

Communication

Cooperative 1D Triazole-Based Spin Crossover Fell Material With Exceptional Mechanical Resilience

Narsimhulu Pittala, Franck Thetiot, Smail Triki, Kamel Boukheddaden, Guillaume Chastanet, and Mathieu Marchivie

Chem. Mater., Just Accepted Manuscript • DOI: 10.1021/acs.chemmater.6b04118 • Publication Date (Web): 22 Dec 2016 Downloaded from http://pubs.acs.org on December 26, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Chemistry of Materials is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Cooperative 1D Triazole-Based Spin Crossover Fe^{II} Material With Exceptional Mechanical Resilience

Narsimhulu Pittala,[†] Franck Thétiot,[†] Smail Triki,^{*,†} Kamel Boukheddaden,[‡] Guillaume Chastanet,[§] and Mathieu Marchivie[§]

[†]UMR-CNRS 6521, University de Brest (UBO), 6 Av. V. Le Gorgeu, C.S. 93837 - 29238 Brest Cedex 3 - France [‡]GEMaC, UMR-CNRS 8635, University de Paris-Saclay, 45 Avenue des Etats-Unis 78035 Versailles, France [§]CNRS, University of Bordeaux, ICMCB, UPR 9048, 87 avenue du Dr A. Schweitzer, F-33608 Pessac, France

ABSTRACT: We report here the single crystal investigations, in both high spin (*HS*) and low spin (*LS*) states, correlated to magnetic and heat capacity measurements, of a new cooperative and robust spin crossover triazole-based Fe^{II} 1D coordination polymer [Fe(bntrz)₃][Pt(CN)₄].H₂O (1) (bntrz = 4-(benzyl)-1,2,4-triazole). The compound exhibits a sharp transition at 240 K, accompanied with an anisotropic deformation of the unit cell and a significant gliding of the chains from each other. These two features are identified as the key parameters of the non-conventional mechanical resilience of this system.

The magnetic spin change associated to the spin crossover (SCO) phenomenon represents a paradigm of bistability at the molecular level which is of current interest because of potential applications in the development of new generations of electronic devices such as non-volatil memory, molecular sensing and displays.¹⁻⁵ The SCO phenomenon is especially observed in Fe^{II} complexes in which the paramagnetic high spin state (HS, S = 2) can be switched reversibly to the low spin state (LS, S = 0) by several external stimuli such as temperature, pressure or light irradiation.⁶ A huge effort has been devoted to the understanding of the transition mechanisms using inter alia crystallographic tools.⁷⁻⁸ The minimum requirements for the latter involve the determination of the crystal structures in both LS and HS states to comprehend the structural parameters at the molecular and inter-molecular scales. While some systems were deeply investigated due to their remarkable switching properties, the absence of any detailed and punctilious structural informations has precluded the definite understanding of these exciting properties. This is particularly the case of the so-called "triazole family", more specifically coordination polymer chains of general formula [Fe(Rtrz)₂(trz)](X), where Rtrz is a functionalised 1,2,4-triazole ligand and X a counter-anion, which typically display bistability with wide hysteresis loops around or above room temperature.9-11 Although known for few decades, the major lack of high quality single crystals with complete structural data for those materials prevent any deep magneto-structural correlations which are of paramount importance for (i) the understanding of the origin of the thermal hysteresis loop, and (ii) the control of the transition temperature. Indeed, a deep knowledge of the structural data is required to evaluate notably the effects of the rigid triple $\mu_{1,2}$ trz bridges and/or the characteristics of the intramolecular contacts on the propagation of the elastic interactions. Owing to the great and intensifying attention given to these materials, scarce crystallographic investigations have been recently attempted. Among them, the structural characterizations of the

HS and LS states of the [Fe(Htrz)₂(trz)](BF₄) derivative, using distinctively high-resolution synchrotron X-ray powder diffraction combined with Raman spectroscopy¹² or X-ray diffraction data from high-quality crystalline powder,¹³ have been reported. While the 1D chain structure was proven for both HS and LS states, the rather limited quality of the diffraction patterns could not provide highly precise structural data suitable for deep magneto-structural correlations. In the same time, a single crystal of the parent Cu^{II} compound [Cu(NH₂trz)₃](NO₃)₂.3H₂O has been finely investigated by Garcia et al. to parallel with the crystal structure of the $[Fe(NH_2trz)_3](NO_3)_2$ for which only nano-sized thin crystallite needles (120-330 nm) could be prepared. However, the powder diffraction pattern of the latter did not fully fit to the diffraction pattern observed for the single crystals of the Cu^{II} compound.¹⁰ Besides, the lone single crystal structural study presumably proving 1D the character of [Fe(NH₂trz)₃](NO₃)₂.2H₂O was only reported in 2011 by Guionneau et al.¹⁴ However, as clearly claimed by the authors, the very low diffraction pattern induced essentially by the sub-micrometric size (> $20x1x1 \mu m^3$) of the crystals and the damages due to the X-ray beam during the data collection led to a rather low quality of the structural data which did not allow an accurate detailed discussion of the polymeric chain structure. In addition, the study, performed at 120 K, concerned only the LS state of the sample since the damages caused on the crystals when warming over room temperature have hindered data collection for the HS state. Ultimately, those recent examples clearly expose the challenge to access refined structural data in both spin states in order to fully apprehend and rationalize the conspicuous SCO properties in the Fe^{II}/trz systems.

In the last few years, some Fe^{II} systems based on functionalized triazole ligands (Rtrz) and different counter-anions have been reported.¹¹ However, the majority of the involved counter-ions are rather standard monoanions, while the functional groups (R) of the triazole molecules are essentially narrowed to linear or branched alkyl or alkoxylated chains.¹¹ Recently, we have extended this synthetic approach to combinations of triazole ligands and anions which were not used so far within the "triazole family"; among those combinations, triazole ligands involving rigid aryl groups with an alkyl spacer assuring the electronic integrity of the triazole motif, coupled with more sophisticated anions such as polycyanometallates or organic cyanocarbanions which display very diverse sizes, geometries and charges, have been initially considered.¹⁵⁻¹⁶ In this ongoing work, we have realized at an early stage that this chemical approach involving these unusual building blocks tends to improve unprecedentedly the size, the quality and the robustness of the single crystals of the resulting original Fe^{II}/R-trz systems. Ultimately, this synthetic strategy should allow the access to single crystals of novel SCO cooperative materials, which is essential to understand the origin of the unparalleled cooperativity observed in those 1D coordination polymers. Thus, the present work reports the synthesis, the structural and magnetic characterizations, as well as the first accurate single crystal investigations of both HS and LS states of a new triazole-based SCO Fe^{II} 1-D polymer $[Fe(bntrz)_3][Pt(CN)_4].H_2O(1).$

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

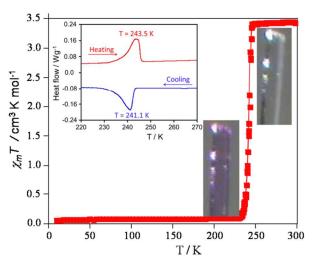
52

53

54

55

56


57

58

59 60

The bntrz ligand was prepared in two steps by reaction of triethyl orthoformate with formylhydrazine and benzylamine under nitrogen atmosphere (SI). Single crystals of $[Fe(bntrz)_3][Pt(CN)_4].H_2O$ (1) have been synthesized via diffusion technique in a fine glass tube (3.0 mm diameter) by layering an ethanolic solution of the bntrz ligand onto an aqueous solution containing both $K_2[Pt(CN)_4]$.xH₂O and Fe(BF₄)₂.6H₂O salts (SI). The magnetic susceptibility (χ_m) of 1 was measured over the 2-300 K temperature (T) range on a set of single crystals. The $\chi_m T$ versus T plot is displayed in Figure 1. In the high-temperature region, the $\chi_m T$ value (3.45 cm³. K.mol⁻¹) is consistent with a HS (S = 2) configuration of the hexacoordinated Fe^{II} ions. Upon cooling, the $\chi_m T$ remains constant down to 240 K, then sharply decreases to ca. 0.0 cm³. K.mol⁻¹, indicating the presence of a complete sharp HS to LS first-order spin transition ($T_{1/2} = 242$ K). However, no significant thermal hysteresis effects were detected after the warming mode, at the value of the temperature scan rate of 0.4 K.mn⁻¹. The DSC measurements for 1, performed in the temperature range 200-260 K with a temperature scan rate of 2 K.mn⁻¹, reveal exo- and endo-thermic transitions with maxima at 241.1 K and 243.5 K, respectively (Inset Figure 1). Furthermore, the phase transition has been found to occur with an enthalpy and entropy changes of $\Delta H = 16.87$ kJ.mol⁻¹ and $\Delta S = 69.61 \text{ J.K}^{-1} \text{ mol}^{-1}$, respectively. These values are in the range of those reported in the literature for similar SCO compounds.¹⁷ The presence of a weak hysteresis in the calorimetry data while it was absent in magnetic measurements can be reasonably attributed to the difference of temperature scan rates.

Based on the magnetic and calorimetric measurements, the crystal structure of **1**, defined in the triclinic space group, has been determined at 296 K (*HS* state, colourless crystal), and at 120 K (*LS* state, purple crystal) (Table S1). An in-depth examination of the unit cell parameters, at these two temperatures, indicates the absence of any symmetry breaking structural transition within the studied temperature range. The structure of **1** is built from two crystallographically independent Fe^{II} sites, Fe1 and Fe2, and two [Pt(CN)₄]²⁻ anions located on inversion centers, and three bntrz ligands and one solvent water molecule located on general positions.

Figure 1. Thermal dependence of the $\chi_m T$ product recorded at 0.4 K.mn⁻¹ in a settle mode, DSC study recorded at 2 K.mn⁻¹ (inset), and crystal images in the *LS* and *HS* states showing the clear thermochromism from purple to colourless, respectively.

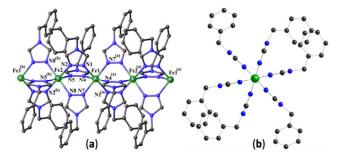


Figure 2. Views of the cationic chain in 1: (a) linear chain running along the *a* axis; (b) projection of the chain along the [100] direction. (a) 1-x, -y, 1-z; (b) = -x, -y, 1-z.

The three bntrz ligands act as μ_2 -bridging mode ($\mu_{1,2}$ -bntrz bridges) leading to a regular chain structure running along the [100] direction (Figure 2). The average Fe-N distances and distortion parameters for both spin states are listed in Table 1. The selected Fe-N bond lengths and N-Fe-N bond angles, at 296 K and 120 K, are gathered in Table S2. The two crystallographically distinct Fe^{II} ions (Fe1 and Fe2) adopt similar and very regular FeN₆ octahedral geometries, as demonstrated by the unusually low values of Σ and Θ parameters (Table 1).¹⁸ Thus, it is worth noting that the distortion of the octahedrons is higher in the LS state than in the HS state, conversely to what is generally observed. While more pronounced for Fe1 compared to Fe2, this unusual effect confirms that 1D triazole systems tend to adopt rigid and regular coordination spheres, but also indicates that the Fe^{II} environment is more constrained in the LS state. The average values of the Fe-N distances, at 296 K (2.190(3), 2.189(3) Å) and 120 K (1.991(4), 1.998(4) Å), are in agreement with the presence of HS and LS states, respectively. The latter observation is consistent with the presence of a complete HS/LS SCO transition, as revealed by the magnetic data.

 Table 1. Average Fe-N distances and distortion parameters in 1.

$T(\mathbf{K})$	296		120	
Fe ^{II}	Fe1	Fe2	Fe1	Fe2
$\langle d_{ m Fe-N} angle$ / Å	2.190(3)	2.189(3)	1.991(4)	1.998(4)
$\Sigma/ \Theta/^{\circ}$	10/23	10/26	16/40	13/33
Spin state	HS	HS	LS	LS

1 2 3

4

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

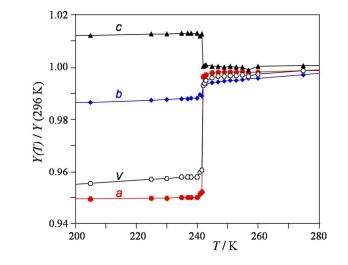


Figure 3. Thermal evolution of the lattice parameters for 1 showing the anisotropic changes upon *SCO* transition.

In order to understand how the crystal structure is affected by the SCO transition, the temperature dependence of the lattice parameters of a single crystal of 1 was measured in the range 200-280 K. As clearly depicted in Figure 3, the evolution of the unit cell parameters (a, b, c) reveals significant anisotropic changes at the transition temperature (ca. 242 K), more precisely a contraction upon heating for the c parameter paralleled with positive expansions occurring simultaneously in the *ab* plane. The amplitude of the anisotropic expansion is much more pronounced along the *a* axis, proving that the major structural change accompanying the SCO transition in the overall structure arises along the 1D chain. In comparison with the parent 1D compound $[Fe(Htrz)_2(trz)](BF_4)$,¹³ the careful examination of the shortest interchain contacts in 1 reveals the absence of direct H-bonding interchain interactions while strong direct H-bonding interchain interactions through the Ngroup of the triazole have been identified in Н $[Fe(Htrz)_2(trz)](BF_4)$ (Figures S1-S2). However, the presence of significant indirect H-bonding, occurring via the $[Pt(CN)_4]^2$ anions, links the chains in the b and c directions, leading to an overall 3D packing (Figures 4 and S3). These interactions in 1 are more pronounced in the LS state than in the HS state; this observation may explain the more constrained iron geometry along the chain in the LS state. The intra-chain Fe--Fe distances in 1 are almost similar to the values than in [Fe(Htrz)₂(trz)](BF₄), in both spin states, while the inter-chain Fe---Fe ones are significantly longer than those observed in other parent 1D triazole-based derivatives that have been structurally characterized (see Table S3). Moreover, the Fe...Fe intra-chain distances in 1 appear also longer in both HS and LS states than the corresponding distances observed in discrete trinuclear complexes based on triazole ligands,¹⁹⁻²² although this latter observation refers only to the few compounds that display 'full' HS or LS states i.e. involving all the iron centers. Due to the triclinic symmetry of the crystal lattice, the inter-chain distances do not exactly match the Fe---Fe intermolecular distances, but are shorter because the chains are slightly shifted from each other in the *a* direction (Figure S4). It follows that the inter-chain distances are different along the b and c directions. Thus, in the LS state, they are shorter in the b direction (14.2708(4) Å) compared to the c direction (14.5072(4) Å), while in the HS state, we observe the opposite

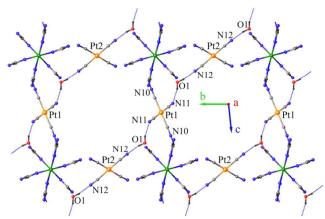


Figure 4. Intermolecular hydrogen bonding contacts in 1 (a) along the *a* direction. Shortest contacts (Å): N11...O1 = 2.944, O1...N12 = 2.995 at 296 K; N11...O1 = 2.888, O1...N12 = 2.883 at 120 K.

tendency since the inter-chain distances along the b direction (14.4975(4) Å) are longer than those along the c axis (14.2832(4) Å), leading finally to very similar distances in the LS and HS states, but inverted with respect to b and c parameters (Figures S5-S6). These observations indicate a significant motion of the chains with respect to each other in the bc plane that co-occurs with a slight gliding along the *a* direction as the chains displacements increase during the LS to HS transition (c.a. 0.35 Å). Additionally, the LS to HS transition is accompanied by a rearrangement of the side chain of the triazole ligand, leading to a much better accommodation of the modification of the iron coordination sphere volume in 1 than in the parent compound [Fe(Htrz)₂(trz)](BF₄).¹³ Indeed, while the octahedron volume (Vp) increases in similar proportion for both compounds (Vp increase of 32 % for 1 and 36 % for $[Fe(Htrz)_2(trz)](BF_4)$), the molecular volume remains almost the same for 1 (+0.8 %) but increases appreciably for [Fe(Htrz)₂(trz)](BF₄) (+4.7 %, Table S3). This structural rearrangement of the chains and the related accommodation of the molecular volume to the transition might be responsible for the smaller unit cell volume change at the transition when compared to the parent compound $[Fe(Htrz)_2(trz)](BF_4)$ (4.5 % vs 11.5 %).¹³ Such capability of structural breathing was not observed in $[Fe(Htrz)_2(trz)](BF_4)$ and may explain the (i) unusual crystal quality of compound 1 and its (ii) exceptional reliability and mechanical resilience to repeated LS to HS transition. The latter has been clearly evidenced by crystal mosaïcity studies and optical microscopy investigations performed over 20 SCO cycles. Thus, (i) the crystal mosaïcity was found to be nearly constant around 0.49(2) between the LS and HS states (Figure S7), and (ii) no damage or alteration at the resolution of the optical microscopy (~0.3 micron) was detected within the single crystal (Figure S8). In addition, an elongation of 5.3 % of the crystal upon LS to HS transition was observed in optical microscopy studies. This value is in excellent agreement with X-rays data which indicates an elongation of 5.32 % of the *a* parameter during the *LS/HS* thermal transition.

In conclusion, we have prepared and characterized a new triazole-based $[Fe(bntrz)_3][Pt(CN)_4]$.H₂O (1) salt exhibiting an abrupt spin transition with a transition temperature of *ca.* 242 K. The cationic $[Fe(bntrz)_3]^{2+}$ complex displays a polymeric chain, similar to that reported for the Fe^{II} triazole-based sys-

tems exhibiting magnetic bistability around or above room temperature.¹¹⁻¹⁴ The present study clearly evidences the starring roles of the ligand substitution and counterion changes to prevail over the implicit crystallogenesis issue in the Fe^{II}/trz systems, with the association of bntrz ligand and $[Pt(CN)_4]^2$ anion leading for the first time to robust single crystals of high quality and relatively considerable size (up to $0.45 \times 0.04 \times$ 0.04 mm^3) that withstand the *LS/HS* first-order spin transition upon repeated SCO cycles. Distinctively from other 1D Fe^{ii}/trz systems for which the origin of the strong cooperativity remains strictly indefinite because of the lack of structural information, the characteristics of complex 1 led us to single crystal X-ray data collections of high-quality, allowing highly refined structural characterizations of both high and low spin states, and the thermal evolution of the lattice parameters. The polymeric chain structure of 1, crystallographically determined at 296 K and 120 K, is built from two different Fe^{II} centers for which the average values of the Fe-N distances are in agreement with the complete HS/LS spin transition revealed by the magnetic data. The crystal structures of the LS and HS states definitely confirm the perfect linearity of the chains of such polymeric triazole based SCO compounds, even in the HS state conversely to what was suggested from the first investigations based on EXAFS and WAXS studies.^{23,24} The thermal variation of the lattice parameters shows anisotropic changes at the transition temperature, and proves that the most pronounced structural changes occur along the 1D covalent chain. The intermolecular inter-chain contacts occur through hydrogen bonding via the $[Pt(CN)_4]^{2-}$ anions leading to an overall 3D arrangement. Although displaying cooperativity, the absence of a wide hysteresis loop in the SCO of 1 reveals that the strong short-range "Fe^{II}-(Rtrz)₃-Fe^{II}" interactions along the chain are not sufficient to drive the existence of long lifetime metastable states at the origin of thermal hysteresis; it also confirms that the overall long-range interactions, with an emphasis on the direct contacts between the chains, should play a crucial role to promote significant elastic strains which stabilizes the spin state changes. The exceptional resilience of the present crystals upon repeated switching cycles is most likely due to the accommodation of the molecular volume and the anisotropic expansion/contraction of the unit cell upon SCO transition, which allows the existence of a mismatch free HS/LS interface resulting from the capability of the "Fe^{II}-(Rtrz)" chains to glide from each other and accommodate the structural modifications despite the sharp transition. This observation is similar to that of the spin-crossover single crystals [{Fe(NCSe)(py)₂}₂(m-bpypz)] (with py = pyridine and bpypz = 3,5-bis(2-pyri-dyl)pyrazolate) recently reported by K. Boukhedadden et al..²⁵ In this context, we are currently investigating by optical microscopy the response of a single crystal of 1 upon thermal SCO transition in order to visualize the nucleation, the growth, and the propagation of HS and LS domains accompanying the first-order transition.²⁶ The observation of the orientation and the dynamics of the HS/LS interface should allow for a better understanding of the role of the anisotropic changes of the lattice parameters on the exceptional resilience of this material. On the other hand, we are also currently exploring other systems exhibiting similar chain, but with different crystal packing to enhance/control the interchain interactions and produce hysteretic features. In fine, the aim is to establish thorough and systematic magneto-structural correlations which are essential to understand the physicochemical origin of the strong cooperativity in such striking

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 materials, but also to rationalize the tuning of the SCO properties.

ASSOCIATED CONTENT

Experimental details, syntheses of the ligands, the complex 1 and characterizations, X-ray crystallographic data in CIF format (CCDC 1492971 and 1492972), and additional structural data (Tables S1-S3, Figures S1-S8). This material is available free of charge *via* the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* S. Triki. E-mail: Smail.Triki@univ-brest.fr.

Author Contributions

All authors contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the CNRS, the Universities of Brest, Paris-Saclay and Bordeaux, the "Agence Nationale de la Recherche" (ANR project BISTA-MAT: ANR-12-BS07-0030-01), the European community (FP7 Marie-Curie project: PCIG-GA-2011-304193 NANOCOORD), and the "Région Bretagne" for the funding of this work. We thank M. Sy and G. Bouchez for the optical microscopy measurements.

REFERENCES

(1) Phan, H.; Benjamin, S. M.; Steven, E.; Brooks, J. S.; Shatruk, M. Photomagnetic response in highly conductive Fe(II) spincrossover complexes with TCNQ radicals. *Angew. Chem. Int. Ed.* **2015**, *54*, 823-827.

(2) Ohkoshi, S.-I.; Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. *Acc. Chem. Res.* **2012**, *45*, 1749-1758.

(3) Coronado, E.; Galán-Mascarós, J. R.; Monrabal-Capilla, M.; García-Martínez, J.; Pardo-Ibáñez, P. Bistable spin-crossover nanoparticles showing magnetic thermal hysteresis near room temperature. *Adv. Mater.* **2007**, *19*, 1359-1361.

(4) Kahn, O., Jay-Marinez, C. Spin transition polymers: from molecular materials toward memory devices. *Sciences* **1998**, *279*, 44-48.

(5) Gütlich, P.; Hauser, A.; Spiering, H. Thermal and optical switching of iron(II) complexes. *Angew. Chem., Int. Ed.* **1994**, *33*, 2024-2054.

(6) Halcrow, M. A.; Spin-Crossover Materials: Properties and Applications, John Wiley & Sons (Eds.), **2013**.

(7) Halcrow, M. A. Structure: function relationships in molecular spin-crossover complexes. *Chem. Soc. Rev.* **2011**, *40*, 4119-4142.

(8) Guionneau, P. Crystallography and spin-crossover. A view of breathing materials. *Dalton Trans.* **2014**, *43*, 382-393.

(9) Lavrenova, L. G.; Ikorskii, V. N.; Varnek, V. A.; Oglezneva, I. M.; Larionov, S. V. High-temperature spin transition in coordination compounds of iron(II) with triazoles. *Koord. Khim.* **1986**, *12*, 207-215.

(10) Dîrtu, M. M.; Neuhausen, C., Naik, A. D., Rotaru, A., Spinu, L.; Garcia, Y. Insights into the origin of cooperative effects in the spin transition of $[Fe(NH_2trz)_3](NO_3)_2$ the role of supramolecular interactions evidenced in the crystal structure of $[Cu(NH_2trz)_3](NO_3)_2$ ·H₂O. *Inorg. Chem.* **2010**, *49*, 5723-5736.

(11) Roubeau, O. Triazole-Based One-Dimensional Spin-Crossover Coordination Polymers. *Chem. Eur. J.* **2012**, *18*, 15230-15244.

(12)Urakawa, A.; Van Beek, W.; Monrabal-Capilla, M.; Galán-Mascarós, J.-R.; Palin, L.; Milanesio, M. Combined, modulation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

enhanced X-ray powder diffraction and raman spectroscopic study of structural transitions in the spin crossover material [Fe(Htrz)₂(trz)](BF₄). *J. Phys. Chem. C* **2011**, *115*, 1323-1329.

(13) Grosjean, A.; Négrier, P.; Bordet, P.; Etrillard, C.; Mondieig,
D.; Pechev, S.; Lebraud, E.; Létard, J.-F.; Guionneau, P. Crystal
Structures and Spin Crossover in the Polymeric Material
[Fe(Htrz)₂(trz)](BF₄) Including Coherent-Domain Size Reduction
Effects. *Eur. J. Inorg. Chem.* 2013, 796-802.

(14) Grosjean, A.; Daro, N.; Kauffann, B.; Kaiba, A.; Létard, J.-F.; Guionneau, P. The 1-D polymeric structure of the $[Fe(NH_2trz)_3](NO_3)_2 \cdot nH_2O$ (with n = 2) spin crossover compound proven by single crystal investigations. *Chem. Commun.* **2011**, *47*, 12382-12384.

(15) Atmani, C.; El Hajj, F.; Benmansour, S.; Marchivie, M.; Triki,
S.; Conan, F.; Patinec, V.; Handel, H.; Dupouy, G.; Gómez-García, C.
J. Guidelines to design new spin crossover materials. *Coord. Chem. Rev.* 2010, 254, 1559-1569.

(16) Milin, E.; Patinec, V.; Triki, S.; Bendeif, E.-E.; Pillet, S.; Marchivie, M.; Chastanet, G.; Boukheddaden, K. Elastic Frustration Triggering Photoinduced Hidden Hysteresis and Multistability in a Two-dimensional photoswitchable Hofmann-like spin-crossover metal-organic framework. *Inorg. Chem.* **2016**, *55*, 11652-11661.

(17) Roubeau, O.; Catro, M.; Burriel, R.; Haasnoot, J. G., Reedijk,
J. Calorimetric Investigation of Triazole-Bridged Fe(II) Spin-Crossover One-Dimensional Materials: Measuring the Cooperativity.
J. Phys. Chem. B 2011, 115, 3003-3012.

(18) Marchivie, M.; Guionneau, P.; Létard, J.-F.; Chasseau, D.

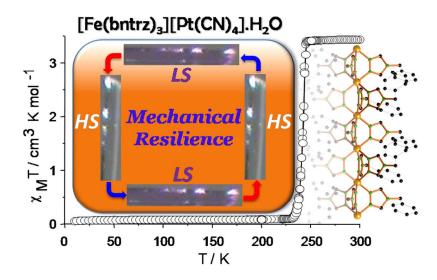
Photo-induced spin-transition: the role of the iron(II) environment distortion. Acta Cryst. B 2005, 61, 25-28.

(19) Gómez, V.; Benet-Buchholz, J.; Martin, E.; Galán-Mascarós, J.-R. Hysteretic Spin Crossover above Room Temperature and Magnetic Coupling in Trinuclear Transition-Metal Complexes with Anionic 1,2,4-Triazole Ligands. *Chem. - A Eur. J.* **2014**, *20*, 5369–5379 and ref. therein.

(20) Gómez, V.; Sáenz de Pipaón, C.; Maldonado-Illescas, P.; Waerenborgh, J. C.; Martin, E.; Benet-Buchholz, J.; Galán-Mascarós, J.-R. Easy Excited-State Trapping and Record High T_{THESST} in a Spin-Crossover Polyanionic Fe(II) Trimer. *J. Am. Chem. Soc.* **2015**, *137*, 11924–11927.

(21) Sáenz de Pipaón, C.; Maldonado-Illescas, P.; Gómez, V.; Galán-Mascarós, J.-R. Spin Transition Kinetics in the Salt $[H_2N(CH_3)_2]_6[Fe_3(L)6(H_2O)_6]$ (L = 4-(1,2,4-Triazol-4-Yl)ethanedisulfonate). *Magnetochemistry* **2016**, 2(2), 20.

(22) Klein, Y.; Sciortino, N.; Housecroft, C.; Kepert, C.; Neville, S. Structure and Magnetic Properties of the Spin Crossover Linear Trinuclear Complex [Fe₃(furtrz)₆(ptol)₂(MeOH)₄]·4(ptol)·4(MeOH) (Furtrz: Furanylidene-4H-1,2,4-Triazol-4-Amine Ptol: P-Tolylsulfonate). *Magnetochemistry* **2016**, *2*(1), 7.


(23) Michalowicz, A.; Moscovici, J.; Ducourant, B.; Cracco, D.; Kahn, O. EXAFS and X-ray powder diffraction studies of the spin transition molecular materials $[Fe(Htrz)_2(trz)](BF_4)$ and $[Fe(Htrz)_3](BF_4)_2.H_2O$ (Htrz = 1,2,4-4H-triazole; trz = 1,2,4triazolato). *Chem. Mater.* **1995**, 7, 1833–1842.

(24) Verelst, M.; Sommier, L.; Lecante, P.; Mosset, A.; Kahn, O. Structural Study by Wide-Angle X-ray Scattering of the Spin Transition Molecular Materials $[Fe(Htrz)_2(trz)](BF_4)$ and $[Fe(NH_2trz)_3](NO_3)_2$ (Htrz = 1,2,4-*H*-Triazole, trz = 1,2,4-Triazolato). *Chem. Mater.* **1998**, *10*, 980–985.

(25) Sy, M.; Varret, F.; Boukheddaden, K.; Bouchez, G.; Marrot, J.; Kawata, S.; Kaizaki, S. Structure-driven orientation of the high-spinlow-spin interface in a spin-crossover single Crystal. *Angew. Chem. Int. Ed.* **2014**, *139*, 7539-7542.

(26) Sy, M.; Garrot, D.; Slimani, A.; Paez-Espejo, M.; Varret, F.; Boukheddaden, K. Reversible control by light of the high-spin low-spin elastic interface inside the bistable region of a robust spin-transition single crystal. *Angew. Chem. Int. Ed.* **2016**, *55*, 1755-1759.

Table of Contents artwork

