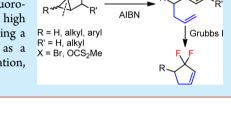
<u>LETTERS</u>

Synthesis of *gem*-Difluoromethylene Building Blocks through Regioselective Allylation of *gem*-Difluorocyclopropanes


Daisuke Munemori,[†] Kent Narita,[†] Toshiki Nokami,^{†,‡} and Toshiyuki Itoh^{*,†,‡}

[†]Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

[‡]Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan

Supporting Information

ABSTRACT: *gem*-Difluorocyclopropane derivatives react with allyltributylstannane in the presence of 2,2'-azobis(isobutyronitrile) to afford 1,6-dienes with a *gem*-difluoromethylene moiety at the allylic position. The reaction proceeds regioselectively with high yields, and the 1,6-dinenes obtained are good precursors for cyclic systems containing a *gem*-difluoromethylene moiety. Although S-methyl carbonodithioate also works as a leaving group, rearrangement of the leaving group competes with the desired allylation, depending on the amount of allyltributylstannane.

SnBu₂

he incorporation of a fluorine atom into an organic molecule can alter the chemical reactivity of the resulting compound due to the strong electron-withdrawing nature of fluorine, thus making it possible to create a new molecule that exhibits unique physical and biological properties.¹ As a result, much attention has focused on the preparation of gemdifluoromethylene derivatives as a source of novel functional materials.^{1,2} Syntheses of such compounds have generally been achieved by difluorination of carbonyl or thiocarbonyl functional groups.³ However, the number of fluorination reagents is limited and the reagents are generally very expensive; hence, synthetic strategies that use building blocks containing a gemdifluoromethylene moiety have been recognized as an attractive alternative route through which to access gem-difluoromethylene compounds. Over the years, we synthesized a range of gem-difluorocyclopropane derivatives and revealed their unique physical and biological properties; as a result of these studies, numerous types of *gem*-difluorocyclopropane compounds are now available.² Kobayashi and co-workers reported a radical-induced regioselective ring-opening reaction of [2,2-difluoro-3-(iodomethyl)cyclopropyl]benzene and succeeded in preparing (2,2-difluorobut-3-en-1-yl)benzene derivatives.⁴ Dolbier and co-workers reported that radical-type cleavage of the gem-difluorocyclopropane ring took place very quickly.⁵ More recently, Gurjar and co-workers reported the preparation of a diallyl-substituted compound through a ringopening reaction of (halomethyl)cyclopropanes with allyltributylstannane (allylBu₃Sn).⁶ Inspired by these works, we hypothesized that a novel gem-difluoromethylene compound 2 might be obtained from gem-difluorocyclopropane 1 through radical-type allylation following regioselective ring opening (Figure 1).

Here, we wish to report the preparation of *gem*-difluoromethylene compounds **2** by the radical-type ring-opening reaction of *gem*-difluorocyclopropane **1**. The *cis* isomer of 1bromomethyl-2-benzyloxymethyl-3,3-difluorocyclopropane

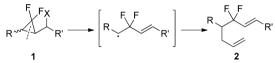


Figure 1. Working hypothesis of the present synthetic project.

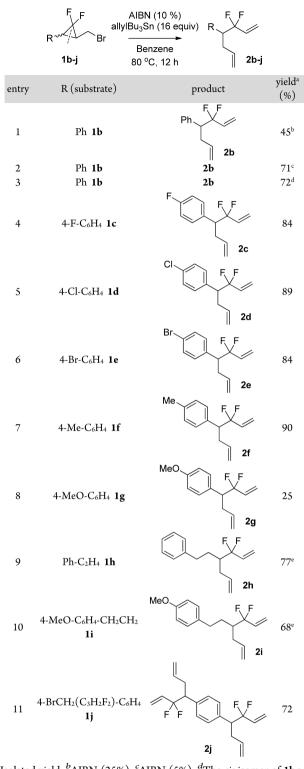
(1a; $R = BnOCH_2$) was initially selected as the substrate for the present study because it was established that decomposition of the *cis* isomer of 1,2-dialkyl-3,3-difluorocyclopropane took place more easily than that of its *trans* isomer.⁷

The reaction was conducted as follows (Table 1): a mixture of 1a ($R = BnOCH_2$),⁸ allylBu₃Sn, and a catalytic amount of 2,2'-azobis(isobutyronitrile) (AIBN) in benzene (1.0 M) was

Table 1. Optimizations for Regioselective Allylation

	BnO 1a BnO 1a BnO Alb Alb allylBu Benze 80 °C,	H ₃ Sn ene BnO	
entry	amount of allylBu ₃ Sn (equiv)	amount of AIBN (%)	yield ^{a} (%)
1	2.0	3.6	5 ^b
2	2.0	25	25
3	6.0	5	68
4	7.0	5	84
5	7.0	5	62^c
6	8.0	5	89
7	10	5	71
8	8.0	5	89 ^d

^{*a*}Isolated yield. ^{*b*}NMR yield based on trioxane as an internal standard. ^{*c*}The reaction was carried out in toluene at 80 °C. ^{*d*}The *trans* isomer of **1a** was used.


Received: March 18, 2014 Published: April 30, 2014 stirred at 80 °C for 12 h and then treated with a mixed solvent of ethyl acetate and a saturated aqueous potassium fluoride (KF) solution at room temperature for 1 h to initiate precipitation. The precipitate formed was removed by filtration, the filtrate was evaporated, and subsequent purification of the residue by silica gel thin-layer chromatography (TLC) afforded **2a** (R = BnOCH₂). By using various types of 1-alkyl-2bromomethyl-3,3-difluorocyclopropane 1, regioselective allylation under the above conditions gave a range of products, **2**; the results are summarized in Table 2.

Initially, we conducted the reaction by using 1a in the presence of 2.0 equiv of allylBu₃Sn and 3.6% AIBN. The desired product 2a was, however, obtained in only poor yield under these conditions (Table 1, entry 1). Increasing the amount of allylBu₃Sn improved the chemical yield of the product significantly, and 2a was obtained in 68%, 84%, and 89% yields when 6, 7, and 8 equiv of allylBu₃Sn were used, respectively (entries 3, 4, and 6). The yield dropped, however, when 10 equiv of allylBu₃Sn were employed in the reaction (entry 7). A slight drop of the chemical yield of 2a was recorded when the reaction was carried out in toluene (entry 5). Although we initially expected that the *cis* isomer of *gem*-difluorocyclopropane would be more reactive than the *trans* isomer, no difference in the reactivity was observed, and the chemical yields of the products were similar (entries 6 and 8).

It was thus found that the amount of allylation reagent was important to achieve the desired reaction. In particular, a large excess of allylBu₃Sn was required for the reaction of [3-(bromomethyl)-2,2-difluorocyclopropyl]benzene (1b; R = Ph) because of the relatively poor reactivity of the radical generated by the ring-opening reaction. The desired product 2b was obtained in 71% yield in the presence 16 equiv of allyBu₃Sn, whereas only a moderate yield (45%) was obtained when the reaction was carried out with 8 equiv of allylBu₃Sn (Table 2, entries 1 and 2). No difference was observed between the trans and cis isomers of 1b (entries 2 and 3). The presence of electron-withdrawing substituents on the benzene ring, such as fluorine, chlorine, or bromine, contributed to an improved product yield, and the desired products $2c (R = 4-F-C_6H_4)$, 2d $(R = 4-Cl-C_6H_4)$, and 2e $(R = 4-Br-C_6H_4)$ were obtained in 84%, 89%, and 84% yields, respectively (entries 4, 5, and 6). Conducting the reaction with 2-arylcyclopropanes substituted with an electron-donating group at the 4-position led to more complex results. Whereas 1f (R = $4 - Me - C_6H_4$) gave the desired product 2f in excellent yield (entry 7), 1g (R = 4-MeO $-C_6H_4$) afforded 2g in poor yield (25%) together with the formation of unidentified byproducts (entry 8). Reaction of gem-difluorocyclopropane derivatives with aliphatic substituents such as 1h (R = PhCH₂CH₂) and 1i (R = 4-MeO-C₆H₄- CH_2CH_2) proceeded very smoothly with 2 equiv of allylBu₃Sn and gave the products 2h and 2i in 77% and 68% yields, respectively (entries 9 and 10). Furthermore, the allylation was applicable to bis-gem-difluorocyclopropane 1j, and the desired product 2j was attained in 72% yield, although in this case the reaction required an excess of allylBu₃Sn to reach completion (entry 11).

Xanthate is known to be a good leaving group in the formation of a radical species,⁹ so we next attempted allylation using xanthates **1k**, **1l**, and **1m**. The desired product **2h** was indeed obtained in 50% yield by using 2.0 equiv of allyl-Bu₃Sn with O-[(2,2-difluoro-3-phenethylcyclopropyl)-methyl] S-methyl carbonodithioate (**1k**). Compound **1l** was also attained in 70% yield as a mixture of E/Z isomers (83:17) when O-[1-

Table 2. Scope of the Substrates

^{*a*}Isolated yield. ^{*b*}AIBN (25%). ^{*c*}AIBN (5%). ^{*d*}The *cis* isomer of **1b** was used. ^{*e*}2 equiv of allylBu₃Sn were used.

(2,2-difluoro-3-phenethylcyclopropyl)-ethyl] S-methyl carbonodithioate (11) was used as a substrate, although the reaction required 8.0 equiv of allylBu₃Sn (Figure 2). On the other hand, a mixture of two compounds, (E)-(5,5-difluoro-nona-3,8-dien-1-yl)benzene (2m) and (E)-S-(2,2-difluoro-6-phenylhex-3-en-1-yl) S-methyl carbonodithioate (3), was obtained when O-[1-(2,2-difluorocyclopropyl)-3-phenylpropyl]

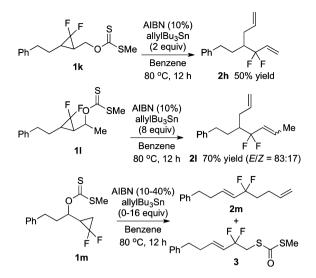


Figure 2. Allylation of *gem*-difluorocyclopropanes equipped with the S-methyl carbonodithioate as a leaving group.

S-methyl carbonodithioate (1m) was subjected to the reaction conditions (Figure 2).

Figure 3 shows a plausible mechanism of formation for the two products **2m** and **3**, starting from **1m**. Cyclopropane **1m**

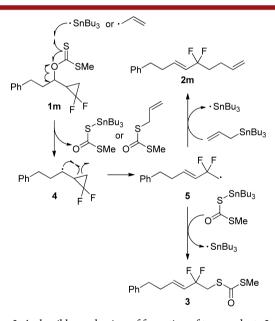
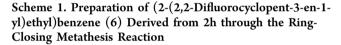
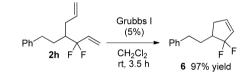


Figure 3. A plausible mechanism of formation of two products **2m** and **3** through ring opening of *gem*-difluorocyclopropane.

reacts with a tributylstannyl radical to give 2,2-difluorocyclopropylcarbinyl radical 4. It has been reported that this radical species undergoes an extraordinarily fast ring-opening reaction.⁵ Thus, a ring-opening reaction of radical 4 would take place to rapidly produce 5, which would either be trapped by allylBu₃Sn to afford **2m** or generate the rearranged product **3** by trapping with S-methyl S-(tributylstannyl) carbonodithioate under low concentrations of allylBu₃Sn.

According to the proposed mechanism, we concluded that selective production might be possible by simply changing the amount of allylBu₃Sn (Table 3). As expected, it was found that 2m was indeed obtained in 75% yield as the major product when a large excess of allylBu₃Sn (16 equiv) was employed in


Table 3. Results of Radical	Type Allylation	of gem-					
Difluorocyclopropane 1m							


entry	allyBu ₃ Sn (equiv)	amount of AIBN (%)	yield of 2m (%)	yield of 3 (%)	
1	4.0	10	50 ^a	35 ^a	
2	8.0	10	55 ^a	22^a	
3	16	10	75 ^b	15^{b}	
4	0	25	0	trace	
5	1.0	25	25^{b}	65 ^b	
6	0.5	40	15^{b}	70 ^b	
7	0.5	40 ^c	14^b	74 ^b	
aNIMD	wield ^b lashetad wield ^c 1 1' Arabia(wielebawana anthonituile)				

^aNMR yield. ^bIsolated yield. ^c1,1'-Azobis(cyclohexanecarbonitrile) (V-40) was used as a radical initiator.

the presence of 10% AIBN (entry 3). On the other hand, compound 3 was obtained as the major product in 70% yield when the reaction was carried out using 0.5 equiv of allylBu₃Sn in the presence of 40% AIBN (entry 6). It has been reported that the rate of decomposition of the radical initiator is important to achieve the desired radical trapping.¹⁰ In fact, a slight increase in the yield of 3 was recorded when 1,1′-azobis(cyclohexanecarbonitrile) (V-40) was used as the radical initiator (entry 7).

We then demonstrated a simple application of *gem*difluoromethylene building block **2h** (Scheme 1). The ring-

closing metathesis reaction proceeded smoothly, and cyclopentene **6** was obtained in excellent yield (97%) when diene **2h** was treated with 5% Grubbs catalyst (first generation).¹¹

In summary, we have accomplished the regioselective allylation of gem-difluorocyclopropane derivatives through a radical-type ring-opening reaction. Although the reaction requires a relatively large amount of allylBu₃Sn, unique gemdifluoromethylene compounds were produced. We have also demonstrated an application of one of the resultant gemdifluoromethylene compounds. Because gem-difluorocyclopropane is easily prepared from relatively inexpensive 2chloro-2,2-difluoroacetic acid, the present method opens the way to an economical synthesis of useful gem-difluoromethylene compounds. Fluorine-containing molecules are now established as key compounds in medicinal and material chemistry. Because product 2 has two olefin moieties with differing reactivities, this molecule is expected to become a key intermediate in the synthesis of many gem-difluoromethylene compounds. Further investigations into the scope and limitations of the present method are expected to expand the potential applications of this approach.

Organic Letters

ASSOCIATED CONTENT

S Supporting Information

Experimental procedures and spectral data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: titoh@chem.tottori-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Tomoe Inoue of Arid Land Research Center, Tottori University for HRMS (EI) analyses.

REFERENCES

(1) For review, see: Ojima, I., Ed.; Fluorine in Bioorganic and Medicinal Chemistry; Wiley-Blackwell: London, 2009.

(2) For review, see: Itoh, T. gem-Difluorinatedcyclopropanes as key building blocks for novel biologically active molecules. In *Fluorine in Bioorganic and Medicinal Chemistry*; Ojima, I., Ed.; Wiley-Blackwell: London, 2009; pp 313–355.

(3) For review, see: Fedorynski, M. Chem. Rev. 2003, 103, 1099.

(4) Morikawa, T.; Uejima, M.; Kobayashi, Y. Chem. Lett. 1988, 1407.

(5) (a) Dolbier, W. R., Jr.; Al-Sader, B. H.; Sellers, F.; Koroniak, H. J. Am. Chem. Soc. **1981**, 103, 2138. (b) Dolbier, W. R., Jr. Acc. Chem. Res. **1981**, 14, 195. (c) Tian, S.; Lewis, S. B.; Bartberger, M. D.; Dolbier, W. R., Jr.; Borden, W. T. J. Am. Chem. Soc. **1998**, 120, 6187. (d) Tian, F.; Bartberger, M. D.; Dolbier, R. W., Jr. J. Org. Chem. **1999**, 64, 540.

(6) Gurjar, M. K.; Ravindranadh, S. V.; Sankar, K.; Karmakar, S.; Cherian, J.; Chorghade, M. S. Org. Biomol. Chem. 2003, 1, 1366.

(7) (a) Mitsukura, K.; Korekiyo, S.; Itoh, T. *Tetrahedron Lett.* **1999**, 40, 5739. (b) Itoh, T.; Ishida, N.; Mitsukura, K.; Uneyama, K. *J. Fluorine Chem.* **2001**, *112*, 63. (c) Itoh, T.; Ishida, N.; Mitsukura, K.; Hayase, S.; Ohashi, K. J. Fluorine Chem. **2004**, *125*, 775.

(8) We chose the benzyl protecting group to facilitate detection of the products.

(9) For recent reviews, see: (a) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603. (b) Quiclet-Sire, B.; Zard, S. Z. Beilstein J. Org. Chem. 2013, 9, 557.

(10) Fukuyama, T.; Kobayashi, M.; Rahman, Md. T.; Kamata, N.; Ryu, I. Org. Lett. **2008**, 10, 533.

(11) (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. Engl. **1995**, 34, 2039. For recent reviews, see: (b) Deraedt, C.; d'Halluin, M.; Astruc, D. Eur. J. Inorg. Chem. **2013**, 4881. (c) Li, H.; Seechurn, C. C. C. J.; Colacot, T. J. ACS Catal. **2012**, 2, 1147.