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ABSTRACT: gem-Difluorocyclopropane derivatives react with allyltributylstannane in
the presence of 2,2'-azobis(isobutyronitrile) to afford 1,6-dienes with a gem-difluoro-
methylene moiety at the allylic position. The reaction proceeds regioselectively with high
yields, and the 1,6-dinenes obtained are good precursors for cyclic systems containing a R=H, alkyl, aryl
gem-difluoromethylene moiety. Although S-methyl carbonodithioate also works as a
leaving group, rearrangement of the leaving group competes with the desired allylation,

depending on the amount of allyltributylstannane.

he incorporation of a fluorine atom into an organic

molecule can alter the chemical reactivity of the resulting
compound due to the strong electron-withdrawing nature of
fluorine, thus making it possible to create a new molecule that
exhibits unique physical and biological properties." As a result,
much attention has focused on the preparation of gem-
difluoromethylene derivatives as a source of novel functional
materials."” Syntheses of such compounds have generally been
achieved by difluorination of carbonyl or thiocarbonyl func-
tional groups.” However, the number of fluorination reagents is
limited and the reagents are generally very expensive; hence,
synthetic strategies that use building blocks containing a gem-
difluoromethylene moiety have been recognized as an attractive
alternative route through which to access gem-difluoro-
methylene compounds. Over the years, we synthesized a
range of gem-difluorocyclopropane derivatives and revealed
their unique physical and biological properties; as a result of
these studies, numerous types of gem-difluorocyclopropane
compounds are now available.” Kobayashi and co-workers
reported a radical-induced regioselective ring-opening reaction
of [2,2-difluoro-3-(iodomethyl)cyclopropyl]benzene and suc-
ceeded in preparing (2,2-difluorobut-3-en-1-yl)benzene deriv-
atives.* Dolbier and co-workers reported that radical-type
cleavage of the gem-difluorocyclopropane ring took place very
quickly.” More recently, Gurjar and co-workers reported the
preparation of a diallyl-substituted compound through a ring-
opening reaction of (halomethyl)cyclopropanes with allyltri-
butylstannane (allylBuySn).° Inspired by these works, we
hypothesized that a novel gem-difluoromethylene compound
2 might be obtained from gem-difluorocyclopropane 1 through
radical-type allylation following regioselective ring opening
(Figure 1).

Here, we wish to report the preparation of gem-difluoro-
methylene compounds 2 by the radical-type ring-opening
reaction of gem-difluorocyclopropane 1. The cis isomer of 1-
bromomethyl-2-benzyloxymethyl-3,3-difluorocyclopropane
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Figure 1. Working hypothesis of the present synthetic project.

(1a; R = BnOCH,) was initially selected as the substrate for the
present study because it was established that decomposition of
the cis isomer of 1,2-dialkyl-3,3-difluorocyclopropane took place
more easily than that of its frans isomer.

The reaction was conducted as follows (Table 1): a mixture
of 1a (R = BnOCH,),® allylBu,Sn, and a catalytic amount of
2,2'-azobis(isobutyronitrile) (AIBN) in benzene (1.0 M) was

Table 1. Optimizations for Regioselective Allylation

RF AIBN F F
allylBuzSn =
BnO__ M”’&Br BnO

Benzene
1a 80°C, 12h | 2a

entry amount of allylBu;Sn (equiv) amount of AIBN (%) yield® (%)

1 20 36 st
2 2.0 25 25
3 6.0 3 68
4 7.0 5 84
5 7.0 3 62°
6 8.0 5 89
7 10 5 71
8 8.0 5 894

“Isolated yield. “NMR yield based on trioxane as an internal standard.
“The reaction was carried out in toluene at 80 °C. “The trans isomer
of 1a was used.
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stirred at 80 °C for 12 h and then treated with a mixed solvent
of ethyl acetate and a saturated aqueous potassium fluoride
(KF) solution at room temperature for 1 h to initiate
precipitation. The precipitate formed was removed by filtration,
the filtrate was evaporated, and subsequent purification of the
residue by silica gel thin-layer chromatography (TLC) afforded
2a (R = BnOCH,). By using various types of l-alkyl-2-
bromomethyl-3,3-difluorocyclopropane 1, regioselective allyla-
tion under the above conditions gave a range of products, 2; the
results are summarized in Table 2.

Initially, we conducted the reaction by using la in the
presence of 2.0 equiv of allylBu;Sn and 3.6% AIBN. The
desired product 2a was, however, obtained in only poor yield
under these conditions (Table 1, entry 1). Increasing the
amount of allylBu;Sn improved the chemical yield of the
product significantly, and 2a was obtained in 68%, 84%, and
89% yields when 6, 7, and 8 equiv of allylBu;Sn were used,
respectively (entries 3, 4, and 6). The yield dropped, however,
when 10 equiv of allylBu;Sn were employed in the reaction
(entry 7). A slight drop of the chemical yield of 2a was
recorded when the reaction was carried out in toluene (entry
5). Although we initially expected that the cis isomer of gem-
difluorocyclopropane would be more reactive than the trans
isomer, no difference in the reactivity was observed, and the
chemical yields of the products were similar (entries 6 and 8).

It was thus found that the amount of allylation reagent was
important to achieve the desired reaction. In particular, a large
excess of allylBu;Sn was required for the reaction of [3-
(bromomethyl)-2,2-difluorocyclopropyl|benzene (1b; R = Ph)
because of the relatively poor reactivity of the radical generated
by the ring-opening reaction. The desired product 2b was
obtained in 71% yield in the presence 16 equiv of allyBu;Sn,
whereas only a moderate yield (45%) was obtained when the
reaction was carried out with 8 equiv of allylBuySn (Table 2,
entries 1 and 2). No difference was observed between the trans
and cis isomers of 1b (entries 2 and 3). The presence of
electron-withdrawing substituents on the benzene ring, such as
fluorine, chlorine, or bromine, contributed to an improved
product yield, and the desired products 2¢ (R = 4-F—C4H,), 2d
(R = 4-CI-C¢H,), and 2e (R = 4-Br—C¢H,) were obtained in
84%, 89%, and 84% yields, respectively (entries 4, 5, and 6).
Conducting the reaction with 2-arylcyclopropanes substituted
with an electron-donating group at the 4-position led to more
complex results. Whereas 1f (R = 4-Me—CgH,) gave the
desired product 2f in excellent yield (entry 7), 1g (R = 4-
MeO—C¢H,) afforded 2g in poor yield (25%) together with the
formation of unidentified byproducts (entry 8). Reaction of
gem-difluorocyclopropane derivatives with aliphatic substituents
such as 1h (R = PhCH,CH,) and 1i (R = 4-MeO—-CH,—
CH,CH,) proceeded very smoothly with 2 equiv of allylBu;Sn
and gave the products 2h and 2i in 77% and 68% yields,
respectively (entries 9 and 10). Furthermore, the allylation was
applicable to bis-gem-difluorocyclopropane 1j, and the desired
product 2j was attained in 72% yield, although in this case the
reaction required an excess of allylBu;Sn to reach completion
(entry 11).

Xanthate is known to be a good leaving group in the
formation of a radical species,9 so we next attempted allylation
using xanthates 1k, 11, and 1m. The desired product 2h was
indeed obtained in 50% yield by using 2.0 equiv of allyl-Bu;Sn
with O-[(2,2-difluoro-3-phenethylcyclopropyl)-methyl] S-
methyl carbonodithioate (1k). Compound 11 was also attained
in 70% yield as a mixture of E/Z isomers (83:17) when O-[1-
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Table 2. Scope of the Substrates

R F AIBN (10 %)
W)XA aIIyIBu3Sn (16 equiv) R
R Br
Benzene
1b-j 80°C, 12 h
yield®
entry R (substrate) product %)
Ph
1 Ph 1b 4s°
| 2b
2 Ph 1b 2b 71¢
3 Ph 1b 2b 724
F
RF
4 4-F-CsH4 1c Z 84
2c
Cl
R F
S 4-Cl-CsH4 1d Z 89
2d
Br
FF
6 4-Br-CeH, 1e 7 s
2e
Me
R F
7 4-Me-CeH,4 1f = 920
2f
MeO
R F
8 4-MeO-CeH4 1g 7 25
2g
R F
=
9 Ph-C;Hs 1h 77¢
2h
MeO
R F
10 4-MeO—C6H'4-CHzCH2 = 68
1i
2i
1 4-BrCH,(CsHaF2)-CsHy -

1j

“Isolated yield. YAIBN (25%). “AIBN (5%). “The cis isomer of 1b was
used. “2 equiv of allylBu;Sn were used.

(2,2-difluoro-3-phenethylcyclopropyl)-ethyl] S-methyl car-
bonodithioate (11) was used as a substrate, although the
reaction required 8.0 equiv of allylBu;Sn (Figure 2). On the
other hand, a mixture of two compounds, (E)-(S,5-difluoro-
nona-3,8-dien-1-yl)benzene (2m) and (E)-S-(2,2-difluoro-6-
phenylhex-3-en-1-yl) S-methyl carbonodithioate (3), was
obtained when O-[1-(2,2-difluorocyclopropyl)-3-phenylpropyl]
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Figure 2. Allylation of gem-difluorocyclopropanes equipped with the
S-methyl carbonodithioate as a leaving group.

S-methyl carbonodithioate (1m) was subjected to the reaction
conditions (Figure 2).

Figure 3 shows a plausible mechanism of formation for the
two products 2m and 3, starting from Im. Cyclopropane 1m

SnBU3 or - X
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Figure 3. A plausible mechanism of formation of two products 2m and
3 through ring opening of gem-difluorocyclopropane.

reacts with a tributylstannyl radical to give 2,2-difluorocyclo-
propylcarbinyl radical 4. It has been reported that this radical
species undergoes an extraordinarily fast ring-opening reac-
tion.”> Thus, a ring-opening reaction of radical 4 would take
place to rapidly produce S, which would either be trapped by
allylBu;Sn to afford 2m or generate the rearranged product 3
by trapping with S-methyl S-(tributylstannyl) carbonodithioate
under low concentrations of allylBu;Sn.

According to the proposed mechanism, we concluded that
selective production might be possible by simply changing the
amount of allylBu;Sn (Table 3). As expected, it was found that
2m was indeed obtained in 75% yield as the major product
when a large excess of allylBu;Sn (16 equiv) was employed in
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Table 3. Results of Radical Type Allylation of gem-
Difluorocyclopropane 1m

allyBu;Sn amount of AIBN yield of 2m yield of 3

entry (equiv) (%) (%) (%)

1 4.0 10 50 35

2 8.0 10 55¢ 227

3 16 10 758 15°

4 0 25 0 trace

5 1.0 25 25° 65"

6 0.5 40 15° 70"

7 0.5 40° 14° 747
“NMR yield. “Isolated yield. ©1,1’-Azobis(cyclohexanecarbonitrile)

(V-40) was used as a radical initiator.

the presence of 10% AIBN (entry 3). On the other hand,
compound 3 was obtained as the major product in 70% yield
when the reaction was carried out using 0.5 equiv of allylBu;Sn
in the presence of 40% AIBN (entry 6). It has been reported
that the rate of decomposition of the radical initiator is
important to achieve the desired radical trapping.10 In fact, a
slight increase in the yield of 3 was recorded when 1,1'-
azobis(cyclohexanecarbonitrile) (V-40) was used as the radical
initiator (entry 7).

We then demonstrated a simple application of gem-
difluoromethylene building block 2h (Scheme 1). The ring-

Scheme 1. Preparation of (2-(2,2-Difluorocyclopent-3-en-1-
yl)ethyl)benzene (6) Derived from 2h through the Ring-
Closing Metathesis Reaction

Grubbs |
i
Ph X Ph
2h F F CH,Cl FF
t,3.5h 6 97% yield

closing metathesis reaction proceeded smoothly, and cyclo-
pentene 6 was obtained in excellent yield (97%) when diene 2h

was treated with 5% Grubbs catalyst (first generation).'!

In summary, we have accomplished the regioselective
allylation of gem-difluorocyclopropane derivatives through a
radical-type ring-opening reaction. Although the reaction
requires a relatively large amount of allylBu;Sn, unique gem-
difluoromethylene compounds were produced. We have also
demonstrated an application of one of the resultant gem-
difluoromethylene compounds. Because gem-difluorocyclo-
propane is easily prepared from relatively inexpensive 2-
chloro-2,2-difluoroacetic acid, the present method opens the
way to an economical synthesis of useful gem-difluoro-
methylene compounds. Fluorine-containing molecules are
now established as key compounds in medicinal and material
chemistry. Because product 2 has two olefin moieties with
differing reactivities, this molecule is expected to become a key
intermediate in the synthesis of many gem-difluoromethylene
compounds. Further investigations into the scope and
limitations of the present method are expected to expand the

potential applications of this approach.
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