

Article

Total Synthesis of Mannopeptimycins # and

Bo Wang, Yunpeng Liu, Rui Jiao, Yiqing Feng, Qiong Li, Chen Chen, Long Liu, Gang He, and Gong Chen J. Am. Chem. Soc., Just Accepted Manuscript • Publication Date (Web): 25 Feb 2016 Downloaded from http://pubs.acs.org on February 25, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Total Synthesis of Mannopeptimycins α and β

Bo Wang,³ Yunpeng Liu,³ Rui Jiao,³ Yiqing Feng,³ Qiong Li,³ Chen Chen,³ Long Liu,¹ Gang He,^{1,2} and Gong Chen^{1,2,3*}

¹State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China

²Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

³Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States

ABSTRACT: The mannopeptimycins are a class of glycopeptide natural products with unusual structures and potent antibiotic activity against a range of Gram-positive multidrug-resistant bacteria. Their cyclic hexapeptide core features a pair of unprecedented β -hydroxyenduracididines (L- and D- β hEnd), an *O*-glycosylated D-Tyr carrying an α -linked di-mannose, and a β -methylated Phe residue. The D- β hEnd unit also carries an α -linked mannopyranose at the most hindered *N* of its cyclic guanidine ring. Herein, we report the first total synthesis of mannopeptimycin α and β with fully elaborated *N*- and *O*-linked sugars. Critically, a gold-catalyzed *N*-glycosylation of a D- β hEnd unit with excellent efficiency and stereoselectivity. The L- β MePhe unit was prepared using a Pd-catalyzed C–H arylation method. The L- β hEnd, D-Tyr(di-Man) and L- β MePhe units were prepared in gram quantities. A convergent assembly of the cyclic peptide scaffold and a single global hydrogenolysis deprotection operation provided mannopeptimycin α and β .

INTRODUCTION

The mannopeptimycins (MPP) are a class of glycopeptide natural products produced by Streptomyces hygroscopicus LL-AC98.1 They have shown potent antibiotic activity against a range of Gram-positive multidrug-resistant pathogens including methicillinresistant S. aureus (MRSA) and vancomycin-resistant enterococci (VRE) and have demonstrated compelling potential as clinically useful antibacterials.² The MPPs were originally isolated in 1950s, but their structures were first elucidated in 2002 by researchers at Wyeth Pharmaceuticals based on NMR and chemical degradation studies.3 The MPPs contain a cyclic hexapeptide core comprised of alternating L- and D- α -amino acids (α AAs). Among the α AA units are a pair of unprecedented β -hydroxyenduracididine (L- and D- β hEnd)^{4,5}, a L- β -methylated Phe (β MePhe), and a O-glycosylated D-Tyr carrying an α -(1,4-linked)-bis-manno-pyranosyl pyranoside (Scheme 1). More strikingly, it was proposed that the D-βhEnd unit bears a α -mannopyranose in ${}^{1}C_{4}$ conformation⁶ at the most hindered N atom on the cyclic guanidine ring. An N-glycosylated guanidine motif has not been found in any other natural product. Biological studies have indicated that the MPPs interfere with the late stages of bacterial cell wall synthesis by binding cell wall precursor lipid II⁷ in a manner unlike other lipid II binders such as ramoplanin and vancomycin.8 Bio- and semisynthetic studies of MPPs suggest that both N- and O-linked sugars are necessary for antibiotic activity.9

The highly unusual structures, novel mode of action, and promising antibiotic activity of the MPPs have generated great interest in their chemical synthesis and structural modification over the past decade.⁹⁻¹² Modifications on the *O*-linked sugar residues and β MePhe unit have provided significantly improved lead compounds for preclinical trials.^{9c} The laboratories of O'Doherty and Iadonisi have reported syntheses of the *O*-linked di-mannose residue.¹⁰ The laboratories of Oberthür and Van Nieuwenhze have reported syntheses of unglycosylated L- and D- β hEnd units.¹¹ In 2014, Fuse and Doi reported the first total synthesis of mannopeptimycin aglycone and revised the C β stereochemistry of the L β MePhe unit.^{12a} However, the synthesis of *N*-man-D- β hEnd remains elusive, posing a formidable obstacle to the total synthesis of the mannopeptimycins.

Scheme 1. Structure of mannopeptimycins

Herein, we report the first total synthesis of mannopeptimycin α and β with fully elaborated *N*- and *O*-linked sugars. Key features include a highly efficient gold-catalyzed *N*-mannosylation for the **ACS Paragon Plus Environment** synthesis of the N-man-D- β hEnd unit, a stereoselective synthesis of the L- β MePhe unit via Pd-catalyzed directed C–H arylation, a gram-scale preparation of the L- β hEnd and O-di-mannosyl-D-Tyr units, and a convergent assembly of the cyclic peptide backbone followed by a global hydrogenolysis deprotection operation to give the final product.

RESULTS AND DISCUSSION

N-mannosylation of a model cyclic guanidine

Intrigued by the extraordinary structure and highly promising antibiotic activity of the MPPs, we began our attempt at the total synthesis of this class of glycopeptide natural products seven years ago. The most difficult challenge in the synthesis of MPP is the preparation of a suitable N- α -mannosyl-D- β hEnd unit. Compared with the array of established methods for *O*-glycosylation, methods for *N*-glycosylation are much less developed, and primarily limited to the synthesis of *N*-glycosides of nucleotides and heteroarenes.¹³ Moreover, poor compatibility with Lewis acid-promoted conditions, steric hindrance about the *N*-glycosylation site on the cyclic guanidine ring, and the delicate structure of the D- β hEnd substrate further complicate of the synthesis of *N*- α -mannosyl-D- β hEnd.

entry	donor (equiv)	reagents (equiv), conditions	yield (%) ^a
1	7 (3)	Ag ₂ CO ₃ (2), 4A MS, toluene, 80 °C, 12h	12
2	8 (1.5)	Ph ₃ PAuNTf ₂ (0.2), DCM, 4A MS, rt, 18h	15
3	8 (1.5)	$Ph_{3}PAuNTf_{2}$ (0.2), DCM, 4A MS, 45 $^{\circ}C$, 24h	54
4	10 (1.5)	Ph ₃ PAuNTf ₂ (0.2), DCM, 4A MS, rt, 18h	85
5	10 (1.5)	Ph ₃ PAuNTf ₂ (0.2), toluene, 4A MS, rt, 18h	87
6	10 (1.5)	$Ph_3PAuNTf_2$ (0.2), toluene, 4A MS, 65 $^{\circ}C$, 4h	83
7	10 (1.5)	$Ph_3PAuNTf_2$ (0.1), toluene, 4A MS, 65 $^{\circ}C$, 18h	55
8	9 (1.5)	$Ph_3PAuNTf_2$ (0.2), toluene, 4A MS, 65 $^{\circ}C$, 4h	80

Preparation of 1

 Table 1. N-mannosylation of model cyclic guanidine 1. a) isolated

 yield on a 0.2 mmol scale.

To address this issue, we first investigated the N-mannosylation of simpler di-Cbz-protected cyclic guanidine model substrate 1 (Table 1). Compound 1 can be quickly prepared from serine methyl ester **3** via guanylation with Goodman reagent **4**¹⁴ followed by MsCl-mediated C-N cyclization.¹⁵ N-mannosylation of 1 with mannosyl trichloroacetimidate donor 5 and ethyl sulfide donor 6 under various Lewis acid-promoted conditions (e.g. with TMSOTf, BF₃OEt₂, NIS) failed to give any N-mannosylated product. Nmannosylation of 1 with bromide donor 7 promoted by weakly basic Ag₂CO₃^{13e} in toluene at 80 °C gave product **2**¹⁶ in 12% yield. However, the Koenigs-Knorr-type N-mannosylation of more complex substrates (e.g. D-\u00dfhEnd 16 in Scheme 2) with 6 only gave trace amount of product (<5%). The failure of these conventional glycosylation methods prompted us to test a gold(I)-catalyzed glycosylation method, recently reported by Yu, using orthoalkynylbenzoate donors.¹⁷ Encouraged by a successful application in nucleoside synthesis, ^{17b} we expected that the unique π -acid activation mode of Yu's method, orthogonal to the Lewis basic guanidine NH, might provide an efficient N-mannosylation method for cyclic guanidines. To our delight, the Ph₃PAuNTf₂-catalyzed Nmannosylation of 1 with mannosyl ortho-alkynylbenzoate 10 proceeded in excellent yield and with exclusive α -stereoselectivity at room temperature (entries 4 and 5). The reaction time can be shortened at elevated temperature (entry 6). As in donor 7, the 2-OAc group of **10** is required to control the α stereoselectivity via neighboring group participation. Donor 9 carrying a 2-OBz group gave slightly lower yield (entry 8). Disarmed tetra-OAc substituted donor 8 gave considerably lower mannosylation yield under the same reaction conditions (entries 2 and 3, see Supporting Information for preparation of 8-10).

Preparation of the βhEnd units

With a gold-catalyzed N-mannosylation method in hand, we proceeded to investigate the synthesis of N-Man-D-βhEnd and LβhEnd units.¹¹ As shown in Scheme 2A, our initial synthetic route for the βhEnd units began from a common precursor **12**, which can be prepared from Garner aldehyde **11** in large quantity in 2 steps.^{18,} ¹⁹ OsO₄-catalyzed dihydroxylation of **12** and TBDPS protection of the terminal OH group gave a separable diastereomeric mixture of 13 and 14 with 1:8 selectivity.²⁰ Mitsunobu reaction of 14 gave an azido compound. The removal of N,O-acetonide and Boc groups, followed by guanylation with Goodman reagent 4, and PPh₃/DIAD-mediated C-N cyclization provided 18. Removal of the TBDPS group of 18 with TBAF, TEMPO oxidation, and esterification with MeI gave α -azido methyl ester **16**. A diastereomeric mixture of 13 and 14 can be subjected to the same reaction sequence (from 14 to 16) without separating the diastereomeric intermediates until the final azido ester products 15 and 16, which are easily separable by silica gel column chromatography. Starting from 11, both βhEnd compounds 15 and 16 were obtained in 14% combined yield via a single sequence of 11 steps and 7 column purifications.

As shown in Scheme 2B, azido ester **16** can be converted to **19** via reduction with PPh₃ followed by Boc protection. Disappointingly, *N*-mannosylation of **19** using various methods failed to give any of the desired product **20** possibly due to steric hindrance or interference from the Boc-protected NH group.²¹ On the other hand, *N*-mannosylation of azido ester **16** with **10** proceeded successfully under the gold-catalyzed conditions at 65 °C to give product **22** in 65% yield and complete α -stereoselectivity.²² However, Scheme 2. Our initial synthetic route for L-βhEnd and N-Man-D-βhEnd

attempted reduction of the azido group of **22** under various conditions failed to give the desired amine product, predominately forming acetamide byproduct **23** through an intramolecular *O* to *N* acyl transfer process. The attempted removal of the OAc group of **22** under acidic or basic conditions failed due to serious side reactions and decomposition of **22**.²³

The success of the gold-catalyzed N-mannosylation with the complex D-\u00dfhEnd substrate 16 followed by the failed reduction of the azido group to amine prompted us to investigate other βhEnd substrates bearing a more properly protected N-terminus. Encouraged by the report of MPP aglycone synthesis by Fuse and Doi,^{12a} we wondered whether their D-βhEnd unit 30 protected by N,Oacetonide and Boc at N-terminus might be useful for the synthesis of N-man-D-βhEnd (Scheme 3A). Following the reported procedure, a separable mixture of 26 and 27 was obtained via a tandem aldol/cyclization reaction between tribenzyl protected 2aminopropanol 24 and N-(diphenylmethylene) glycine t-butyl ester 25. Compound 27 was then converted to compound 30 in 7 steps.²⁴ To our delight, the gold-catalyzed N-mannosylation of DβhEnd **30** with *ortho*-alkynylbenzoate donor **10** in toluene at 65 °C proceeded very cleanly to give desired product 31 in 86% isolated yield and with complete α -stereoselectivity on a gram scale (Scheme 3B). Compared to the N-mannosylation reaction of substrate **16**, little undesired side product was formed, possibly because the guanidine *NH* group of the acetonide protected substrate is less hindered. Finally, treatment of **31** with LiOH successfully removed the 2-OAc group on mannose, the methyl ester group, and one Cbz group on the cyclic guanidine moiety to give *N*-man-D- β hEnd **32** in good yield.

Although intermediate 26 can be converted to L-βhEnd 28 via a similar sequence in Fuse and Doi's report, the overall yield of this route was very low in our hands. As shown in Scheme 3C, a more scalable synthesis of L-βhEnd 39 was achieved based on modification of a method recently reported by Oberthür.^{11c} The synthesis of began with Wittig reaction of compound 33 and 39 Ph₃P=CHCO₂Bn followed by diastereoselective dihydroxylation to form **34**. The C α OH group was then converted to BocNH. The acetonide, Bn and Cbz groups of **36** were then removed to give **37**. The use of the free carboxylic acid form of 37 was necessary to avoid a competing intramolecular γ -lactamization observed when ester derivatives of 37 were subjected to basic conditions. Formation of the cyclic guanidine group followed by saponification of the C α ester gave L- β hEnd **39**. Starting from **33**, **39** was obtained in 7% yield over 12 steps and 6 column purifications.

Preparation of the other αAA units and the final assembly of mannopeptimycins

With the two βhEnd units in hand, we next turned our attention to the preparation of the remaining αAA units and the final assembly of the cyclic hexapeptide. Following Fuse and Doi's peptide coupling strategy in the synthesis of MPP aglycone,^{12a} we planed to join the two tripeptide fragments at the D-Tyr/L-βhEnd site and then cyclize at the Ser/Gly site.^{12b} To simplify the final deprotection operation, Bn was used as the protecting group for Ser and D-Tyr units. As shown in Scheme 4A, the (2S,3R)-threo-βMePhe unit 43 was prepared using our previously developed Pd-catalyzed aminoquinoline (AQ)-directed C-H arylation chemistry.²⁵ Pdcatalyzed β -C(sp³)–H arylation of phthaloyl-L-2-aminobutyramide 40 with PhI gave 42 in excellent yield and diastereoselectivity. The stereochemistry of C–H arylation was controlled by the α , β -transconfiguration of 5-membered palladacycle intermediate 41. The AQ auxiliary was cleaved with LiO₂H following Boc activation. The Phth group was then replaced with Boc to give Boc-BMePhe-OH 43 in good yield and with excellent stereoretention at C α .

As shown in Scheme 4B, O-di-mannosyl-D-Tyr unit 51 was prepared via glycosylation of Boc-D-Tyr-OMe 50 with dimannosyl trichloroacetimidate donor 49.10 Mannose 44 with a PMP group²⁶ at the anomeric position was first protected as a 4,6-O-benzylidene intermediate, and then treated with BzCl to give 45. The benzylidene group of 45 was selectively opened via treatment with Et₃SiH and BF₃OEt₂ to give 46. BF₃OEt-promoted glycosylation of 46 with 2-O-benzoyl-3,4,6-tri-O-benzyl-D-mannsoyl trichloroacetimidate 47 gave 1,4-linked dimannose 48 in excellent yield and α selectivity. Treatment of 48 with cerium ammonium nitrate (CAN) removed the anomeric PMP group and reaction with CCl₃CN and DBU gave corresponding trichloroacetimidate donor 49. The BF₃OEt₂-promoted O-glycosylation of 50 with 49 gave Boc-D-Tyr(di-Man)-OMe 51 in excellent yield and α -selectivity. Boc deprotection and HATU-mediated amide couplings of the α AA units **51**, **43** and Boc-Gly-OH followed by saponification with LiOH gave the tripeptide Boc-Gly-BMePhe-D-Tyr(di-Man)-OH 52. Similarly, peptide coupling of Boc-D-Tyr(Bn)-OMe 53, BocβMePhe-OH 43 and Boc-Gly-OH gave the un-glycosylated tripeptide 54.

As shown in Scheme 5, the HATU-mediated amide coupling of N-man-D-\beta hEnd 32 with H-Ser(Bn)-OAll 55 gave 56 in good yield. To our delight, the N-linked mannose residue of 56 remained intact during the deprotection of acetonide and Boc groups under acidic conditions. HATU-mediated amide coupling between the two sterically hindered \betahEnd sites also proceeded smoothly to give tripeptide 57 in excellent yield. The Boc group of 57 was removed and HATU-mediated amide coupling with tripeptide 54 gave linear hexapeptide 58. Removal of the C-terminus allyl group, removal of the N-terminus Boc group, and HATU-mediated macrolactamization provided the cyclized hexapeptide in ~44% yield over 3 steps. Finally, a global deprotection of the Cbz and Bn groups provided mannopeptimycin β, following reverse phase HPLC purification. Following the same sequence, the tripeptide fragments 57 and 52 were coupled, cyclized and deprotected to give mannopeptimycin α in similar yield. The ¹H and ¹³C NMR spectra of both synthetic products was fully consistent with data of isolated samples from the literature (see SI for details).²⁷

Conclusion

60

The unique peptide scaffold and unprecedented glycosylation pattern of the mannopeptimycins has until now prevented their total synthesis. The structural complexity of the MPPs requires judicious choices at the level of individual aAA building block synthesis as well as peptide assembly. Our early studies revealed that Yu's gold-catalyzed N-glycosylation with a mannosyl orthoalkynylbenzoate donor offered a uniquely powerful means to install N-linked mannose moiety on cyclic guanidine substrates with high efficiency and stereoselectivity. Our subsequent investigation revealed that the choice of protecting groups for the N-terminus and β-OH group of the D-βhEnd substrate is critical to successfully access the N-Man-D-βhEnd building block. Building upon the earlier reports by Fuse-Doi and Oberthür, we developed efficient and scalable syntheses for both N-Man-D-βhEnd and L-βhEnd units. Boc-BMePhe-OH was prepared via Pd-catalyzed C-H arylation chemistry. O-di-mannosyl-D-tyrosine was prepared via glycosylation of Boc-D-Tyr-OMe with a dimannosyl trichloroacetimidate donor. Each of these α AA building blocks can be prepared in gram quantities. Finally, a convergent assembly of the cyclic peptide backbone and a single global hydrogenolysis deprotection

Scheme 5. Total synthesis of mannopeptimycins α and β

operation provided mannopeptimycins α and β . Our synthesis provides conclusive evidence for the structural determination of these highly complex glycopeptide natural products. We hope that this work will enable exploration of previously inaccessible mannopeptimycin derivatives, provide mechanistic understanding of their mode of action, and promote the development of new analogues with enhanced antibacterial activity.

ASSOCIATED CONTENT

Additional experimental procedures and spectroscopic data for all new compounds are supplied. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

AUTHOR INFORMATION

Corresponding Author

gongchen@nankai.edu.cn, guc11@psu.edu

Current addresses

Dr. Liu, Y: Department of Chemistry, Georgia State University, Atlanta, GA 30302, US.; Dr. Feng, Y.: Worldwide MedChem, Pfizer Inc., Groton, CT 06340, US.; Dr. Jiao, R: Lianyungang Teachers College, Jiangsu, 22066, China; Dr. Li, Q.: School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.

ACKNOWLEDGMENT

We gratefully thank The Pennsylvania State University and the State Key Laboratory of Elemento-Organic Chemistry at Nankai University for financial support of this work. We dedicate this work to Prof. Samuel J. Danishefsky on the occasion of his eightieth birthday.

REFERENCES

- 1. De Voe, S. E.; Kunstmann, M. P. Antibiotic AC98 and production. US Patent 3495004, **1970**.
- 2. Koehn, F. E. J. Med. Chem. 2008, 51, 2613.
- He, H.; Williamson, R. T.; Shen, B.; Graziani, E. I.; Yang, H. Y.; Sakya, S. M.; Petersen, P. J.; Carter, G. T. *J. Am. Chem. Soc.* 2002, 124, 9729.
- For isolation of enduracididines: (a) Horii, S.; Kameda, Y. J. Antibiot. 1968, 21, 665. (b) Fellows, L. E.; Hider, R. C.; Bell, E. A. Phytochemistry 1977, 16, 1957.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

- For biosynthesis study of β-hydroxyenduracididines: Haltli, B.; Tan, Y.; Magarvey, N. A.; Wagenaar, M.; Yin, X. H.; Greenstein, M.; Hucul, J. A.; Zabriskie, T. M. Chem. Biol. 2005, 12, 1163.
 - For references on ¹C₄ conformation of mannose: (a) Lemieux, R. U.; Morgan, A. R. *Can. J. Chem.* **1965**, *43*, 2205. (b) Onodera, K.; Hirano, S.; Masuda, F.; Kashimura, N. J. Org. Chem. **1966**, *31*, 2403.
 - 7. Breukink, E.; de Kruijff, B. Nat. Rev. Drug Discovery 2006, 5, 321.
 - (a) Ruzin, A.; Singh, G.; Severin, A.; Yang, Y.; Dushin, R. G.; Sutherland, A. G.; Minnick, A.; Greenstein, M.; May, M. K.; Shlaes, D. M.; Bradford, P. A. Antimicrob. Agents Chemother. 2004, 48, 728. (b) Magarvey, N. A.; Haltli, B.; Greenstein, M.; Hucul, J. A. Antimicrob. Agents Chemother. 2006, 50, 2167.
- For previous SAR studies based on bio- and semisynthesis: (a) Sum, P. E.; How, D.; Torres, N.; Petersen, P. J.; Lenoy, E. B.; Weiss, W. J.; Mansour, T. S. *Bioorg. Med. Chem. Lett.* 2003, *13*, 1151. (b) Dushin, R. J.; Wang, T.-Z.; Sum, P.-E.; He, H.; Sutherland, A. G.; Ashcroft, J. S.; Graziani, E. I.; E., K. F.; Bradford, P. A.; Petersen, P. J.; Wheless, K. L.; How, D.; Torres, N.; Lenoy, E. B.; Weiss, W. J.; Lang, S. A.; Projan, S. J.; Shlaes, D. M.; Mansour, T. S. *J. Med. Chem.* 2004, *47*, 3487. (c) Petersen, P. J.; Wang, T. Z.; Dushin, R. G.; Bradford, P. A. Antimicrob. Agents Chemother. 2004, *48*, 739. (d) He, H.; Shen, B.; Petersen, P. J.; Weiss, W. J.; Yang, H. Y.; Wang, T.-Z.; Dushin, R. G.; Koehn, F. E.; Carter, G. T. *Bioorg. Med. Chem. Lett.* 2004, *14*, 279.
- For previous syntheses of the O-linked di-mannose residue: (a) Babu,
 R. S.; Guppi, S. R.; O'Doherty, G. A. Org. Lett. 2006, 8, 1605. (b)
 Adinolfi, M.; Giacomini, D.; Iadonisi, A.; Quintavalla, A.; Valerio, S.
 Eur. J. Org. Chem. 2008, 2895.
- For previous syntheses of unglycosylated βhEnd units: (a) Schwörer, C. J.; Oberthür, M. Eur. J. Org. Chem. 2009, 6129. (b) Olivier, K. S.; Van Nieuwenhze, M. S. Org. Lett. 2010, 12, 1680. (c) Fischer, S. N.; Schwörer, C. J.; Oberthür, M. Synthesis 2014, 46, 2234.
- (a) Fuse, S.; Koinuma, H.; Kimbara, A.; Izumikawa, M.; Mifune, Y.; He, H.; Shin-ya, K.; Takahashi, T.; Doi, T. J. Am. Chem. Soc. 2014, 136, 12011. (b) For a solid phase synthesis of a simplified MPP aglycone substituted with L-, D-Arg and L-Phe residues: Wang, T.-Z.; Wheless, K. L.; Sutherland, A. G.; Dushin, R. G. Heterocycles 2004, 62, 131.
- For selected syntheses of N-glycosides: (a) Vorbrüggen, H. Acc. Chem. Res. 1995, 28, 509. (b) Gallant, M.; Link, J. T.; Danishefsky, S. J. J. Org. Chem. 1993, 58, 343. (c) Keynes, M. N.; Earle, M. A.; Sudharshan, M.; Hultin, P. G. Tetrahedron 1996, 52, 8685. (d) Lin, P.; Lee, C. L.; Sim, M. M. J. Org. Chem. 2001, 66, 8243. (e) Sugimura, H.; Natsui, Y. Tetrahedron Lett. 2003, 44, 4729. (f) Schnabel, M.; Rompp, B.; Ruckdeschel, D.; Unverzagt, C. Tetrahedron Lett. 2004, 45, 295. (g) Tanaka, H.; Iwata, Y.; Takahashi, D.; Adachi, M.; Takahashi, T. J. Am. Chem. Soc. 2005, 127, 1630. (h) Ohno, H.; Terui, T.; Kitawaki, T.; Chida, N. Tetrahedron Lett. 2006, 47, 5747. (i) Hager, D.; Mayer, P.; Paulitz, C.; Tiebes, J.; Trauner, D. Angew. Chem., Int. Ed. 2012, 51, 6525.
 - Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M. J. Org. Chem. 1998, 63, 8432.
 - The low cyclization yield is caused by the competing elimination reaction. For selected syntheses of cyclic guanidines: (a) DeMong, D. E.; Williams, R. M. J. Am. Chem. Soc. 2003, 125, 8561. (b) Shimokawa, J.; Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew. Chem., Int. Ed. 2004, 43, 1559. (c) Ref 11.
 - 16. The unique large coupling constant of H_1 at the anomeric position of mannose in **2** (δ 5.86 ppm, d, $J_{1',2'}$ = 8.9 Hz, in CDCl₃) agrees with the proposed ¹C₄ conformation of *N*-linked α -mannose in MPPs.
 - (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604. (b) Zhu, Y.;
 Yu, B. Angew. Chem., Int. Ed. 2011, 50, 8329. (c) Tang, Y.; Li, J.; Zhu,
 Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.
 - (a) Liang, X.; Andersch, J.; Bols, M. J. Chem. Soc., Perkin Trans. 2001, 2136. (b) Ojima, I.; Vidal, E. J. Org. Chem. 1998, 63, 7999. (c) 11 was also used as SM in ref 11b and 11c.
- 19. The corresponding Bn-protected analogues of **16**, **19**, and **22** (Scheme 2B) were also prepared using the same strategy for precursor **12**. However, we found that a Bn protecting group at C β OH of these analogues cannot be cleanly removed under catalytic hydrogenolysis conditions.

- 20. A 1.1:1 ratio of 13 and 14 was obtained in 91% combined yield when the AD-mix- β catalyst was used in the dihydroxylation step.
- 21. Protection of $N\mathrm{H}_2$ with Phth gave very low yield (<15%).
- 22. An unidentified side product with the same molecular weight of **22** was also formed in 20% yield. However, its NMR spectra do not fully agree with an ortho ester structure (see SI). Gold-catalyzed *N*-mannosylation of compound **18** with **10** also worked well. However, the attempted conversion of the resulting *N*-mannosylated intermediate to **21** was unsuccessful.
- 23. The conformation of **22** might affect the accessibility of the OAc group.
- 24. The procedures for converting **29** to **30** have been modified to obtain more reliable yields. See SI for details.
- Zhang, S.-Y.; Li, Q.; He, G. Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2013, 135, 12135.
- Han, Z.; Pinkner, J.; Ford, B.; Obermann, R.; Nolan, W.; Wildman, S.; Hobbs, D.; Ellenberger, T.; Cusumano, C.; Hultgren, S.; Janetka, J. J. Med. Chem. 2010, 53, 4779.
- 27. No NMR spectra of isolated MPPs were provided in the original structural determination paper (ref 3). Our ¹H and ¹³C-NMR spectra of both MPP α and β fully agree with the listed NMR data within an error of 0.1 ppm for ¹H-NMR and 0.2 ppm for ¹³C-NMR.

