
Subscriber access provided by - Access paid by the | UCSF Library

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

Predictive Multivariate Linear Regression Analysis Guides
Successful Catalytic Enantioselective Minisci Reactions of Diazines

Jolene P Reid, Rupert S.J. Proctor, Matthew S Sigman, and Robert J Phipps
J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.9b11658 • Publication Date (Web): 11 Nov 2019

Downloaded from pubs.acs.org on November 11, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.
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ABSTRACT: The Minisci reaction is one of the most direct and versatile methods for forging new carbon-carbon bonds 
onto basic heteroarenes, a broad subset of compounds ubiquitous in medicinal chemistry. Whilst many Minisci-type 
reactions result in new stereocenters, control of the absolute stereochemistry has proved challenging. An asymmetric 
variant was recently realized using chiral phosphoric acid catalysis, although in that study the substrates were limited to 
quinolines and pyridines. Mechanistic uncertainties and non-obvious enantioselectivity trends made the task of extending 
the reaction to important new substrates classes challenging and time-intensive. Herein, we describe an approach to 
addressing this problem through the rigorous analysis of the reaction landscape guided by a carefully designed reaction 
dataset and facilitated through multivariate linear regression (MLR) analysis. These techniques permitted the development 
of mechanistically informative correlations providing the basis to transfer enantioselectivity outcomes to new reaction 
components, ultimately predicting pyrimidines to be particularly amenable to the protocol. The prediction of 
enantioselectivity outcomes for these valuable, pharmaceutically-relevant motifs were remarkably accurate in most cases 
and resulted in a comprehensive exploration of scope, significantly expanding the utility and versatility of this methodology. 
This successful outcome is a powerful demonstration of the benefits of utilizing MLR analysis as a predictive platform for 
effective and efficient reaction scope exploration across substrate classes.

1. Introduction 
First developed into a general synthetic process by 

Minisci and co-workers in the late 1960s, the addition of 
nucleophilic radicals to electron-deficient heteroarenes 
has arguably become the leading method for direct carbon-
carbon bond formation onto heteroaromatic scaffolds.1 
The ubiquity of pyridines, quinolines and the numerous 
derivatives thereof as structural features in molecules of 
biological interest has rendered so-called ‘Minisci-type’ 
chemistry an indispensable tool for medicinal chemists.2 
Whilst the original conditions developed by Minisci for 
radical generation are still widely applied, the past decade 
in particular has seen tremendous attention paid to the 
development of new protocols for Minisci-type reactions.3 
The major emphasis of these advances has been on 
enhanced approaches for radical generation. Indeed, 
Minisci-type chemistry has, to some degree, become a 
testbed for the latest developments in emerging areas such 
as photoredox catalysis4 and electrochemistry.5 However, 
the Minisci reaction presents several fascinating selectivity 
challenges to the synthetic chemist. The first is 
regioselectivity, since on heteroarenes the LUMO 
coefficients can be very similar at multiple positions.6 The 
second is the question of whether a prochiral nucleophilic 
radical may be coaxed into forming a new stereocenter in 
an enantiocontrolled manner during the C‒C bond 

forming process.7 We recently disclosed a strategy that 
enabled influence to be exerted over both of these 
selectivity aspects for the addition of N-acyl, α-amino 
radicals to a range of pyridines and quinolines.8 Jiang and 
co-workers subsequently demonstrated that this strategy 
could also be applied to isoquinolines.9 Our approach was 
founded on the use of a chiral phosphoric acid catalyst to 
activate the substrate, which we anticipated was able to 
subsequently engage in a network of non-covalent 
interactions (NCI’s) with the radical cation intermediate in 
the transition state (TS) for selectivity-determining 
deprotonation (Figure 1A).10 However, the 
enantioselectivity trends with respect to both catalyst and 
substrate were not obvious. Even modest structural 
modifications resulted in substantial differences (Figure 
1B), making immediate extension of the protocol to other 
substrate types challenging. The notion that selectivity 
could be influenced to such an extent by minor structural 
modifications to the substrate is intriguing as it alludes to 
subtle albeit important molecular features impacting 
asymmetric catalysis. In targeting the understanding and 
prediction of substrate efficacy, we approached this 
problem within the context of a modern physical organic 
analysis. In this scenario enantioselectivity11 or site-
selectivity12 values can report on specific interactions 
between catalyst and substrate. Specifically, we reasoned 
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that by designing a data set in which the structural features 
of the catalyst and
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Figure 1. The application of statistical analysis tools to reaction development. (A) Working mechanistic hypothesis for asymmetric 
radical addition to heteroarenes. (B) Substrate and catalyst sensitivities deployed as a mechanistic probe. (C) The mechanistic 
principles leading to enantioselective catalysis captured by the statistical models can be transferred to genuinely different 
structural motifs not contained in the training dataset, facilitating reaction development.

substrate were appropriately modified, effective 
correlations could reveal the underlying causal 
interactions. It was anticipated that such an analysis would 
not only provide key insights into reaction mechanism, but 
also the ability to predict performance of new substrate 
types to ultimately expand the scope of the process. With 
regard to the latter, our initial report had only explored the 
reaction of pyridines and quinolines. Yet, the prevalence of 
diverse heterocycles possessing additional heteroatoms in 
medicinal compounds led us to question the broader 
applicability of this enantioselective Minisci method.2b If 
the selectivity discriminants were consistent for a range of 
substrates, it may be possible to quantitatively transfer the 
insights gained from the correlations to the prediction of 
unique substrates not included in the training sets (Figure 
1C). Moreover, it is widely acknowledged by medicinal 
chemists that increasing the three-dimensionality of 
scaffolds in lead molecules enhances the odds of success as 
a drug candidate.13 Three-dimensionality inevitably leads 
to stereoisomers, which often elicit distinct biological 
activity. As such, a method to predict the viability of 
directly appending chiral scaffolds to a range of basic 
heteroarenes with control of absolute stereochemistry 

would likely have significant impact in pharmaceutical 
research. To this end, we report a study employing 
predictive, statistical modelling techniques to relate both 
catalyst and substrate structures to selectivity outcomes. 
With statistical models that describe the general 
mechanistic features of the system, we can quantitatively 
transfer chemical insights to new substrate components. 
Furthermore, our model has identified pyrimidines and 
pyrazines to be amenable to the reaction conditions, 
successfully predicting protocol extension to the use of 
these valuable basic heteroarene motifs.

2. Results and Discusssion 
Data Set Design and Modeling. Intrigued by the 

observed lack of selectivity for certain substrate subsets in 
the initial exploration of reaction space, and driven by the 
importance of accessing varied chiral heteroarene building 
blocks, we initiated a study into the scope and limitations 
of the enantioselective Minisci protocol. Despite 
previously reporting a collection of experimental 
observations for this chemistry, we anticipated that a 
designed data set in which both the substrate and catalyst 
were systematically modified would allow effective 
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correlation and prediction of substrate performance. In 
approaching the design of such a data set, we sought to first 
establish the enantioselectivity range accessible by 
changing both the reactants and catalysts. This step was 
used to facilitate rapid identification of the features that 
most perturbed the enantioselectivity of the process to 
inform the correct choice of combinations for a matrix. In 
regard to structural changes, with the generally optimal 
catalyst for each substrate subset, pyridines were the most 
sensitive (39-93% ee, with TCYP) and quinolines the least 
(73-97% ee, with TRIP). Perhaps most notably, small steric 
profiles on the N-heterocycles reduced 
enantioselectivities, however, electronics effects were 
much subtler. To probe the effect of the 3 and 3’ 
substituents on the catalyst, we examined a variety of 
BINOL-derived phosphoric acids. The screen 
demonstrated that reasonably large groups at the 3,3’ 
positions were necessary for high ee’s, a finding common 
in similar transformations.14 In targeting the description of 
general trends, seven substrates (A-G) were selected that 
evenly covered the range of enantioselectivities 
representative of the different substitution patterns 
presumed to influence the selectivity (Figure 2). 
Simultaneously, eight phosphoric acid catalysts were 
prepared with variable substitution at the 3 and 3’ positions 
of the BINOL-backbone. TRIP, 2,6-methyl, and 2-iPr 
catalysts were selected to probe proximal sterics, while 3,5-
methyl and 3,5-tBu catalysts were chosen for 
understanding remote steric effects. Two other catalysts, 1-
naphthyl and 9-phenanthryl, were prepared to evaluate the 
possibility of attractive non-covalent interactions, as 
opposed to repulsive steric ones. Finally, phenyl was 
intended to serve as a deconstructed derivative of each 
scenario outlined above to probe any isolated effects. This 
training set was used not only to provide requisite 
structural changes as a function of enantioselectivity but 
also incorporates sufficient overlapping molecular feature 
space required for the development of comprehensive 
parameter libraries and statistical analysis. For example, 
TIPSY, which has large SiPh3 groups at the 3 and 3’ 
positions is reasonably effective (product A, 75% ee) but its 
inclusion in the training set would render the parameter 
space, that is required to connect changes in structure to 

selectivity, to be dramatically reduced. For example, 
aromatic derived catalysts all contain a 6-membered ring 
with different substituents at these positions, by contrast, 
non-aromatic derived catalysts do not. Therefore, we only 
consider BINOL-derived phosphoric acids with aryl 
substituents at the 3 and 3’ positions,  the  most commonly 
used class for asymmetric catalysis. As such, caution 
should be taken in extrapolating outcomes to other classes, 
which can prove superior in some situations (see SI).15      

With the appropriate libraries of the substrates and 
catalysts in hand, the enantioselective outcome of each 
combination was measured as depicted in Figure 2. From 
this visual analysis, catalysts with proximal steric bulk 
(Figure 2, left hand side) demonstrate a unique response as 
a function of substrate compared to other CPAs. 
Specifically, a strong dependence of the ee on the 
heterocycle substituent(s) was observed, resulting in a 
G‡ range of ~1.7 kcal/mol. In contrast, the reaction was 
less sensitive to these substitution patterns with the 
remaining catalysts and the enantioselectivities remained 
relatively poor. The unique behavior of the 2,6-substituted 
catalysts is consistent with enhanced stereocontrolling 
interactions with this catalyst subset. 

To truly interrogate the interactions between catalyst 
and substrate, we sought to employ multivariate linear 
regression analysis (MLR).16 In this approach, parameter 
sets describing the important structural features of the 
reaction components are related to selectivity outputs 
expressed as G‡. The resulting mathematical equation 
generally consisting of multiple terms, can be deployed to 
predict the outcome when features are adjusted. 
Traditionally, parameter selection is accomplished using 
candidate structures, which can either be the entire 
molecule or a simplified structural surrogate (for 
substrates these are often starting materials to mirror 
Hammett type analysis). In this case, we used the product 
structures as it combines both reactants while also 
expanding the features one may extract for aiding 
correlation development. We viewed this as a simple yet 
crucial means of describing the molecular features most 
relevant to the enantiodetermining step. To build the 
parameter set, computation optimizations were performed 
on these structures at the M06-2X/def2-TZVP level of 
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Figure 2. Graphical representation of substrate structure-selectivity trends as a function of catalysts. Colors partition 
catalysts that have 2 or 2,6-substituents which exhibit a unique response as a function of substrate, compared to other 
CPAs. 
theory wherein Natural Bond Orbital (NBO) charges, IR 
vibrations and Sterimol values were collected to probe 
structural effects.
   Through an iterative MLR modeling process (see SI for 
workflow), the combination of steric and electronic 
parameters resulted in the model depicted in Figure 3. 
Both Leave-one-out (LOO) and external validation, in 
which the dataset is partitioned pseudo-randomly into 
70:30 training:validation sets suggests a relatively robust 
model. The consistency in descriptors of the top 10 models 
as determined by their statistical scores and predictability, 
demonstrates that interpretability of a singular model does 
not affect the overall analysis(see SI for full details). 
Interestingly, the largest coefficients in the depicted 
normalized model correspond to the product, with the 
heterocycle and RAE represented by seemingly individual 
components. Variations in N-heterocycle component of 
the product can be described by NBONHet, B1NHet and 
NBORAE. In considering NBORAE, this term acts as a 
descriptor for both heterocycle and RAE structural 
features. This illustrates the advantage of simplifying 
correlation equations to collective terms through 
deploying product structures that combine both reactants 
as the parameter acquisition platform. However, it is likely 
that the descriptor is reading out more than one physical 
effect in the diastereomeric TS structures making precise 
interpretations difficult. Ultimately, this analysis implies 
that the substrate effect on enantioselectivity is mostly 
additive but suggests there could be some circumstances 
where correct matching of heterocycle and RAE may be 
beneficial. 

Figure 3. MLR correlation reveals enantioselectivity is 
dependent on catalyst and substrate steric profiles as 
represented by various catalyst/product terms.

Consistent with other studies, the overall incorporated 
terms support steric bulk as the major catalyst selectivity 
discriminant.17 Specifically, both reasonably large 3,3’ 
substituents and N-heterocycles were important for high 
levels of enantioselectivity. This is congruent with the 
hypothesis that TSminor is disfavored as a consequence of 
energetically penalizing steric repulsions with the catalyst 
substituents enhanced through large substrate sterics. 

The inclusion of LRAE with a negative coefficient suggests 
that TSmajor is also sensitive to the substrate molecular 
features. In other words, longer substituents introduce 
enhanced steric effects with the catalyst in the TS leading 
to the observed product, ultimately favoring formation of 

O
O

P
O

O

NBOC2

iPOas

N

NC

H
HN

iPr

O

B1Nhet

NBONhet
NBORAE

LRAE

Selectivity is dependent on catalyst and substrate steric profiles

Page 4 of 11

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



the opposite enantiomer. Since the Sterimol L term is a 
conformationally sensitive parameter, it may also describe 
the role of a preferred geometry.18 Indeed, surveying the 
enantioselectivities of the reactions forming B and C, in 
which they differ only by RAE, shows that B performs 
better overall despite -iPr appearing to be shorter than -
CH2Bn. However, computation optimizations demonstrate 
that B can adopt more compact arrangements and smaller 
L values at the RAE than C, clarifying this non-intuitive 
trend. This highlights that substrate dynamics are also 
important in determining selectivity.    

The impact of catalyst and substrate on regioselectivity 
(2- vs. 4-position) was also probed. Since the inherent 
regioselectivity of the mechanism is masked by the 
pyridine subset in which 4-addition does not occur with 
3,3’-substituted acids, only the quinoline substrates (A - C), 
exhibiting variable regioselectivity as a function of catalyst, 
were further investigated. Employing the same modelling 
techniques led only to complex models. This observation is 
compounded by the training set restriction in terms of data 
range and structure. A correlation of the C2:C4 isomeric 
ratio (rr) with the enantioselectivity of the product reveals 
a linear relationship, in which, as the ee increases the rr 
generally increases (see SI). This suggests that for the 
quinoline substrate subset, the undesired 4-regioisomer 
could arise from an unselective pathway. This becomes 
evident when the enantioselectivity of the 4-isomer 
product was measured, where possible, resulting in low 
enantioselectivity values (<15% ee).    

Reaction Design. Whilst the obtained model, shown in 
Figure 3, provides insightful mechanistic information on 
the transformation, the clear practical utility lies in its 
ability to predict the performance of unique substrate 
classes, thereby directing future synthetic efforts. If 
effective out-of-sample prediction were possible, the 
model could estimate the impact of a new heterocycle, 
RAE, and/or catalyst on selectivity, provided that the 
prediction platforms incorporated sufficient overlap with 
the training set. Typically, exploration of the synthetic 
scope of a new enantioselective chemical reaction involves 
evaluation of a large number of substrates, only a 
proportion of which yield the desired high levels of 
enantiomeric excess. This can be a time and resource-
consuming process, particularly when substrates require 
multi-step synthesis. Conversely, in target-driven synthesis 
only a single specific substrate is of interest and a number 
of different synthetic approaches may be considered. A 
reliable, predictive mathematical model, accessible to 
bench chemists, has the potential to narrow down the 
myriad options in the latter scenario and greatly accelerate 
reaction scope exploration in the former. The workflow for 
ee prediction is straightforward and is initiated by locating 
the ground state of the targeted reaction variable by DFT 
computation, collecting the requisite parameters and 
submitting them to the equation (see SI for tutorial). 

In the context of the enantioselective Minisci reaction, 
we sought to expand the scope of the heterocyclic 
component beyond the pyridines and quinolines that had 

been included in our initial report, but to do so in a rational 
manner which would not involve ‘screening’ numerous 
substrates in search of hits with high ee. We envisaged that 
successful application of MLR analysis to reaction scope 
expansion would be a very effective showcase of the 
practical benefits of this approach. However, before 
progressing to new heterocycle classes, we first sought to 
evaluate the model’s prediction performance on the 
previously reported dataset to consider the feasibility of 
this endeavor.8 As a first assessment, we evaluated the 
ability to predict five additional reactions, involving 
catalysts with various 3,3’ substituents, with a model 
substrate contained in our training set (Figure 4A). The 
ability to predict in this reaction dimension would be 
particularly useful if the optimal catalyst for a specific 
substrate combination was not contained in the training 
set. Treating these as virtual predictions this set was 
predicted accurately, with an average absolute G‡ error 
of 0.29 kcal/mol. 

As a second case study, the model was assessed in the 
same manner with twenty-five additional reactions 
involving various substrate subsets catalyzed by TRIP or 
TCYP. 

Examples were selected based on range in 
enantioselectivity (61-97% ee) and substrate structure (full 
list can be found in the SI). This is a more challenging 
scenario as some substrate and catalyst components are 
not explicitly included in the training set. Again, accurate 
prediction of the outcomes was construed using the model, 
with an average absolute error of 0.31 kcal/mol and 18 
examples predicted within 5% ee (Figure 4B). These results 
suggest that the ability to effectively extrapolate to new 
reaction components results from a set of general 
transition state features that are fundamentally similar 
across the reaction range. 

On the basis of the key parameters in the model, we 
envisaged that pyrimidines should, in principle, constitute 
excellent substrates as the inclusion of the second ring 
nitrogen would be expected to increase the magnitude of 
the NBONhet term significantly. Pyrimidines are ubiquitous 
in pharmaceuticals, agrochemicals, and small molecules of 
medicinal interest and so demonstration of the protocol on 
this class would be of substantial practical value. Thus, we 
evaluated a number of reactions involving various 
electronically and sterically unique pyrimidine and 
pyrazine substrates, guided by our predictive model. A 
phenylalanine-derived RAE was selected as the radical 
precursor, along with either TRIP or TCYP as catalyst. The 
predictions obtained from the model are shown in Scheme 
1 alongside the experimental results that were ultimately 
obtained, and pleasingly the agreement was generally 
excellent. Furthermore, the observed enantioselectivities 
were typically superior to the use of pyridines, a previously 
explored subset. Each measured enantioselectivity in 
Scheme 1 was predicted with an average absolute G‡ 
error of 0.39 kcal/mol (13 examples within 5 % ee), 
demonstrating the ability of the model to extrapolate 
effectively to an entirely new class of substrates.
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Figure 4. Prediction platforms. (A) Assessing prediction capabilities with various 3,3’ substituted phosphoric acids. (B) 
Prediction of assorted reaction systems containing substrate and catalyst components not explicitly included in the training 
set.

Specifically, unsubstituted pyrimidine reacted with 
complete regioselectivity at the C4 position to deliver 
product 1 in 88% ee when using TCYP as catalyst (TRIP 
gave 78% ee, with the model predicting 83% ee). Given the 
lack of steric features on unadorned pyrimidine, we 
regarded this as a highly encouraging result, the moderate 
yield being due to incomplete conversion rather than 
deleterious pathways. Whilst superficially surprising that a 
heteroarene with no steric features should perform well, 
close examination of key parameters in the model reveals 
that the more positive NBO values associated with 
pyrimidine, a result of inclusion of the second ring 
nitrogen, largely compensate for a lower B1NHet term. 
Furthermore, the ability of the model to accurately reflect 
the outcomes with different phosphoric acids highlights its 
utility for predicting the right catalyst for a particular 
substrate, obviating the need for extensive catalyst 
screening for each substrate. A bromide substituent was 
tolerated at the C5 position with only a slight decrease in 
ee (2, 83% ee) and a methyl was similarly incorporated at 
C4 (3, 85% ee). When the pyrimidine possessed a 
substituent at C2, enantioselectivity increased 
significantly. Once again, the model clearly explains why 
such substrates should be particularly amenable, since 
both the NBO and B1 terms are now large and positive. For 
substrates such as 4, possessing a substituent only at C2, 
careful control of the stoichiometry and time of the 

reaction made it possible to stop at mono alkylation (4, 
94% ee) or progress all the way to dialkylation (5, 20:1 dr, 
>99% ee (major diastereomer)). A variety of more complex 
2-methylpyrimidine substrates were well-tolerated, 
including 4-Me (6, 91% ee), 4-Cl (7, 97% ee), 4-Ph (8, 97% 
ee), 5-Ph (9, 99% ee) and 5-Br (10, 97% ee). The absolute 
stereochemistry of the products are predicted to be 
consistent with the original systems as confirmed by the X-
ray crystallographic analysis after recrystallization of 10. 
The stereochemistry of the remainder of the entries are 
assigned by analogy. Aryl substitution was accommodated 
at the C2 position (11, 94% ee) and the model predicted this 
significant structural perturbation with remarkable 
accuracy. When progressing to the 2-methoxypyrimidines 
12 and 13, we obtained some of the highest 
enantioselectivities observed thus far in any 
enantioselective Minisci reaction (>99% ee for the bromo-
functionalized 12 and 99% ee for chloro-functionalized 13), 
a result of matching multiple positive structural effects. For 
these two substrates, moderate conversions led us to raise 
the catalyst loading to 10 mol% with longer reaction times 
of 48h to obtain the yields shown. We sought to test the 
predictive power of the model on pyrimidine in 
combination with RAEs other than the phenylalanine-
derived variant used thus far. Therefore,  RAEs derived 
from valine, homophenylalanine and leucine were 
evaluated. The experimental results were in excellent 
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observed 96% ee
model = 94% ee 

(error = -0.23 kcal/mol)

iPr iPr

Cy

average prediction error (25 examples)
0.31 kcal/mol

61-97% ee observed
82-98 % ee predicted

18 examples within 5%

optimized conditions

N
O

O

O
O

NHAc

N
NHAc

N

N N
NHAc

TRIP or TCYP
optimized conditions

N
O

O

O
O

NH
iPr

Ac N N
iPr

NHAc

observed 95% ee
model = 97% ee 

(error = 0.43 kcal/mol)

N
NHAc

observed 97% ee
model = 97% ee 

(error = 0.01 kcal/mol)

N
NHAc

observed 92% ee
model = 95% ee 

(error = 0.26 kcal/mol)

N
iPr

NHAc

observed 90% ee
model = 85% ee 

(error = -0.26 kcal/mol)

OAc

Ph

MeO

O

A. Variation in catalyst B. Variation in substrate(s) and/or catalyst
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agreement with the predicted values (Scheme 1, 14-16). 
Homophenylalanine- (14) and leucine-derived (15) RAEs 
gave significantly lower ee than phenylalanine, which are 
consistent with observations utilizing quinolines and 
pyridines (Fig 1B).  For the valine-derived RAE (16), the 
model accurately predicted moderate enantioselectivity 
(69% ee), contrasting the superior results this RAE had 
given with quinolines and pyridines.  By analyzing terms in 
the statistical model, the lower enantioselectivity can be 
attributed to the more negative NBORAE, which overrides 
any beneficial impact garnered from the more negative 
LRAE and positive NBONhet terms. Furthermore, this 
outlines an instance in which correct matching of 
heterocycle and RAE is beneficial.  We also explored 
several examples of pyrazine substrates and pleasingly 
observed that various combinations of methyl substitution 
worked effectively and were accurately predicted (17, 90% 
ee and 18, 91% ee). One limitation to acknowledge is that 
the model can only guide users of the methodology on 
assessing selectivity outputs and therefore will not be 
capable of predicting reactivities. This is exemplified by the 
fact that no reactivity was observed with pyridazines and 
quinoxalines under our conditions (see SI). Quinazoline 
reacts poorly giving product 19 in 56% ee. Predicted at 75% 
ee, this is within the average error of the model (G‡ error 
of 0.41 kcal/mol compared with averaged diazine 
prediction set of 0.39 kcal/mol).
   Whilst the observed enantioselectivities for the 
substrates presented in Scheme 1 generally show good 
agreement with the prediction for both high and low ee 
examples, we discovered that substrates incorporating an 
amino- substituent between the two nitrogen atoms 
(Scheme 2, 20 and 21) gave results that were rather lower 
than predicted. We speculate that additional hydrogen 
bonds formed with these groups are likely interrupting the 
hydrogen bonding network leading to stereoinduction, a 
critical catalyst-substrate interaction expressed by the 
model terms. Ultimately, these are unique contacts that 
are not represented in the training set and demonstrate a 
limitation of the present model.

Scheme 1. Substrate scope of enantioselective Minisci 
reaction on pyrimidines and pyrazines.
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N

N Ph
NHAc

N

N Ph
NHAc

3b

55% yield
85% ee

(predicted 90% ee)

N

N Ph
NHAc

6a

36% yield
91% ee

(predicted 96% ee)

N

N Ph
NHAc

2b

62% yield
83% ee

(predicted 84% ee)

N

N Ph
NHAc

4a

45% yield
94% ee

(predicted 95% ee)

Br

N

N Ph
NHAc

Cl

7a

63% yield
97% ee

(predicted 96% ee)

N

N Ph
NHAc

10a

65% yield
97% ee

(predicted 92% ee)

Br

N

N Ph
NHAc

Ph

11a

33%
94% ee

(predicted 95% ee)

N

N Ph
NHAc

MeO

12c

44% yield
>99% ee

(predicted 97% ee)

Br

N

N Ph
NHAc

Ph

8a

93% yield
97% ee

(predicted 96% ee)

N

N Ph
NHAc

9a

54% yield
99% ee

(predicted 89% ee)

Ph

N

N Ph
NHAc

MeO

13c

33% yield
99% ee

(predicted 97% ee)

Cl

N

N
NHAc

AcHN

Ph

Ph

5c

86% yield
20:1 dr

>99% ee

[Ir(dF(CF3)ppy)2(dtbpy)]PF6
(R)-TRIP or (R)-TCYP

PhthNO

O

NHAc
Ph

dioxane
blue LEDs, 14 or 48 h

Ph
NHAc

hethet

Pyrimidines:

1b

44% yield
88% ee

(predicted 89% ee)

Redox Active Esters:

N

N
iPr

NHAc
16b

41% yield
69% ee

(predicted 76% ee)

N

N iPr
NHAc

15
23% yield
28% ee

(predicted 8% ee)

N

N
NHAc

14
48% yield
65% ee

(predicted 64% ee)

Ph

N

N

Ph
NHAc

17a

61% yield
90% ee

(predicted 93% ee)

N

N

Ph
NHAc

18a

40% yield
91% ee

(predicted 87% ee)

Pyrazines:

19a

10% yield
56% ee

(predicted 75% ee)

Quinazoline:

N

N

Ph
AcHN

 a 5 mol% TRIP, 14h. b 5 mol% TCYP, 14h. c 10 mol% TRIP, 48h

   To test this approach on more structurally disparate 
bicyclic heteroarenes, the reaction of benzothiazole was 
probed. The reduction in overlapping features with our 
training set structures creates a challenge in extending our 
comprehensible parameter sets to this substrate class (5-

membered vs. 6-membered ring). To address this 
featurization challenge, we used 0 digits as descriptors for 
the missing benzothiazole components. By deploying the 
adapted descriptor set and the training model, the 
resultant extrapolation of substrate space predicted only 
modest enantioselectivities, an observation validated by 
experiment (Scheme 2, 22). This result is compelling in that 
we could reach an informed decision about pursuing 
benzothiazoles as a substrate class. However, the predicted 
enantioselectivities for 22 were higher than observed but 
the G‡ error of 0.41 kcal/mol is comparable to the 
averaged diazine prediction set (0.39 kcal/mol) suggesting 
the source of the error may be systematic. Taken together, 
these examples showcase that the model’s predictive 
capabilities are not limited to classifying published 
datasets, but can be applied to analyze and predict new 
reactions even in situations where multiple components 
are varied. Particular highlights of this protocol are the 
uniformity of the conditions employed for the diverse set 
of heteroarenes and the ability to extrapolate to new 
substrate types in the absence of persuasive mechanistic 
information.

Scheme 2. Substrates revealed as limitations.

N

N Ph
NHAc

H2N

20
35% yield
81% ee

(predicted 95% ee)

N

N Ph
NHAc

BocHN

21
54% yield
55% ee

(predicted 97% ee)

22
19% yield
27% ee

(predicted 56% ee)
(error = 0.41 kcal/mol)

N

S

NHAc

Ph

Conclusion.  We have described the development of a 
predictive, mathematical model for the enantioselective 
Minisci addition of N-acyl, α-amino radicals to pyridines 
and quinolines through careful evaluation of 
catalyst/substrate training sets and parameter acquisition 
platforms. The model describes the general transition state 
features important for the reaction class, which ultimately 
provided the basis for the transfer of experimental 
observations from one substrate subset to another. The 
model parameters suggested that pyrimidines, with 
typically larger NBO values than pyridines, should be 
particularly amenable to the same reaction conditions. The 
specific predictions produced by the model prompted us to 
explore a range of substituted pyrimidines, as well as 
several pyrazines. The accurate predictive power avoided 
the need to assess a large number of substrates in order to 
discover those most compatible with the method – we were 
guided there directly, saving valuable time and resources. 
This should provide confidence to synthetic chemists 
looking to extrapolate this methodology further, to other 
diverse heterocyclic classes. More broadly, this successful 
outcome is a powerful demonstration of the benefits of 
utilizing MLR analysis as a predictive platform for effective 
and efficient reaction scope exploration in asymmetric 
catalysis.   
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Experimental details, procedures, compound characterization 
data, computational details, copies of 1H and 13C NMR spectra 
of new compounds. This material is available free of charge via 
the Internet at http://pubs.acs.org. 
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