

Tetrahedron Letters 44 (2003) 9283-9285

TETRAHEDRON LETTERS

A convenient access to 3-cyanoflavones

Frédéric Lassagne* and Francis Pochat

Laboratoire de Chimie Organique, Université de Rennes 1, Bat 7, Campus de Beaulieu, 35042 Rennes, France Received 1 September 2003; revised 7 October 2003; accepted 13 October 2003

Abstract—Reaction of β -bromo α -alkylthiocinnamonitriles with various substituted methyl salicylates followed by treatment with AlCl₃/PhNO₂ provides 3-cyanoflavones.

© 2003 Elsevier Ltd. All rights reserved.

Several C-3 substituted flavones have been found to play an important role in a number of biological processes: the most representative of them are flavonols which are reported to have antiviral and antibiotic effects as well as antioxidant properties.

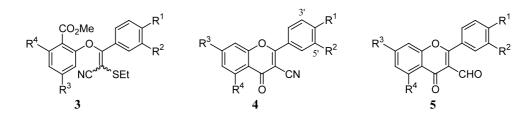
Among the numerous C-3 functionalized flavones described in the literature¹ only one example of a substituted 3-cyanoflavone has been reported, as a by-product from a reaction starting from a $3-(\alpha-hydroxy-benzyl)$ flavone.²

More recently, we have found a novel route to 3cyanoflavones 4 by reacting β -bromo α -ethylthio cinnamonitrile 1 with methyl salicylate 2 and the subsequent treatment of precursor 3 with AlCl₃ (Scheme 1).

Compounds of type 1, readily obtained in good yields (70–80%) following the literature method,³ react in alkaline medium with methyl salicylate⁴ 2 to give the substitution products 3 as Z, E mixtures which can be further used as such. These reactions were performed using the following general procedure: a mixture of 1 (6)

mmol), methyl salicylate **2** (7.2 mmol) and anhydrous potassium carbonate (6.5 mmol) in dry DMSO (10 mL) was stirred overnight at 70–80°C. After pouring into cold water, diethyl ether extraction and washing with 1 M NaOH solution, compounds **3** (Z/E mixture) were isolated in good yields (70–90%) as shown in Table 1.

The conversion of 3 into 3-cyanoflavones 4 was carried out as follows. To a stirred solution of precursor 3 (1.5 mmol) in dry nitrobenzene at 150°C (50 mL, inner temp.) was added dropwise, over 2 min, a nitrobenzene solution of AlCl₃ (0.88 M, 5.5 mmol, 5.3 mL). After stirring for a further 5 min at the same temperature, the mixture was poured into cold 10% HCl solution, extracted with CH₂Cl₂ and washed with NaHCO₃ solution and water until neutral pH. The solvents were evaporated and the residual solid was purified on a silica gel column eluted with CH₂Cl₂/AcOEt in the range (v/v) 90/10 to 98/2. Compounds 4a-h were obtained (Table 1). Selected data for 4d: IR (v, KBr, cm⁻¹): 2225 (C=N), 1651 (C=O). Anal. found C, 75.87; H, 5.74; N, 4.26%; calc. for $C_{21}H_{19}NO_3$ C, 75.66; H, 5.74; N, 4.20%. ¹H NMR (300 MHz, CDCl₃) δ 8.17


Scheme 1.

0040-4039/\$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.10.072

Keywords: β-bromo α-ethylthiocinnamonitrile; methyl methoxysalicylate; 2-(2-cyano-2-(ethylthio-1-arylvinyloxy))-benzoic acid methyl ester; aluminium chloride; 3-cyanoflavones; 3-formylflavones.

^{*} Corresponding author. Fax: 02-23-23-62-98; e-mail: frederic.lassagne@univ-rennes1.fr

Table 1.

	\mathbb{R}^1	R ²	R ³	R ⁴	3 (Z/E mixture)		4		5	
					Yield (%)	mp (°C)	Yield (%)	mp (°C)	Yield (%)	mp (°C)
a	Н	Н	Н	Н	85	58-68	54	157–158 ^b	55	151–152 ^d
b	Н	Н	OMe	Н	86	64-70	64	209–210 ^c	_	_
c	Me	Н	OMe	Н	75	76-80	61	182-183	60	158-159
d	t Bu	Н	OMe	Н	70	128-132	60	173-174	_	_
e	Cl	Н	OMe	Н	70	80-94	65	221-222	_	_
f	OMe	Н	OMe	Н	81	90-100	63	224-225	_	_
g	OCH ₂	OCH ₂ O		Н	85	100-110	50	202-203	_	_
ĥ	OMe	Н	OMe	OMe	90	98-104	35 ^a	269-270	_	_

^a Cyclization occurred at 100°C and the lower yield of flavone **4h** was explained by the concomitant formation of the phenolic compound **4'h** (R¹=R³=OMe, R²=H, R⁴=OH) in 15% yield. Data for **4'h**: mp=232-233°C. EIMS: m/z found 323.0799 (M⁺); calc. for C₁₈H₁₃NO₅: m/z 323.0794 (M⁺). ¹H NMR (500 MHz, DMSO) δ 11.97 (1H, s, OH), 8.11 (2H, d, J=8.7 Hz, H-2′, 6′), 7.23 (2H, d, J=8.7 Hz, H-3′, 4′), 6.86 (1H, d, J=1.75 Hz, H-6), 6.50 (1H, d, J=1.75 Hz, H-8), 3.91 (3H, s, MeO), 3.89 (3H, s, MeO). ¹³C NMR (125 MHz, DMSO) δ 178.83 (C=O), 171.25 (C-2), 166.68 (C-7), 164.00 (C-4′), 161.09 (C-5), 156.93 (C-8a), 131.50 (C-2′, 6′), 121.94 (C-1′), 115.08 (C-3′, 5′), 114.67 (C≡N), 103.44 (C-4a), 99.71 (C-6), 94.57 (C-3), 94.34 (C-8), 56.89 (MeO).

^b mp (lit.²) = 151-152°C.

 $^{\circ}$ mp (lit.²) = 202–203 °C.

 d mp (lit. 6) = 152°C.

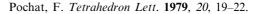
(1H, d, J=8.8 Hz, H-5), 8.07 (2H, J=8.6 Hz, H-2', 6'), 7.62 (2H, d, J=8.6 Hz, H-3', 5'), 7.05 (1H, dd, J=8.8 and 2.2 Hz, H-6), 6.97 (1H, d, J=2.2 Hz, H-8), 3.97 (3H, s, OMe), 1.4 (9H, s, *t*Bu). ¹³C NMR (75 MHz, CDCl₃) δ 173.43 (C=O), 170.46 (C-2), 165.18 (C-7), 157.30 (C-4'), 157.13 (C-8a), 128.51 (C-2',6'),127.41 (C-5), 127.18 (C-1'), 126.12 (C-3',5'), 115.68 (C-6), 115.53 (C-4a), 114.45 (C=N), 100.76 (C-8), 97.46 (C-3), 56.15 (MeO), 35.29 (C_{qu} *t*Bu), 31.03 (CH₃). EIMS: m/z333.1363 (M⁺).

We observed that no reaction occurs without the presence of AlCl₃, the cyclisation is easier when electrondonating groups are in either the *ortho* or *para* position relative to the ester moiety. We suppose that the first step involves complexation of the carbonyl by AlCl₃ which increases the electropositivity of the carbon atom. A Mannich-type reaction of the enol ether moiety should then close the six-membered ring, releasing methoxide which could in turn assist the elimination of the ethylthio group, thereby restoring aromaticity.

Furthermore, these 3-cyanoflavones can be converted to 3-formylflavones **5**, by the reduction of the nitrile group with Raney nickel/formic acid⁵ as shown for compounds **5a** and **5c** (Table 1). Selected data for **5c**: ¹H NMR (300 MHz, CDCl₃) δ 10.15 (1H, s, CHO), 8.20 (1H, d, *J*=8.9 Hz, H-5), 7.56 (2H, d, *J*=8.1 Hz, H-2', 6'), 7.34 (2H, d, *J*=8.1 Hz, H-3', 5'), 7.04 (1H, dd, *J*=8.9 and 2.3 Hz, H-6), 6.9 (1H, d, *J*=2.3 Hz, H-8), 3.92 (3H, s, MeO), 2.47 (3H, s, Me). ¹³C NMR (75 MHz, CDCl₃) δ 189.02 (CHO), 175.61 (C=O), 171.86 (C-2), 164.75 (C-7), 157.4 (C-8a), 143.07 (C-4'), 129.94 (C-2', 6'), 129.27 (C-3', 5'), 127.92 (C-1'), 127.70 (C-5), 117.96 (C-4a), 117.30 (C-3), 115.17 (C-6), 100.69 (C-8), 55.98 (MeO), 21.70 (CH₃).

In summary, this paper describes the first simple and efficient method for the synthesis of substituted 3cyanoflavones and a corresponding access to 3formylflavones, which could be of interest as starting materials for preparation of novel heterocyclic systems.

Acknowledgements


Thanks to M. Utjes for her support, and S. Sinbandhit and P. Guenot for recording NMR and mass spectra.

References

- 1. Patonay, T.; Levai, A. Arch. Pharm. 1994, 327, 181-186.
- Mallik, A. K.; Chattopadhyay, F.; Dey, S. P. Tetrahedron Lett. 2000, 41, 4929–4931.
- 3. The bromo compounds 1 were prepared as follows:

ArCHO +
$$H_2C$$
, SEt EtONa
CN EtOH

$$ArCH = C \xrightarrow{SEt} CN \xrightarrow{Br_2} ArCBr = C \xrightarrow{SEt} CCI_4$$

- Methyl 4,6-dimethoxysalicylate was prepared according to: (a) Broadhurst, M. J.; Hassall, C. H.; Thomas, G. J. J. *Chem. Soc.*, *Perkin Trans.* 1 1977, 2502–2512; (b) Ramaswamy, S.; Malalyandi, M. *Environ. Sci. Technol.* 1985, 19, 507–512.
- Glatz, B.; Helmchen, G. H.; Muxfeld, H.; Porcher, R.; Prewo, J.; Senn, J. J.; Stezowski, R. J.; Stodja, P. R.; White, D. R. J. Am. Chem. Soc. 1979, 101, 2171–2181.
- Wurm, G.; Nordman, M. Arch. Pharm. 1988, 321, 555– 558.