ISSN 1070-3632, Russian Journal of General Chemistry, 2009, Vol. 79, No. 8, pp. 1716–1719. © Pleiades Publishing, Ltd., 2009. Original Russian Text © I.V. Kulakov, O.A. Nurkenov, A.A. Ainabayev, D.M. Turdybekov, K.M. Turdybekov, 2009, published in Zhurnal Obshchei Khimii, 2009, Vol. 79, No. 8, pp. 1356–1359.

Synthesis of Dithiocarbamine Derivatives on the Matrix of Cytisine, Anabasine and *d*-Pseudoephedrine Alkaloids. Crystalline Structure of *N*-Cytisine Dithiocarbamate Ammonium Salt

I. V. Kulakov^{*a*}, O. A. Nurkenov^{*a*}, A. A. Ainabayev^{*a*}, D. M. Turdybekov^{*b*}, and K. M. Turdybekov^{*b*}

^a Institute of Organic Synthesis and Coal Chemistry of Republic of Kazakhstan, ul. Alikhanova 1, Karaganda, 100008 Kazakhstan e-mail: kulakov_iv@mail.ru

^b Phytochemistry Scientific Production Centre, Karaganda, Kazakhstan

Received November 13, 2008

Abstract—On the matrix of physiologically active alkaloids such as cytisine, anabasine, and *d*-pseudoephedrine the simplest alkaloid dithiocarbamates ammonium salts were synthesized by reaction with carbon disulfide in solution of ammonia in alcohol. Spatial structure of ammonium *N*-cytisine dithiocarbamate crystal hydrate was proved with X-ray diffraction analysis.

DOI: 10.1134/S1070363209080234

Among the wide class of sulfur-containing compounds an important role belongs to the acids dithiocarbamine derivatives. Interest in these compounds is caused by their great usability [1]. Acids dithiocarbamine derivatives possess antifungal, antibacterial, insecticide, fungicide and other practical important properties [2–5].

Synthesis of dithiocarbamates on the matrix of

ephedrine alkaloids was reported earlier [6].

To continue the work on the synthesis of new dithiocarbamine derivatives on the basis of cytisine, anabasine, and *d*-pseudoephdrine alkaloids, we obtained the alkaloid dithiocarbamates simple ammonium salts. Dithiocarbamine derivatives **I**–**III** were produced by reaction of alkaloids with carbon disulfide in ethanol saturated with ammonia.

The target products yields are 60–70%. Compounds I–III synthesized are crystalline substances soluble in polar solvents. Composition and structure of I–III was proved by elemental analysis and ¹H NMR spectroscopy. Compound I forms crystal hydrate with three water molecules.

Aiming to confirm spatial structure and also to continue studying cytisine stereochemistry, we performed X-ray diffraction analysis of the obtained salt: ammonium N-cytisine dithiocarbamate crystalline hydrate I. General view of compound I is shown in Fig. 1.

Fig. 1. Structure of ammonium N-cytisinodithiocarbamate crystallohydrate molecule I.

Bond lengths and bond angles in cytisine frame are close to the standard (Tables 1–3) [7] except for bond angles at N¹² atom. Thus, in *N*-methylcytisine and *N*-cyanomethylcytisine molecules studied earlier [8, 9] coordination of the atom N¹² is pyramidal (sum of bond angles is 335.7° , 334.0°), whereas in the

molecule I coordination is planar-trigonal (sum of bond angles is 359.3°), same as in acrylic acid *N*-cytisinylamide molecule (sum of bond angles is 360°). Distinction in the nitrogen atom coordination in the *N*-methylcytisine and *N*-cyanomethylcytisine on the one hand, and in compound I and acrylic acid *N*-

Table 2. Bond angles (ω , grad) for structure I

Table 1. Bond lengths (d, A) for molecule I

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2 () /		· · · · · · · · · · · · · · · · · · ·				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bond	<i>d</i> , Å	Bond	<i>d</i> , Å	Angle	ω, deg	Angle	ω, deg
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$C^6N^1C^2$	121.9(14)	$C^{8}C^{7}C^{13}$	112.0(15)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$S^{1}-C^{14}$	1.69(2)	$C^{o}-C'$	1.45(2)	$C^{6}N^{1}C^{10}$	124.5(13)	$C^9C^8C^7$	103.5(14)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$S^2 - C^{14}$	1.72(18)	$C^{7}-C^{8}$	1.51(2)	$C^{2}N^{1}C^{10}$	113.4(14)	$C^{8}C^{9}C^{11}$	114.3(14)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$O^1 - C^2$	1.28(2)	$C^7 - C^{13}$	1.58(2)	$O^1 C^2 C^3$	123.5(17)	$C^{8}C^{9}C^{10}$	109.6(15)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N^1-C^6	1.39(2)	C ⁸ -C ⁹	1.51(3)	$O^1 C^2 N^1$	119.8(16)	$C^{11}C^9C^{10}$	111.0(14)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					$C^3C^2N^1$	116.7(19)	$N^{1}C^{10}C^{9}$	112.7(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$N^{1}-C^{2}$	1.41(2)	C ⁹ -C ¹¹	1.55(2)	$C^4C^3C^2$	121.5(18)	$N^{12}C^{11}C^9$	107.9(13)
$\begin{array}{c cccccc} C^2-C^3 & 1.38(3) & C^{11}-N^{12} & 1.51(2) & C^6C^5C^4 & 120.1(18) & C^{14}N^{12}C^{11} & 122.5(16) \\ C^3-C^4 & 1.32(3) & N^{12}-C^{14} & 1.35(2) & C^5C^6C^7 & 126.0(16) & N^{12}C^{13}C^7 & 106.4(13) \\ C^4-C^5 & 1.40(3) & N^{12}-C^{13} & 1.46(2) & N^1C^6C^7 & 115.7(14) & N^{12}C^{14}S^1 & 119.7(14) \\ C^5-C^6 & 1.35(2) & & C^6C^7C^8 & 115.1(14) & N^{12}C^{14}S^2 & 120.2(15) \\ C^6C^7C^{13} & 110.7(14) & S^{1}C^{14}S^2 & 120.1(10) \\ \end{array}$	$N^1 - C^{10}$	1.49(2)	C ⁹ -C ¹⁰	1.56(2)	$C^{3}C^{4}C^{5}$	121.4(18)	$C^{14}N^{12}C^{13}$	123.1(15)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C^{2} C^{3}	1 29(2)	C^{11} N^{12}	1 51(2)	$C^6C^5C^4$	120.1(18)	$C^{14}N^{12}C^{11}$	122.5(16)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C-C	1.30(3)	C -N	1.31(2)	$C^5C^6N^1$	118.2(15)	$C^{13}N^{12}C^{11}$	113.9(14)
$\begin{array}{c ccccc} C^{4}-C^{5} & 1.40(3) & N^{12}-C^{13} & 1.46(2) & N^{1}C^{6}C^{7} & 115.7(14) & N^{12}C^{14}S^{1} & 119.7(14) \\ & C^{6}C^{7}C^{8} & 115.1(14) & N^{12}C^{14}S^{2} & 120.2(15) \\ & C^{6}C^{7}C^{13} & 110.7(14) & S^{1}C^{14}S^{2} & 120.1(10) \end{array}$	C^3-C^4	1.32(3)	$N^{12}-C^{14}$	1.35(2)	$C^5C^6C^7$	126.0(16)	$N^{12}C^{13}C^{7}$	106.4(13)
$\begin{array}{c cccc} C^{6}C^{7}C^{8} & 115.1(14) & N^{12}C^{14}S^{2} & 120.2(15) \\ \hline C^{6}C^{7}C^{13} & 110.7(14) & S^{1}C^{14}S^{2} & 120.1(10) \\ \hline \end{array}$	C^4-C^5	1.40(3)	$N^{12}-C^{13}$	1.46(2)	$N^{1}C^{6}C^{7}$	115.7(14)	$N^{12}C^{14}S^1$	119.7(14)
C^5-C^6 1.35(2) $C^6C^7C^{13}$ 1107(14) $S^1C^{14}S^2$ 1201(10)				(=)	$C^{6}C^{7}C^{8}$	115.1(14)	$N^{12}C^{14}S^2$	120.2(15)
CCC 110.7(17) SCS 120.1(10)	$C^{5}-C^{6}$	1.35(2)			$C^{6}C^{7}C^{13}$	110.7(14)	$S^1C^{14}S^2$	120.1(10)

|--|

Angle	τ, deg	Angle	τ, deg	
$C^6N^1C^2O^1$	179.7(1)	$C^{13}C^7C^8C^9$	62.6(2)	
$C^{10}N^1C^2O^1$	3(2)	$C^{7}C^{8}C^{9}C^{11}$	-60.0(2)	
$C^6 N^1 C^2 C^3$	-2(3)	$C^{7}C^{8}C^{9}C^{10}$	65.3(2)	
$C^{10}N^1C^2C^3$	-179.5(2)	$C^{6}N^{1}C^{10}C^{9}$	8(2)	
$O^1C^2C^3C^4$	-178.2(2)	$C^{2}N^{1}C^{10}C^{9}$	-175.1(1)	
$N^1C^2C^3C^4$	4(3)	$C^{8}C^{9}C^{10}N^{1}$	-39.8(2)	
$C^2C^3C^4C^5$	-3(4)	$C^{11}C^9C^{10}N^1$	87.5(2)	
$C^{3}C^{4}C^{5}C^{6}$	1(3)	$C^{8}C^{9}C^{11}N^{12}$	56.7(2)	
$\mathrm{C}^4\mathrm{C}^5\mathrm{C}^6\mathrm{N}^1$	1(3)	$C^{10}C^9C^{11}N^{12}$	-67.9(2)	
$C^{4}C^{5}C^{6}C^{7}$	-177.6(2)	$C^{9}C^{11}N^{12}C^{14}$	133.0(1)	
$C^2N^1C^6C^5$	0(2)	$C^{9}C^{11}N^{12}C^{13}$	-55.6(2)	
$C^{10}N^1C^6C^5$	176.7(2)	$C^{14}N^{12}C^{13}C^7$	-130.2(1)	
$C^2N^1C^6C^7$	178.7(1)	$C^{11}N^{12}C^{13}C^7$	58.4(2)	
$C^{10}N^1C^6C^7$	-4(2)	$C^{6}C^{7}C^{13}N^{12}$	66.4(2)	
$C^{5}C^{6}C^{7}C^{8}$	-147.0(2)	$C^{8}C^{7}C^{13}N^{12}$	-63.5(2)	
$N^1C^6C^7C^8$	34(2)	$C^{13}N^{12}C^{14}S^{1}$	-172.7(1)	
$C^{5}C^{6}C^{7}C^{13}$	85(2)	$C^{11}N^{12}C^{14}S^{1}$	-2(2)	
$N^{1}C^{6}C^{7}C^{13}$	-93.9(2)	$C^{13}N^{12}C^{14}S^2$	8(2)	
$C^6C^7C^8C^9$	-65.0(2)	$C^{11}N^{12}C^{14}S^2$	178.2(1)	

cytisinylamide on the other hand, is caused by mesomeric effect, i.e. electron density delocalization of S^1 and N^{12} atoms occurs. The latter leads to the increase of bond angles at the nitrogen atom, to lengthening of S=O (C=O) bond and to shortening of C–N bond relative to the standard values.

The presence of ammonium ion in the structure **I** out the field of electronegative charge of dithiocarbamate fragment is explained by the overall charge distribution between molecules in the crystal arrangement (Fig. 2).

Dihydropyridine ring in the structure I is planar within ± 0.005 Å accuracy, carbonyl atom O¹ lies practically in this plane (divergence from this plane is 0.06Å). Tetrahydropyridine ring N¹C⁵C⁶C⁷C⁸C⁹ takes the conformation of distorted sofa with the bridgehead C⁷ atom withdrawn from the mean plane of the other ring atoms by 0.76 Å. Piperidine ring takes the distorted chair conformation.

Thus, by reaction of cytisine, anabasine and *d*pseudoephedrine with carbon disulfide the new alkaloid ammonium salts were first synthesized and characterized. Structure and composition of the thiocarbamate derivatives were confirmed with elemental analysis, X-ray diffraction and ¹H NMR spectroscopy data.

EXPERIMENTAL

The ¹H NMR spectra were registered on a Bruker DRX500 device (500 MHz) in DMSO– d_6 relative to internal TMS. Melting points were determined on a Boetius device. Reaction progress and purity of compounds obtained were monitored by TLC on Sorbfil plates, eluent benzene-acetone, 1:1, detecting agent was iodine vapor.

Single crystal X-ray diffraction analysis. The unit cell parameters and intensities of 2564 reflections were measured on a Bruker P4 automatic four-circle diffractometer (λ Mo K_{α} radiation, graphite monochromator). The crystals are monoclinic, *a* 24.20(3), *b* 9.047(1), *c* 7.454(1) Å, β 102.26(9)°, *V* 1595(4)Å³, *Z* 4 (C₁₅H₂₀N₂OS), *d*_{calc}1.401 g cm⁻³, space group *C*₂.

In the calculation we used 1499 independent reflections with $I > 2\sigma$. The structure was solved by the

Fig. 2. Molecule I crystal arrangement.

direct method and refined by the least-squares method in the full-matrix anisotropic approximation for nonhydrogen atoms. All the H atoms are geometrically placed by the *rider* type, except the hydroxyl hydrogen atoms at the O¹ and O² atoms, which were refined in the anisotropic approximation. The final values of the divergence factors are *R* 0.1316 and wR_2 0.3364. All the calculations were performed using the SHELX-97 program package.

N-Cytisinodithiocarbamate ammonium salt crystalline hydrate (I). 95% ethanol was saturated with ammonia for 3 h. To this solution was added 1 g (0.005 mol) of cytisine and then 0.4 g (0.005 mol) of carbon disulfide was added at gentle cooling (10°C). Further the reaction mixture was stirred at room temperature for 7 h. Then the solvent was removed and the residue was recrystallized from ethanol. Yield 1.03 g (73.6%), mp 169–170°C. ¹H NMR spectrum, δ , ppm: 2.00 m (2H, H⁵), 2.54 br.s (1H, H⁶), 3.35 br.s (1H, H⁴), 3.50 m (2H, H⁸), 3.60 m (2H, H⁷), 4.20 m $(2H, H^9)$, 6.15 d [1H, H³, $J(H^3H^2)$ 6.85 Hz], 6.25 d [1H, H¹, J(H¹H²) 9.0 Hz], 7.35 d.d [1H, H², J(H2H³) 6.85 Hz]. Found, %: C 50.29; H 5.87; N 14.25; S 22.91. C₁₂H₁₇N₃OS₂ (anhydrous salt). Calculated, %: C 50.85; H 6.05; N 14.83; S 22.63.

N-Anabasinodithiocarbamate ammonium salt (II) was prepared similarly from 1 g (0.006 mol) of anabasine and 0.45 g (0.006 mol) of carbon disulfide. Yield 0.95 g (62.1%), 175–176°C. ¹H NMR spectrum, δ , ppm: 1.37–2.05 m (6H, H⁶, H⁷, H⁸), 2.60 m (2H, H⁹), 3.04 t (1H, H⁵), 7.47 d.d (1H, H²), 8.0 d (1H, H³), 8.50 s (1H, H⁴), 8.71 d [1H, H¹, *J*(H¹H²) 5.0 Hz]. Found, %: C 52.14; H 6.94; N 16.81; S 25.50. C₁₁H₁₇N₃S₂. Calculated, %: C 51.73; H 6.71; N 16.45; S 25.11.

N-D-Pseudoephedrinodithiocarbamate ammonium salt (III) was prepared similarly from 0.66 g (0.004 mol) of *d*-pseudoephedrine and 0.3 g (0.004 mol) of carbon

disulfide. Yield 0.71 g (69.3%), mp 167–168°C. ¹H NMR spectrum, δ , ppm: 0.98 d (3H, CH₃–CH, J 5.1 Hz), 2.85 s (3H, N–CH₃), 3.55 m (1H, CHN), 4.75 d (1H, CHO, J 3.5 Hz), 7.28 m (5H, H_{Ar}). Found, %: C 50.68; H 6.54; N 10.31; S 25.13. C₁₁H₁₈N₂OS₂. Calculated, %: C 51.13; H 7.02; N 10.84; S 24.82.

REFERENCES

- Byr'ko, V.M., *Ditiokarbamaty* (Dithiocarbamates), Moscow: Nauka, 1984, p. 342.
- Mel'nikov, N.N., *Proizvodnye tio- i ditiokarbaminovykh* kislot (Thio- and Dithiocarbamine Acids Derivatives), Moscow: Khimiya, 1960, p. 195.
- Mel'nikov, N.N., Uspekhi v oblasti izucheniya pesticidov (Pesticides Study Advances), Moscow: Khimiya, 1962, p. 137.
- Mel'nikov, N.N., *Pesticidy. Khimiya, tekhnologiya i primenenie* (Pesticides. Chemisty, Technology, and Applicaition), Moscow: Khimiya, 1987, p. 712.
- Korablev, M.V., Proizvodnye ditiokarbaminovykh kislot. Khimiya, toksikologiya, farmakologiya i klinicheskoye primeneniye (Dithiocarbamine Acids Derivatives. Chemistry, Toxicology, Pharmacology, and Clinical Use), Minsk: Belarus', 1971, p. 152.
- Turdybekov, D.M., Isabayeva, M.B., Turdybekov, K.M., Nurkenov, O.A., Ibrayev, M.K., and Gazaliev, A.M., *Zh. Obshch. Khim.*, 2005, vol. 75, no. 7, p. 1202.
- Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., J. Chem. Soc. Perkin Trans. 2, 1987, p. 19.
- Freer, A.A., Robins, D.J., and Sheldrake, G.N., *Acta Cryst.*, 1987, vol. 43, p. 1119.
- Nurkenov, O.A., Gazaliev, A.M., Shalbayeva, A.B., Turdybekov, K.M., Zhurinov, M.Zh., and Aubakirova, A., *Zh. Obshch. Khim.*, 1999, vol. 69, no. 4, p. 675.
- Turdybekov, D.M., Ibrayev, M.K., Fazylov, S.D., Turdybekov, K.M., Gazaliev, A.M., Zhurinov, M.Zh., Kudaibergenova, S.Zh., *Zh.Org. Khim.*, 2004, vol. 73, no. 5, p. 752.