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Abstract: The first synthesis of (+)-kuraramine via oxidative cleav-
age of (–)-N-methylcytisine is reported. An alternative but unsuc-
cessful approach to (+)-kuraramine is also described based on
extending an intramolecular enolate addition protocol that had pre-
viously been applied successfully to cytisine.
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The lupin alkaloids constitute an important class of phar-
macologically active quinolizidine and piperidine-based
molecules, the best known of which is (–)-cytisine (1,
Figure 1)1 which is an important partial agonist at neu-
ronal nicotinic acetylcholine receptors.2,3

Figure 1

N-Methylcytisine (2, and other N-substituted variants) are
also known,4 as are simple monocyclic piperidines such as
(+)-kuraramine (3), which was isolated by Murakoshi and
co-workers from Sophora flavescens.5 The structural (and
possible biosynthetic) relationship between 2 and 3,
which involves cleavage of the N(1)–C(10) linkage of 2,
is illustrated above.

The synthesis of (–)-kuraramine (the unnatural enanti-
omer) was reported recently by Honda,6 and although the
strategy used also provided access to the corresponding
trans diastereomer [(–)-isokuraramine], these cis/trans
isomers were not available selectively. In this paper we
describe two approaches to (+)-kuraramine, one of which
represents a biomimetic approach and the other, which
represents an extension of our earlier strategy for lupin al-
kaloids, failed to give 3, but demonstrates further the
scope and limitations of this earlier work.

N-Methylcytisine (2) provides an obvious precursor to 3
and key to utilizing this substrate as a precursor is the abil-
ity to functionalize 2 at C(10) in such a way that allows
cleavage of N(1)–C(10). Rouden7 has shown that N-acyl-

cytisine derivatives undergo a N-to-C isomerization in a
process that is proposed to involve lithiation at C(10) and
acyl-group transfer from nitrogen. This chemistry has
been extended to provide a general method for the regio-
and diastereoselective C(10) functionalization of cytisine
and this, in turn, has provided novel pharmacologically in-
teresting cytisine derivatives.8

The synthesis of (+)-kuraramine (3) from (–)-N-methyl-
cytisine (2) is shown in Scheme 1. In situ silylation of 2
was achieved by lithiation (using LDA) in the presence of
PhMe2SiCl to give the silylated adduct 4 in 48% yield as
a single diastereomer. 1H NMR studies (NOE and J val-
ues)9 indicated the C(10) stereochemistry shown in
Scheme 1, which is consistent with that described by
Rouden and corresponds to the thermodynamically more
stable orientation at C(10). Fleming–Tamao oxidation10

of 4 followed by reduction of carbinol 511 gave (+)-3
{[a]D

20 +9.5 (c 2.1, EtOH); lit.5 [a]D
29 +8.4 (c 0.52,

EtOH)} in 18% overall yield from 2.

Scheme 1 Synthesis (+)-kuraramine (3) from (–)-N-methylcytisine (2)

A second approach to (+)-kuraramine (3) has also been
evaluated, and this is based on the intramolecular 1,6-ad-
dition of a lactam enolate to a pyridone. This has been suc-
cessfully applied to the synthesis of cytisine (1, Scheme 2)
as well as cytisine analogues and other lupin alkaloids.12

Scheme 2 Lactam enolate approach to cytisine (1)12

Application of this enolate-addition strategy to
kuraramine is outlined in Scheme 3, and we targeted an
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intermediate based on N-hydroxypyridone. O-Alkylation
of N-hydroxypyridone with the piperidinone bromide 6
gave lactam 7. Exposure of this intermediate to the eno-
lization and cyclization conditions that had been devel-
oped for cytisine (1) failed to give the desired adduct; see
reaction pathway illustrated with enolate 8. Instead a
clean fragmentation was observed to give aldehyde 913 in
89% yield.

This chemistry is interesting in terms of its relationship to
the transformations shown in Scheme 1 and the earlier
work of Rouden7,8a and others14 involving (presumably)
carbonyl-directed metalation of an N-alkyl pyridone. This
directing effect is powerful but the cyclization pathway
outlined within structure 8 also involves formation of a
seven-membered ring, which represents a larger ring than
we had previously achieved with this cyclization protocol.
In that sense, a feasible explanation is that (as might be ex-
pected) lactam enolization does occur but the desired ring
closure (see 8) is slow compared to (feasibly intramolec-
ular) proton abstraction associated with the lactam enolate
derived from 7 which triggers the elimination step that
provides aldehyde 9.

Scheme 3 Lactam enolate addition approach to (+)-kuraramine (3)

In summary, the first synthesis of (+)-kuraramine (3) has
been accomplished via a biomimetic transformation of N-
methylcytisine (2).15 The ability to cleave N-methyl-
cytisine (and the same chemistry works as efficiently with
N-benzylcytisine) opens an entry to a range of substituted
piperidines in a stereocontrolled fashion, that are, based
on earlier work in this area, not trivial to access.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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