–1.42 (t � 2, 6H,

OCH2CH3), 4.17–4.48 (q � 2, 4H, OCH2CH3), 5.47 (br S, 2H, NH2),

7.12–7.21 (m, 5H, Ar-H). MS (EI): m/z ¼ 303 (Mþ). Anal. calcd. for

C15H17N3O4 (303.31): C, 59.40; H, 5.65; N, 13.85. Found: C, 59.55; H,

5.58; N, 13.93.

Diethyl 4-Amino-1-(3-chlorophenyl)-1H-pyrazole-3,5-dicarboxylate (3j)

IR (KBr): n ¼ 3510, 3380 (NH), 1732, 1696 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.14–1.41 (t � 2, 6H,

OCH2CH3), 4.17–4.47 (q � 2, 4H, OCH2CH3), 5.50 (br S, 2H, NH2),

7.21–7.28 (m, 4H, Ar-H). MS (EI): m/z ¼ 337 (Mþ). Anal. calcd. for

C15H16ClN3O4 (337.76): C, 53.34; H, 4.77; N, 12.44. Found: C, 53.29; H,

4.70; N, 12.35.

Diethyl 4-Amino-1-(4-chlorophenyl)-1H-pyrazole-3,5-dicarboxylate (3k)

IR (KBr): n ¼ 3520, 3400 (NH), 1712, 1696 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.12–1.40 (t � 2, 6H,

OCH2CH3), 4.14–4.45 (q � 2, 4H, OCH2CH3), 5.47 (br S, 2H, NH2),

7.16–7.27 (m, 4H, Ar-H). MS (EI): m/z ¼ 337 (Mþ). Anal. calcd. for
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C15H16ClN3O4 (337.76): C, 53.34; H, 4.77; N, 12.44. Found: C, 53.44; H,

4.98; N, 12.51.

Diethyl 4-Amino-1-(4-fluorophenyl)-1H-pyrazole-3,5-dicarboxylate (3l)

IR (KBr): n ¼ 3510, 3380 (NH), 1732, 1696 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.15–1.43 (t � 2, 6H,

OCH2CH3), 4.18–4.49 (q � 2, 4H, OCH2CH3), 5.53 (br S, 2H, NH2),

7.18–7.25 (m, 4H, Ar-H). MS (EI): m/z ¼ 321 (Mþ). Anal. calcd. for

C15H16FN3O4 (321.3): C, 56.07; H, 5.02; N, 13.08. Found: C, 56.19; H,

4.92; N, 12.95.

Diethyl4-Amino-1-(4-methoxyphenyl)-1H-pyrazole-3,5-dicarboxylate (3m)

IR (KBr): n ¼ 3490, 3390 (NH), 1724, 1704 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.16–1.49 (t � 2, 6H,

OCH2CH3), 3.78 (s, 3H, OCH3), 4.20–4.52 (q � 2, 4H, OCH2CH3), 5.51

(br S, 2H, NH2), 7.20–7.31 (m, 4H, Ar-H). MS (EI): m/z ¼ 333 (Mþ).

Anal. calcd. for C16H19N3O5 (333.34): C, 57.65; H, 5.75; N, 12.61. Found:

C, 57.50; H, 5.74; N, 12.69.

Diethyl 4-Amino-1-(4-methylphenyl)-1H-pyrazole-3,5-dicarboxylate (3n)

IR (KBr): n ¼ 3510, 3410 (NH), 1732, 1712 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.14–1.43 (t � 2, 6H,

OCH2CH3), 2.40 (s, 3H, CH3), 4.17–4.47 (q � 2, 4H, OCH2CH3), 5.47 (br

S, 2H, NH2), 7.19–7.27 (m, 4H, Ar-H). MS (EI): m/z ¼ 317 (Mþ). Anal.

calcd. for C16H19N3O4 (317.34): C, 60.56; H, 6.03; N, 13.24. Found: C,

60.72; H, 5.93; N, 13.44.

Diethyl 4-Amino-1-(3-chloro-4-fluorophenyl)-1H-pyrazole-3,5-

dicarboxylate (3o)

IR (KBr): n ¼ 3500, 3400 (NH), 1716, 1696 (C55O), 1604, 1516 (C55C,

C55N ring) cm21. 1H NMR (300 MHz, CDCl3): 1.12–1.41 (t � 2, 6H,

OCH2CH3), 4.16–4.48 (q � 2, 4H, OCH2CH3), 5.41 (br S, 2H, NH2),

7.16–7.27 (m, 3H, Ar-H). MS (EI): m/z ¼ 355 (Mþ). Anal. calcd. for

C15H15ClFN3O4 (355.75): C, 50.64; H, 4.25; N, 11.81. Found: C, 50.44; H,

4.08; N, 12.01.
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