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Abstract: tert-Butoxide unlocks new reactivity patterns embedded in 
nitroarenes. Exposure of nitrostilbenes to sodium tert-butoxide was 
found to produce N-hydroxyindoles at room temperature without an 
additive. Changing the counterion to potassium changed the reaction 
outcome to yield solely oxindoles through an unprecedented 
dioxygen-transfer reaction followed by a 1,2-phenyl migration. 
Mechanistic experiments established that these reactions proceed via 
radical intermediates and suggest that counterion coordination 
controls whether an oxindole or N-hydroxyindole product is formed. 

Introduction 

The ubiquitous nature of N-heterocycles in pharmaceuticals and 
organic materials has inspired the discovery of new reactivity 
patterns to facilitate their construction.[1],[2] The development of 
reductive methods to access these privileged scaffolds by 
constructing C–N bonds using nitroarenes has received 
significant attention because of the ready availability and robust 
nature of nitroarenes. While traditional C–N bond formation 
methods were developed using a superstoichiometric quantity of 
a reductant to deoxygenate the nitro-group,[3] recent efforts have 
focused on the development of catalytic processes that use the 
combination of a transition metal-[4] a base-metal-[5] or a 
phosphine[6] catalyst and a stoichiometric reductant. In contrast to 
these approaches, 175 years ago,[7] sodium methoxide was 
reported to reduce nitrobenzene to azoxybenzene in boiling 
methanol (Scheme 1). Subsequent mechanistic investigations in 
1962 by Ogata and Mibae suggested that electron-transfer from 
alkoxide triggered deoxygenation to produce an ArNO 
intermediate which reacted with an N-hydroxybenzene to produce 
the azoxy product.[8] After these mechanistic studies, interest in 
exploiting electron-transfer from alkoxides waned, until a recent 
resurgence in the use of potassium tert-butoxide as a single- 
electron reductant.[9] In 2010, the Hayashi and Shi groups 
reported that tert-butoxide mediated the transition metal-free 
couplings of iodoarenes.[9a, 9b] Investigations by Murphy and co-

workers established that electron-transfer to the iodoarene 
occurred from the in situ-generated phenanthroline dianion 1.[9d] 
Inspired by these reports, we were curious if exposure of a 
nitrostilbene to an alkoxide would generate a nitrosoarene 
intermediate that might be intercepted intramolecularly to afford 
an N-heterocycle (Scheme 1). In contrast to our expectations, we 
found that nitrostilbene 2 could be converted to N-hydroxyindole 
5 using simply NaOt-Bu at room temperature without an additive. 
Strikingly, changing the counterion to potassium triggered an 
unprecedented dioxygen transfer and [1,2] aryl migration tandem 
reaction to afford oxindole 6 as the only N-heterocycle from 
nitrostilbene 2. 

 

Scheme 1. tert-Butoxide-mediated N-heterocycle formation from nitroarenes. 
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Results and Discussion 

Investigation of the scope and limitations of N-heterocycle 
formation. To test our hypothesis that nitrosoarene intermediates 
could be accessed using an alkoxide and trapped to afford an N-
heterocycle, the reactivity of nitrostilbene 2a was examined 
(Table 1). While no reaction was observed upon exposure of 2a 
to sodium methoxide in boiling methanol, changing the solvent to 
tetrahydrofuran resulted in the formation of N-hydroxyindole 5a at 
room temperature (entries 1 and 2). The yield of 5a was improved 
by changing the identity of the alkoxide with the best outcome 
obtained when tert-butoxide was used (entries 2 – 4). Increasing 
the temperature or the reaction time, however, did not further 
increase the yield (entries 5 and 6). The reaction was not light-
dependent:[10] performing the reaction in a foil-covered vessel 
provided N-hydroxyindole 5a in 55% yield (entry 7). A solvent 
screen revealed that N-hydroxyindole formation occurred 
smoothly in ethereal solvents, but was attenuated in tert-butanol 
(entries 7 – 10).[11] To our surprise, the identity of the counterion 
was critical to the reaction outcome: while no reaction was 
observed when lithium- or magnesium tert-butoxide was 
employed, 3-phenyl-3-hydroxy-2-oxindole 6a was obtained as the 
only product using potassium tert-butoxide irrespective of 
exposure to light (entries 11 – 13). The formation of 6a, whose 
structure confirmed by X-ray crystallography,[12] involves not only 
oxygen transfer to the ortho-alkenyl substituent but also a [1,2]-
phenyl shift. While oxygen transfer from nitroarenes to pendant 
acetylenes has been reported to afford N-heterocycles,[13] this 
oxidation-migration tandem reaction of ortho-alkenyl substituents 
is unprecedented. 

The scope and limitations of the NaOt-Bu-mediated reductive 

 
Table 1. Development of reductive and divergent N-heterocycle formation.  

 

entry 
MOR 

(2 equiv) solvent h T (°C) yield, %a 5a:6a 

1 NaOMe MeOH 16 70 n.r. … 

2 NaOMe THF 16 25 14 >20:1 

3 NaOEt THF 16 25 26 >20:1 

4 NaOt-Bu THF 16 25 55 >20:1 

5 NaOt-Bu THF 16 60 57 >20:1 

6 NaOt-Bu THF 40 25 60 >20:1 

7b NaOt-Bu THF 40 25 55 >20:1 

8 NaOt-Bu dioxane 40 25 53 >20:1 

9 NaOt-Bu 2-MeTHF 40 25 55 >20:1 

10 NaOt-Bu t-BuOH 40 25 38 >20:1 

11 LiOt-Bu THF 16 25 0 … 

12 Mg(Ot-Bu)2 THF 16 25 0 … 

13c,d KOt-Bu THF 16 25 62 <1:20 
a Isolated after silica gel chromatography. b Reaction performed in a foil-
covered vessel.  c The outcome of the reaction did not change if light was 
excluded. d The X-Ray structure of 6a was deposited in the Cambridge 
Crystallographic Database (CCDC 198003). THF = tetrahydrofuran. 

 

cyclization was explored by developing conditions to alkylate the 
N-hydroxyl group as well examining the effect of changing the 
electronic- and steric environment of the nitrostilbenes (Table 2). 
The substrates for this study were either commercially available 
or readily prepared in one-step from 2-bromonitroarenes and 
styrene using a Heck reaction.[14] Because N-alkoxy- or N-
acetoxyheterocycles are more stable,[15] we explored telescoping 
the reaction by adding an electrophile to determine if the sensitive 
N-hydroxy functionality could be alkylated or acetylated. We 
found that a methyl-, benzyl-, or benzoate group could be easily 
added to the initially formed N-hydroxyindole to improve the 
reproducibility of the reaction sequence and ease purification. Our 
investigation of a series of nitrostilbenes that varied their 
electronic- and steric nature revealed that higher yields were 
obtained in the presence of electron-donating groups positioned 

 
Table 2. Scope of NaOt-Bu-mediated N-hydroxindole formation.  

 

entry # nitroarene 2 N-heterocycle 5 R3 yield, %a 

1 a 
 

H 
Me 
Bn 
Bz 

60 
67 (63)b 

60 
59 

2 b 
 

H 
Me 

58 
62 

3 c 
 

H 
Me 

53 
42 

4 e 
 

H 
Me 

24 (38)c 

22 (44)c 

5 g 
 

Me 63 

6 h 
 

Me 44 

7 i 

 

H 
Me 

25 (60)c 
17 (63)c 

8 l 
 

H 
Me 

46 
60 

9 m 
 

H 
Me 

68 
75 

10 n 
 

H 
Me 

67 
59 

11 o 
 

H 
Me 

25 (53)c 
28 (55)c 

12 q 

 

Me 52 

a Isolated after silica gel chromatography. b Reaction performed on 2 mmol 
scale. c The tert-BuO-mediated reduction was performed at 100 °C for 16 h. 
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para to the styryl group (entries 2 and 5). In contrast, the presence 
of electron-withdrawing groups severely attenuated the reaction 
yield. Gratifyingly, the yield of N-hydroxyindole could be rescued 
if the reaction was heated to 100 °C (entries 4 and 7). Changing 
the electronic nature of the β-aryl group had less of an overt effect 
on the reaction outcome: while higher yields were observed for 
electron-rich aryl groups, the presence of a fluorine did not 
diminish the yield as substitution on the nitroarene moiety (entries 
8 – 11). While adding a stronger electron-withdrawing Cl did 
reduce the yield, increasing the temperature of the reaction 
increased the yield of 5o. The reactivity of naphthalene-derived 
2q illustrated that N-hydroxyindole formation was relatively 
insensitive to steric constraints (entry 12).  

After our initial investigation into the scope of using NaOt-Bu as 
the reductant, we turned our attention to exploring the reactivity of 
nitrostilbenes towards KOt-Bu (Table 3). Analysis of the reactivity 
patterns revealed several differences in comparison to N-
hydroxyindole formation. First, the success of the oxygen-
transfer-migration reaction was less dependent on the electronic 
nature of the nitrostilbene with chloro-, bromo- and even 
trifluoromethyl groups tolerated (entries 2 – 10). Further, the 
opposite electronic trend was observed for β-aryl groups: more 
electron-deficient groups led to higher oxindole yields (entries 11 
– 15). Naphthalene 2q demonstrated that oxindole formation  

 
Table 3. Scope of KOt-Bu-mediated oxindole formation. 

 

entry # R1 R2 Ar yield, %a 

1 a H H Ph 62 (55)b 

2 b MeO H Ph 43 

3 c F H Ph 43 

4 d Cl H Ph 48 

5 e F3CO H Ph 57 

6 f F3C H Ph 38 

7 g O–CH2–O Ph 41 

8 h H MeO Ph 49 

9 j H F Ph 74 

10 k H Br Ph 49 

11 l H H 4-MeOC6H4 41 

12 m H H p-Tol 38 

13 n H H 4-FC6H4 56 

14 o H H 4-ClC6H4 50 

15 p H H 4-CF3C6H4 66 

16 q 

 

41 

a Isolated after silica gel chromatography. b Reaction performed on 2 mmol 
scale. 

 

tolerated an increased steric environment around the nitro-group 
to afford 6q albeit in diminished yield relative to 6a (entry 16). In 
contrast to N-hydroxyindole formation, the yield was not improved 
when the reaction temperature was increased. 

To assess the impact of the ortho-styryl substituent on the 
reaction outcome, substrates 2s, Z-2a and 2r were investigated 
(Scheme 2). The position of the phenyl substituent was found to 
control which N-heterocycle was formed: exposure of α-
phenylnitrostyrene 2s to tert-butoxide afforded only N-
methoxyindole 5sa using either KOt-Bu or NaOt-Bu after 
telescoping the reaction with MeI, although an increased reaction 
temperature was required using NaOt-Bu. The stereochemistry of 
the 2-nitrostilbene was also critical to the reaction outcome. While 
E-nitrostilbene formed either N-hydroxyindole 5a or oxindole 6a 
depending on identity of the tert-butoxide counterion, the reaction 
of Z-2a afforded only oxindole 6a irrespective of whether sodium- 
or potassium tert-butoxide was used. Similar reactivity was 
observed when nitrostilbene 2r was exposed to NaOt-Bu, which 
produced only oxindole 6r where one of the oxygen atoms was 
transferred to the ortho-alkenyl substituent.[16] These results 
suggest that steric interactions between the β-phenyl substituent 
and a reactive intermediate or stabilization of a radical- or charged 
intermediate by the α-phenyl substituent can override the 
counterion effect. 

 

Scheme 2. Effect of phenyl substituent position on the reaction outcome. 

Mechanistic EPR investigations. To investigate if the tert-
butoxide-mediated N-heterocycle formation involved the 
formation of radical intermediates, the reaction was analyzed 
using X-band, solution-phase EPR spectroscopy (Figures 1 and 
2). At room temperature, reaction mixtures from addition of KOtBu 
and NaOtBu exhibit EPR spectra near g = 2.00. The additional 
most-common feature of the spectra is the existence of a three-
line pattern, typical for a radical interacting with a 14N (I = 1) 
nucleus. We attribute these peaks to radical intermediates of an 
electron transfer from tert-butoxide (Eox = +0.10 V vs SCE)[17] to 
nitrostilbene (Ered = –1.13 V vs SCE).[4g, 18] The high potential gap 
of ΔE = 1.03 V between the oxidation peak potential of t-BuO– and 
the reduction peak potential of nitrostilbene suggests that 
coordination of the counterion occurs to facilitate the transfer.[19] 
This hypothesis is supported by the simulation of the X-band EPR 
spectrum from the NaOt-Bu-mediated reaction, which afforded 
the best match with experiment when a nitro radical anion was 
assumed coordinated to the sodium counterion (Figure 1a).[20]  

The foregoing outcome suggests that counterion identity is 
critical to directing the radical formation pathway. For example, 
the EPR spectrum obtained from the NaOt-Bu-mediated reaction 
displays only three well-resolved peaks and no further couplings 
to 1H in Figure 1a. The absence of additional peaks from the latter  
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Figure 1. Experimental (black) and simulated (red) X-band EPR spectra of  tert-
butoxide-mediated reduction of nitrostilbene 2a (THF, 298 K, 1 h) (a, result of 
NaOt-Bu reaction, b, result of KOt-Bu reaction) Data collection parameters: 
Frequency = 9.4306 GHz, Power = 0.2 mW, Modulation = 0.1 G; a. Fitting 
parameters for 7 are giso = 2.005, Aiso = 29 MHz, and an line width for isotropic 
broadening, lw =[0.81 0.53] in mT (the first Gaussian and the latter Lorentzian 
broadening); b. Fitting parameters for 8 are giso = 2.009, A = [22.1 18.2] MHz, 
lw = 1.09 mT, τcorr = 5 ns, and weight = 0.85; and fitting parameters for 9 are giso 
= [2.007], A = [21.2 14.7 11.9 8.7], and lw = 0.2 mT, relative contributions to 
spectral intensity are 93% 8 and 7% 9. 

couplings strongly suggests that the spin density is localized only 
in the nitro group, not delocalized onto the aromatic ring. We 
propose that the small size as well as strong Lewis acidity of Na+ 
allows for effective binding to the nitro group and prevention of 
spin density delocalizing on the aryl ring. In contrast, a spectrum 
displaying significantly more complicated hyperfine interactions 
was observed when KOt-Bu was employed (Figure 1b).[21],[22] 
Simulation of the spectra with a variety of possible radicals 
revealed a best match when assuming a mixture of 93% of 8 and 
7% of 9. We interpret these data to suggest that the nitro radical 
is less effective in coordinating the larger potassium counterion. 
As a result of the weaker coordination, the formation of two spin 
isomers is allowed, one featuring an NO2 radical and one with spin 
density delocalized onto the aryl ring. We note that this 
preliminary interpretation requires that the radical is not 
delocalized across both moieties. This outcome could occur if 
interactions with K+ drive the nitro-groups away from planarity with 
the stilbene.[23] Extension of this interpretation could explain the 
less complex EPR spectrum for the Na+ system: stronger binding 
of the nitro radical anion to Na+ produces only one, NO2-localized 
isomer. We tentatively interpret the difference in coordination in 
these simulated spectra to account for the difference in reaction 
outcome: the lack of coordination to the counterion could enable 
oxygen-atom transfer from 8 to the ortho-styryl substituent to 
afford oxindole 6a, which would not be possible when it is bound 
to the sodium ion.[24] 

These EPR experiments spurred us to examine the effect of a 
crown ether on the reaction outcome (Scheme 3). When 15-
crown-5 was added in combination with NaOt-Bu, we found that 
N-hydroxyindole 5a was no longer formed, and oxindole 6a was 
produced as the only N-heterocyclic product. This phenomenon 
proved to be general: exposure of 2-nitrostilbenes 2c, 2g, or 2l 
produced only oxindoles 6c, 6g, or 6l albeit in lower yield than 
using KOt-Bu.[25] In contrast, the addition of 18-crown-6 to the 
KOt-Bu-mediated reaction resulted in no change to the 
outcome—oxindole 6a was the only N-heterocycle formed. 

Analysis of the reaction using EPR spectroscopy reveals a 
substantial change in spectral shape when the crown ether is 
present, potentially suggesting changes in spin identity via crown-
ether binding to the counterion.[26] Together, these experiments 
suggest that coordination of the counterion controls whether N-
hydroxyindole 5 or oxindole 6 is produced. 

 

Scheme 3. Effect of 15-crown-5 on the reaction outcome. 

Reactivity of 18O-labeled reagents. To determine if the C2- and 
C3 oxygens in oxindole 6 originated from an intra- or 
intermolecular reaction, the reactivity of 18O-labeled potassium 
tert-butoxide and 18O-labeled nitrostilbene 2g was investigated 
(Scheme 4). When K18Ot-Bu was used, no 18O-incorporation into 
6a was observed to suggest that both oxygens were transferred 
from the nitro-group. To test if oxygen transfer occurred 
intermolecularly, a mixture of 2a and 2g-18O were submitted to 
reaction conditions and double crossover of the labeled- and 
unlabeled oxygens to the oxindole product was observed to afford 
16% of 6a and 6a-18O and 64% of 6g-18O2 and 6g-18O. Analysis 
of the mass spectrum showed an increase of the [M + 2]+ signal 
for 6a and [M – 2]+ signal for 6g-18O to suggest that only one of 
the oxygen atoms is transferred, and the parent ion [(M) – OH]+ 
revealed that intermolecular O-transfer occurred only to the C2-
position of the oxindole. 

 

Scheme 4. Investigation of an intra- or intermolecular mechanism for oxygen 
transfer. 
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suggests a possible mechanism that accounts for the 
dependence of the reaction outcome on the identity of the 
counterion (Scheme 5). Electron transfer from tert-butoxide to 
nitrostilbene produces radical anion 8 and tert-butoxy radical,[27] 
which fragments to produce acetone and methyl radical. 
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Mesomer 10 traps sodium ion to produce 7, which accepts a 
second electron to form 11. Fragmentation of 11 produces 
nitrosostilbene 12, which undergoes a 6π-electron-five atom 
electrocyclization to form 13 that isomerizes to produce N-
hydroxyindole 5a.[28] 

 

Scheme 5. Potential mechanism for N-hydroxyindole formation. 

Our data suggests that oxindole 6 is formed through an 
intermolecular mechanism when the counterion is not coordinated 
to the nitrostilbene radical anion (Scheme 6).[29] The 
intermolecular oxygen-atom transfer could occur by attack of 
radical anion 8 onto the nitrostilbene 2 at the β-position to afford 
nitrite 14,[30] which undergoes a 3-exo-tet radical cyclization to 
produce epoxide 15.[31],[32],[33] Ring-opening by the proximal nitro 
group could produce 16.[34],[35],[36] tert-Butoxide-mediated single 
electron reduction followed by fragmentation produces 18. 
Hydrogen-atom abstraction by tert-butoxy radical or methyl 
radical produces ketone 19.[37],[38] Isomerization forms enol 20,[39]  

 

Scheme 6. Potential intermolecular mechanism for oxindole formation. 

which attacks the nitroso group to produce N-heterocycle 21. A 
subsequent 1,2 phenyl shift affords N-hydroxyoxindole 22,[40] 
which is reduced to oxindole 6a. To test if oxygen-transfer 
occurred via an epoxide intermediate, 2-nitrostilbene oxide was 

examined as a substrate. In line with our mechanistic hypothesis, 
treatment of 15 with KOt-Bu resulted in the formation of oxindole 
6a. Conversion of 2-nitrostilbene oxide to oxindole supports that 
the intermolecular reaction occurs between a nitroarene radical 
anion and a neutral nitroarene. 

Conclusion 

In conclusion, we have discovered a novel tert-butoxide-mediated 
reaction of 2-nitrostilbenes that produces either a N-
hydroxyindole or an oxindole depending on the identity of the 
counterion. The reactivity patterns exhibited by the 2-
nitrostilbenes suggest that the N-heterocyclic products are formed 
by either an intra- or intermolecular reaction, where the degree of 
coordination of the counterion to the radical anion dictate which 
mechanism occurs. Our findings illustrate that nitrosoarene 
reactive intermediates can not only be generated at room 
temperature from nitroarenes but that unprecedented reactivity 
patterns can be triggered divergently to produce functionalized N-
heterocycles. In addition to leveraging this novel reactivity to 
construct different sized N-heterocycles, future studies are also 
aimed at obtaining a deeper understanding of the spin dynamics 
and spin Hamiltonian parameters of the observed radical 
intermediates to conclusively assign their identity. 
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