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ABSTRACT: Unlocking the biochemical stores of fungi is key for developing future pharmaceuticals. 

Through reduced expression of a critical histone deacetylase in Aspergillus nidulans, increases of up to 

100-fold were observed in the levels of 15 new aspercryptins, recently described lipopeptides with two 

non-canonical amino acids derived from octanoic and dodecanoic acids. In addition to two NMR-verified 

structures, MS/MS networking helped uncover an additional 13 aspercryptins. The aspercryptins break 

the conventional structural orientation of lipopeptides and appear ‘backward’ when compared to known 

compounds of this class. We have also confirmed the 14-gene aspercryptin biosynthetic gene cluster, 

which encodes two fatty acid synthases and several enzymes to convert saturated octanoic and dodecanoic 

acid to α-amino acids.  

 

INTRODUCTION 
For decades the search for new natural products by screening for bioactivity has been hampered by 

rediscovering the same compounds.
1
 To avoid the rediscovery of natural products, some laboratories have 

decoupled discovery from screening for bioactivity by measuring accurate mass as the primary, high-

throughput screen for the expression of new natural products.
2
 This new approach to molecular discovery 

has been applied to bacteria
3,4

 but less so in fungi, which offer an enormous biosynthetic potential.
5
 The 

genome of the mold Aspergillus nidulans contains more than 50 gene clusters annotated to be involved in 

the biosynthesis of natural products. Yet just over 20 of these biosynthetic gene clusters (BGCs) have 

associated natural products.
6
 

Several strategies have been developed to better harness the biosynthetic repertoire of fungi.
7
 One such 

strategy involves the inhibition of histone deacetylase activity (HDACi) and has shown some promise.
8-10

 

HDACi increases global histone acetylation levels and can increase transcription of otherwise repressed 

natural product BGCs. Our previous work used quantitative mass spectrometry-based analyses to 

compare the extracellular metabolomes of A. nidulans before and after both chemical and genetic 

HDACi.
11

 We found that HDACi both up-regulated and down-regulated the expression of many 

compounds. Among the up-regulated compounds were several not known to be produced by A. nidulans, 

such as the fellutamides.
11

 

Continuing those efforts here, we have solved the structures of two new lipopeptides, aspercryptin A1 

and A2, that are up-regulated by up to 90-fold using the HDACi-based strategy. The aspercryptins are six-

amino-acid peptides containing two non-canonical α-amino acids derived from saturated C8- and C12-fatty 

acids, and a C-terminal alcohol and related to two previous aspercryptins published by Chiang et al. in 

2016.
12

 Unlike the overwhelming majority of lipopeptides in the literature, the aspercryptins appear 

‘backward’ and have their lipid tail at the C-terminus. We also map the BGC responsible for the 

aspercryptins by genetic disruption and Northern blotting. It features a NRPS backbone gene encoding a 

terminal reductase, atypical activation domains for unusual “fatty amino acid” substrates, and enzymes 

putatively involved in fatty amino acid biogenesis. The aspercryptins join a small group of lipopeptide 

natural products where incorporation of the lipid moiety occurs at sites other than the N-terminus.  
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RESULTS AND DISCUSSION 
Comparative metabolomics of HDAC-deficient A. nidulans reveals the aspercryptins. In previous 

work, we generated a mutant of A. nidulans with constitutively lower levels of the HDAC RpdA 

(AN4493).
11

 Using differential metabolomics on this strain (rpdA
KD

, RAAS58.4) compared with wildtype 

fungus (Figure 1, left)), we detected many signals that were up-regulated in the rpdA
KD 

mutant (Figure 1, 

middle panels). Dereplication of these metabolites based on their accurate masses allowed us to cull the 

list to only those that have not yet been characterized (Figure 1). 
Several dozen of the putatively new metabolites displayed a high degree of similarity in their MS/MS 

fragmentation spectra, suggesting structural and therefore biosynthetic relatedness (Figure 2). For the 
members of this compound family, all were up-regulated over a wide range from 2- to 130-fold in rpdA

KD
 

vs. wildtype (data for one compound are shown in Figure 1, third panel). The structures of two of these 
compounds, aspercryptin A1 (m/z 758.5386 [M+H]

+
, C37H71N7O9, -0.02 ppm) and aspercryptin A2 (m/z 

742.5440 [M+H]
+
, C37H71N7O8, 0.45 ppm), (Figure 1, right panel) were determined completely by MS 

with stable isotope feeding and extensive NMR (Supporting Information Table S1).  

 
Figure 1. Workflow to compare the metabolomes of wildtype Aspergillus nidulans and a strain where the HDAC RpdA is 

constitutively repressed (rpdAKD) leading to hyperacetylation in bulk chromatin. Knockdown of RpdA leads to many newly 

observed metabolites (second panel), from which new metabolites can be viewed selectively (third panel) and targeted for 

structure determination when they display unique mass signatures. Aspercryptins A1 and A2 are lipopeptides made by A. 

nidulans (fourth panel at far right). Full NMR data can be found in Supporting Information. Stable isotope incorporation 

experiments verify much of these structures (Supporting Information Figure S2). Annotated MS/MS spectra for both aspercryptin 

A1 and A2 (Supporting Information Figures S3 and S4) are included for reference. 

 

The aspercryptins are ‘backward’ lipopeptides. The aspercryptins are linear lipopeptides built from six 

amino acids and appear to be the first example of peptide natural products with two lipid groups. They 

also seem to be the only known lipopeptides with a lipid tail at the C-terminus; thus they appear 

‘backward’ to other lipopeptides. This is despite the overwhelming literature precedent for lipopeptides 

having an N-terminal lipid group.  
Aspercryptin A1 and A2 differ from each other only at the N-terminal residue - serine for aspercryptin 

A1 and alanine for aspercryptin A2. The most striking feature of the aspercryptins is that of the six amino 
acids, two are highly unusual and non-proteogenic: 2-amino-octanoic acid and 2-amino-dodecanol. 
Stereochemical assignment of the aspercryptins was determined for each residue by derivatization with 
Marfey’s reagent and comparison with standards using HPLC-MS (Supporting Information Figure S1). 
For aspercryptin A1 the first two residues (serine and threonine) are epimerized to D-serine and D-allo-
threonine while the remaining 4 residues are the L-isomers. The stereocenters of aspercryptin A2 are the 
same as those in aspercryptin A1; however, there is also an epimer of aspercryptin A2 such that the 
alanine is the L-isomer, thus we name this analogue epi-aspercryptin A2 (Supporting Information Figure 
S1). Several of these monomers (threonine, isoleucine and serine) were also confirmed by metabolic 
feeding of stable isotope analogues (Supporting Information Figure S2). Furthermore, stable-isotope 
labeling shows that when fed d3-serine, labeled aspercryptin A1 only shows incorporation of 2 deuterons 
(Supporting Information Figure S2d). This further supports the epimerization of this residue by loss of the 
deuteron on the alpha carbon.  

MS/MS networking reveals a large family of aspercryptins. We observed that the MS/MS spectra of 
many other metabolites up-regulated by rpdA

KD
 had striking similarity to those of aspercryptin A1 and 

A2. We then turned to MS/MS networking to visualize the relatedness of these metabolites in the dataset. 
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The ability for MS/MS networking to cluster biosynthetically related compounds is now established.
13

 
When performing network analysis of the wildtype and rpdA

KD
 extracts we saw several examples of 

biosynthetically related natural products clustering together as expected; for example, the emericellamides 
group tightly together based on MS/MS spectral similarity (Figure 2a, circled).  

One cluster of metabolites consistently upregulated in the rpdA
KD

 extracts (Figure 2a, boxed) 
contained aspercryptins A1 and A2 (Figure 2b). Using the MS/MS fragmentation patterns of aspercryptin 
A1 and A2 (Supporting Information Figures S3 and S4) and the recently published aspercryptins B1 and 
B3

12
 as anchor points, we detected and have proposed putative structures for an additional 13 

aspercryptins (Figure 2b, yellow circles, Table 1). These new aspercryptins fall into sub-families and we 
were readily able to quantify their abundance increases in the rpdA

KD
 mutant (Supporting Information 

Figure S5).  

 
Figure 2. MS/MS networking to identify and characterize a large cluster of aspercryptins. (a) MS/MS networking clusters natural 

products into molecular families. Here the metabolites made by wildtype A. nidulans (blue) are compared to those made by the 

rpdAKD mutant (red). Some metabolites are expressed equally (grey). Some molecular families are seen in only one biological 

state. The aspercryptins are boxed and the emericellamides are circled. (b) Aspercryptin A1 and A2 (larger yellow circles) fall 

into an MS/MS cluster of metabolites mostly expressed by rpdAKD mutant. Comparing the MS/MS spectra of 5 NMR-elucidated 

aspercryptins allows for characterization of an additional 13 aspercryptins in this molecular family for a total of 18 structurally 

characterized aspercryptins, which includes aspercryptins B1 and B3 (yellow). 

 
Table 1. The formulae and expression ratios for the 18 aspercryptins from Figure 2, including the five aspercryptins elucidated 

by NMR (bold) and the 13 additional aspercryptins whose putative structures are supported by comparing MS/MS spectra. 
aNMR structures described in this work; bNMR structures described by Chiang et al;12 cratio is an unresolved combination of 

epimers 

Name 
m/z 

[M+H]+ 

molecular 

formula 

[rpdAKD] 

[wildtype] 
Name 

m/z 

[M+H]+ 

molecular 

formula 

[rpdAKD] 

[wildtype] 

aspercryptin A1a 758.539 C37H71N7O9 20 aspercryptin B1b 934.586 C47H79N7O12 60 

aspercryptin A2a 742.544 C37H71N7O8 90c aspercryptin B2 918.591 C47H79N7O11 130 

epi-aspercryptin A2a 742.544 C37H71N7O8 90c aspercryptin B3b 920.571 C46H77N7O12 50 

aspercryptin A3 744.523 C36H69N7O9 2 aspercryptin B4 906.555 C45H75N7O12 120 

aspercryptin A4 730.508 C35H67N7O9 2 aspercryptin C1 800.549 C39H73N7O10 20 

aspercryptin A5 728.528 C36H69N7O8 20 aspercryptin C2 784.554 C39H73N7O9 60 

aspercryptin A6 714.513 C35H67N7O8 20 aspercryptin C3 786.534 C38H71N7O10 3 

aspercryptin A7 671.507 C34H66N6O7 20 aspercryptin C4 772.518 C37H69N7O10 2 

aspercryptin D1 814.566 C40H75N7O10 5 aspercryptin C6 756.523 C37H69N7O9 20 

 
The putative structures for 8 of the additional 13 are shown in Figure 3. A subset was chosen for 

clarity in the main text (for a complete version of this chart see Supporting Information Figure S6). The 
variations in the structures of the aspercryptins are standard for what is seen from NRPS pathways: 
incorporation of alanine instead of serine, valine for isoleucine and a C10 fatty amino alcohol instead of 
the C12 version. Taking the structure of aspercryptin A1 as the ‘canonical’ sequence of the aspercryptins, 
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we have made a hierarchical nomenclature system, where the letter represents the status of the N-
terminus: A for a free amine, B for cichorine capped, C for acetyl and D for propionyl; and where the 
number represents ‘variants’ of the base amino acid sequence: 1 for canonical, 2 for serine to alanine, etc. 
Isolation and full NMR structure determination for each of the aspercryptins are beyond the scope of this 
work. While the de novo structure elucidation of natural products from analysis of MS and MS/MS data 
alone is not possible, such analyses can readily be used for the detection and putative characterization of 
highly similar structural analogues. Though the stereochemistry of the aspercryptins proposed by MS/MS 
analysis is likely the same as those that have been experimentally determined, we have refrained from 
assuming that this is indeed the case (Figure 3). 

 
Figure 3. Putative structures for 8 of the 13 aspercryptins based on analysis of MS spectral differences. A complete version of 

this chart with the 18 structurally characterized aspercryptins is shown in the Supporting Information. Heavily annotated MS/MS 

spectra of aspercryptins solved by NMR (blue asterisk) were used as the basis for comparison to other metabolites (Supporting 

Information Figures S3 and S4). Conservatively, stereochemical assignment has not been made for the MS-based structures. 

 
Confirmation of the aspercryptin biosynthetic gene cluster. Linking natural products to their gene 

clusters is key to annotating the biosynthetic potential of phylogenetically diverse fungi. The genome of 
A. nidulans contains a 14-gene BGC

12
 (AN7884 to AN7872, Figure 4a and Supporting Information Table 

S3) that was recently shown to produce aspercryptins B1 and B3.
12

 This BGC contains a six-module 
NRPS (AN7884) and two fatty acid synthase (FAS) subunits (AN7880 and AN7873). To experimentally 
link all of the aspercryptins to this BGC, we deleted the NRPS gene, AN7884 and observed no detectable 
levels of any of the aspercryptins (Figure 4b). We also generated an overexpression mutant of the nearby 
transcription factor, AN7872, which led to increased transcript levels for many of the genes predicted to 
be in the cluster. This mirrored the overexpression of these genes in the rpdA

KD 
strain (Supporting 

Information Figure S7) and confirmed the predicted cluster boundaries. Further solidifying its role as the 
transcription factor for the cluster, we also observed a >2-fold increase in the levels of aspercryptin A1 
upon overexpression of AN7872 (Figure 4c). Additionally deletion of the FAS gene AN7880 abolished 
production of the aspercryptins. Levels of the aspercryptins could be rescued partially by supplementing 
the media with octanoic and dodecanoic acids, which are likely the direct products of the FAS enzymes 
(Figure 4c). 
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Figure 4. Evidence for the association of the aspercryptins to their BGC. (a) The BGC responsible for the biosynthesis of the 

aspercryptins contains a non-ribosomal peptide synthetase encoded by atnA (AN7884), which contains 6 adenylation domains 

and a terminal reductase domain; the two fatty acid synthase subunits atnF (AN7880) and atnM (AN7873); a transcription 

factor atnN (AN7872); two aminotransferases atnH (AN7878) and atnJ (AN7876); a cytochrome P450 atnE (AN7881); an 

oxidoreductase atnD (AN11028); and 3 for transport atnC (AN11031) and atnF (AN7879) and resistance atnI (AN7877). (b) 

Deletion of the NRPS gene atnA in the background of rpdAKD showed it is necessary for biosynthesis of the aspercryptins (only 

aspercryptin A1 is shown here for clarity). (c) Overexpression of the transcription factor atnN (OE atnN) led to a doubling of 

aspercryptin A1 levels. Subsequent deletion of the FAS gene atnF (OE atnN, ∆atnF) abolished levels of aspercryptins, which 

could rescued by supplementing media with the fatty acids octanoic and dodecanoic acids (OE atnN, ∆atnF + FAs). 

 
The NRPS, the transcription factor, and the intervening genes have been named atnA (NRPS) through 

atnN (transcription factor). Upon exploring the phylogenetic distribution of the atn BGC in the 
Aspergillus genome repository (http://www.aspergillusgenome.org), we found the atn BGC present in six 
other Aspergilli and to be most conserved in A. versicolor (NRPS genes 87% identical, Supporting 
Information Figure S8). The BGC borders were confirmed by transcript mapping using Northern blots of 
all genes in the cluster (Supporting Information Figure S7). 

Proposed biosynthesis for the aspercryptins. Based on annotations of the BGC and the above 
deletion experiments, we propose the following for aspercryptin biosynthesis (Supporting Information 
Figure S9). The first step is the generation of the fatty acid precursors, octanoic and dodecanoic acids, by 
the FAS subunits AtnF and AtnM (AN7880 and AN7873). A. nidulans has 3 other pairs of FAS genes. 
One, fasA and fasB, is required for fatty acids involved in primary metabolism; deletion of either fasA or 
fasB is lethal.

14
 The other 2 pairs of FAS genes make precursor fatty acids for natural products – pkiB and 

pkiC for the polyketides made by the PKS pkiA (AN3386)
15

 and stcJ and stcK for sterigmatocystin 
biosynthesis.

14
  

The fatty acid precursors are perhaps the most interesting aspect of the system and are likely 
transformed into the corresponding α-amino fatty acids in three steps. First they are hydroxylated by the 
cytochrome P450 AtnE (AN7881), then oxidized to the corresponding α-keto acids by the NAD(P)-
dependent oxidoreductase AtnD (AN11028), and finally converted to the α-amino fatty acids by the PLP-
dependent aminotransferases AtnH or AtnJ (AN7878 and AN7876). Similar pathways to convert a fatty 
acid or polyketide precursor to the corresponding α-amino acid have been proposed for the cyclosporins 
and apicidins/HC-toxin, and experimentally supported to varying degrees.

16-18
 The only experimental 

evidence to support this transformation pathway from these systems comes from the deletion of a 
branched chain aminotransferase which eliminates HC-toxin biosynthesis.

19
 A recent publication by 

Chiang et al. also proposes this pathway for production of the fatty amino acids, and showed that deletion 
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of these genes abolished levels of aspercryptin B1 (except in the case of the aminotransferases, AtnH and 
AtnJ, which could reasonably compensate for each other).

12
  

Unlike the other FAS genes in the A. nidulans genome, the aspercryptin FAS elements are 
‘interrupted’ by the aminotransferase genes that we suggest are involved in generation of the α-amino 
fatty acids (Supporting Information Figure S10). Perhaps this chromosomal organization evolved to 
decrease the likelihood that the gene cassette necessary for the fatty amino acid biosynthesis will be 
separated by chromosomal reorganization. If they were not disrupted by the aminotransferases, the 
expression of the FAS genes could conceivably result in unproductive synthesis of free medium-chain 
fatty acids that could disrupt membrane stability. In fact, addition of dodecanoic acid above 10 µM for 
rescue experiments resulted in little to no growth.  

Once made, we propose that the α-amino fatty acids, 2-amino-octanoic and 2-amino-dodecanoic acids, 
are recognized, activated and covalently tethered to the NRPS AtnA by its fourth and sixth adenylation 
domains (Supporting Information Figure S9). For typical lipopeptides, lipid moieties are added to the N-
terminus by an initial terminal condensation domain of the NRPS.

20
 Incorporation of the lipid group as an 

α-amino fatty acid by an adenylation domain has been proposed for members of the apicidin/HC-toxin 
family and demonstrated in the biosynthesis of cyclosporin, where the NRPS has been shown to adenylate 
and covalently bind to the polyketide-derived α-amino acid (4R)-4-[(E)-2-butenyl]-4-methyl-L-threonine 
(bmt).

21,22
 Experiments are on-going to directly establish the activity of adenylation domains 4 and 6 of 

AtnA in recognizing and activating 2-amino-octanoic and 2-amino-dodecanoic acids, respectively. To 
date, only a handful of α-amino fatty acids have been observed in cyclic lipopeptides (Supporting 
Information Figure S11). Intriguingly all of these are derived from fungi, with the exception of the 
piperazimycins.

23
 Perhaps this strategy for lipid incorporation into natural products is a fungal innovation 

that spread into Streptomycetes. 
In general, using the NRPSpredictor2 (modelled from bacterial NRPS) did not confidently predict the 

amino acid substrates recognized by each of the six adenylation domains of AtnA (Supporting 
Information Table S4). While Chiang et al. propose cichorine-serine as the monomer activated by the first 
adenylation domain of AtnA for the biosynthesis of aspercryptin B1,

12
 we believe it to be serine, and that 

the N-terminal amine of mature aspercryptin A1 subsequently reacts during the biosynthesis of 
cichorine

24
 to form aspercryptin B1. Additionally, despite AtnA having only one epimerase domain in the 

threonine module, the first two amino acids of aspercryptin A1 are D-serine and D-allo-threonine. This 
suggests that serine is either loaded directly as D-serine, or that the epimerase domain in the threonine 
module epimerizes both L-serine and L-threonine. Iterative epimerase domains are not without 
precedent.

25
 Because we observed that the alanine residue of aspercryptin A2 exists as a mixture of L- and 

D- enantiomers, we predict that the epimerase domain acts iteratively. Chronologically, L-serine (for 
aspercryptin A1) or L-alanine (for aspercryptin A2) is activated by the first adenylation domain of AtnA, 
and while serine is fully epimerized to the D-enantiomer by the epimerase domain, alanine is only 
partially converted to the D-enantiomer. The complete conversion of serine and threonine and partial 
conversion of alanine suggests that the sidechain hydroxyl of serine and threonine may aid in governing 
substrate recognition by the epimerase domain. 

The final step in the biosynthesis of the aspercryptins is the reduction of the C-terminus to an alcohol. 
Terminal reductase domains generally use the energy from NAD(P)H to install a reactive aldehyde that 
serves as a warhead

26
 or as an intermediate that rearranges to yield a mature natural product.

25
 For the 

aspercryptins, the removal of a charge-bearing site from dominantly hydrophobic portion of the 
compound is a potential reason for the installation of this alcohol at the C-termini of aspercryptins. In 
fact, the putatively membrane-associated nature of the aspercryptins may be relevant to their function and 
is consistent with our ability to isolate these compounds mainly from the cell mass and little from the 
extracellular medium. Many microbes use lipopeptides as a means to adhere to or move across surfaces, 
and to establish biofilms.

27
 Because we could not assign an anti-bacterial activity, the aspercryptins may 

serve a similar structural/motility function for A. nidulans. We also note that atnH and atnJ are induced 
by ethanol (the other atn genes were not examined), which possibly reflects a role for this metabolite 
during hypoxic stress.

28
 

 
CONCLUSION 

Here we uncovered over a dozen family members of the recently discovered lipopeptides, the 
aspercryptins, and mapped the complete gene cluster responsible for their biosynthesis. Instrumental in 
the discovery of the aspercryptins was the marriage of HDAC inhibition with MS-based metabolite 
screening. By inhibiting HDAC function, we were able to tease the production of a new family of natural 
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products. By taking advantage of MS/MS networking, we could characterize the structural variation of the 
aspercryptins. Our successful use of HDACi in the discovery of the aspercryptins demonstrates its 
potential to survey fungal extracts for new chemical matter, even in species that have been so intensively 
studied, such as A. nidulans. Discovery of new natural product scaffolds from the microbial world at rates 
far higher than in past decades now represents a promising path for reinvigorating the pipeline of 
compounds flowing into pharmaceutical screening platforms. 

 
METHODS 

Fungal Transformations. The generation of the rpdA
KD 

strain
 
was previously described.

11
 All other strains in this 

study are described in Table S5. For construction of overexpression strains, 1 kb of AN7884 or AN7872 5’ flanking 
regions and 3’ coding regions were amplified and fused to A. parasiticus pyrG (amplified from pJW24) and a 401 
bp fragment of the alcA promoter using double joint PCR.

29,30
 The resulting overexpression construct was 

transformed into RJMP1.1 to create strains TAAS393.2 and TAAS394.2. For deletion constructs, 1 kb of flanking 
regions were amplified and fused to A. fumigatus riboB using double joint PCR. The resulting knockout construct(s) 
were transformed into RJMP1.1 and/or TAAS393.2 to create strains TAAS176.3 TAAS395.1, and TAAS217.1. 
Transformants were examined for targeted replacement of the native loci by PCR and Southern blotting, and 
expression levels were confirmed by northern analysis.  

Growth and extraction of fungal strains for LC-MS/MS analysis. All strains were grown with initial inoculations 
of 10

6
 spores/mL in 250 mL GMM in 1L unbaffled flasks, grown in the dark at 37˚C for 4 days at 200 rpm. For the 

initial screening of the rpdA
KD

, overexpression and deletant mutants, extractions and analysis were performed as 
previously described.

11
 For induction of overexpression strains, lactose minimal medium + 30 mM cyclopentanone 

was used. For rescue experiments, media was supplemented with 10 µM octanoic and doceanoic acids in acetone. 
However, for stable isotope incorporation experiments, 5 mL of GMM in 13 mL culture tubes were inoculated with 
10

6
 spores/mL and grown as described above, with the additional step of spiking with 1 mM sterile-filtered stable-

isotope amino acids after 48 hours growth. After a total of 4 days of growth, whole cultures were extracted with an 
equal volume of ethyl acetate with sonication and vortexing for several minutes, followed by overnight incubation at 
4˚C. Organic layers were then dried down and analyzed as previously described.

11
  

Isolation and structural determination of aspercryptins A1 and A2. For isolation of aspercryptin from rpdA
KD

 
mutant, large-scale growths (500 mL growths in 2L flask, total of 4 L) were performed as described above. 
Mycelium was separated from the spent media with coffee filters. The spent media was extracted with 
dichloromethane to generate an emulsion layer. The emulsion was dried down. The cellular material was washed 
with excess methanol. Methanol extracts and emulsions from DCM extraction were pooled in methanol and dried 
onto excess silica. Silica was washed with excess ethyl acetate and aspercryptins were eluted from silica with 
methanol. Methanol fraction was pHed to ~8.5 and run over SAX resin (Dowex® 1X2 chloride form), flowthrough 
contained aspercryptins. SAX Resin washed with MeOH (pH 5) and pooled with flowthrough. This was then 
fractionated over preparative RPLC to afford ~4 mg of aspercryptin A1 and A2 in a ~2:1 mixture that could not be 
chromatographically resolved.  

All NMR experiments were performed in DMSO-d6 on an Agilent 600 MHz DD2 with HCN cryoprobe, except for 
13

C-NMR, which was acquired with AVANCE III 500 MHz with direct cryoprobe. 
Stereochemistry of amino acids was determined following a standard Marfey’s Test protocol.

31
 Briefly, 1 mg of a 

~2:1 mixture of aspercryptins A1 and A2 was hydrolyzed in 6N HCl overnight at 110ºC. The hydrolyzed mixture 
was dried in vacuo, to which 100 µL 1% Marfey’s reagent (FDAA) in acetone and 20 µL 1M NaHCO3 were added. 
Amino acid standards were derivatized as described above; 2.5 µmoles were used of each DL-alanine, D-serine, L-
serine, DL-threonine, DL-allo-threonine, DL-isoleucine, DL-aspartic acid (for asparagine), synthetic DL-2-amino-
octanoic acid and synthetic DL-2-amino-dodecanol. 

MS/MS networking to identify aspercryptin molecular family. All MS/MS spectra were pre-processed by 
removing the 25% lowest intensity peaks, applying a non-linear transformation to the peak intensities by taking their 
square root, and normalizing peak intensities to the sum of the intensities of all remaining peaks in the spectrum. 
Spectra with less than 10 remaining peaks, along with those where the base peak constituted more than 75% of the 
total scan intensity were removed from the analysis. MS/MS spectra were compared using the cosine similarity 
method. When comparing two spectra, if more than six matching peaks were found, the remaining unmatched peaks 
were aligned by shifting their m/z by the difference in precursor mass. The resulting output is a cosine score between 
0 and 1 that describes the similarity between two spectra, where 1 represents a perfect match. MS/MS spectra from 
the same precursor were determined by a cosine similarity of >0.7 and a precursor match within 0.01 m/z. In cases 
where multiple spectra from the same precursor were observed, the spectrum with the higher intensity was used and 
the lower intensity spectrum was discarded. 
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Using the cosine comparisons, a network containing 1590 nodes and 3396 edges was constructed and visualized in 
Cytoscape, where each node is a representative spectrum from a unique precursor, and each edge is a cosine 
comparison with a value of 0.4 or greater. 

Synthesis of lipid amino acid monomers. DL-2-amino-octanoic acid. ±-2-bromo-octanoic acid (1 g, 4.5 mmol) 
was dissolved in 10 mL 1:1 H2O:acetone. NaN3 (0.5 g, 7.7 mmol) was added. The solution was vigorously stirred 
overnight at room temperature (reaction mostly complete after 1 hour) to yield ±-2-azido-octanoic acid. The 2-
azido-octanoic acid was then hydrogenated in dry THF with 20% Pd/C under 1 atm H2 with constant stirring at room 
temperature overnight. Mixture was filtered through celite to remove Pd/C.

32
 A small aliquot was purified by RP-LC 

to yield 36 µg of pure DL-2-amino-octanoic acid (m/z 160.1333 [M+H]
+

, C8H17NOH
+
, 0.6 ppm). White waxy 

solid.
1
H- and 

13
C-NMR spectra can be found in Supporting Information. DL-2-amino-dodecanol. ±-2-bromo-

dodecanoic acid (1.25 g, 4.5 mmol) was dissolved in 10 mL 1:1 H2O:acetone. NaN3 (0.5 g, 7.7 mmol) was added. 
The solution was vigorously stirred overnight at room temperature (reaction mostly complete after 1 hour) to yield 
±-2-azido-dodecanoic acid. The 2-azido-dodecanoic acid was then reduced in dry THF with LiAlH4 (0.35 g, 9.34 
mmol) with constant stirring on an ice bath for 2 hours.

33
 The reaction was quenched with 5% KHSO4 and extracted 

with ethyl acetate. A small aliquot was purified by RP-LC to yield 70 µg of DL-2-amino-dodecanol (m/z 202.2166 
[M+H]

+
, C12H27NOH

+
, 0.2 ppm). Off-white waxy solid.

 1
H- and 

13
C-NMR spectra can be found in Supporting 

Information. 
Bioactivity assays. Fifteen µg of purified aspercryptins A1 and A2 (~2:1) were tested in a standard disk diffusion 

assay against M. luteus, E. coli, P. aeruginosa, S. epidermidis, K. pneumoniae, B. subtilis, A. nidulans and P. 
citrinum.  
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