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Anew receptor based on a dibenzo-18-crown-6 derivative is successfully synthesized and characterized. This recep-
tor reveals selective recognition toward Al3+ ion, alongwith colorimetric andfluorometric dual-signaling responses
based on internal charge transfer (ICT). Also, it can serve as a highly selective chemodosimeter for Al3+ with
naked-eye detection.
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Fluorescent chemosensors arewidely used as powerful tools to detect
neutral and ionic species owing to their high sensitivity, selectivity, versa-
tility, and relatively simplehandling [1]. In this regard, the design and syn-
thesis of chemosensors are currently of great interest [2–11]. On the other
hand, aluminum is the most abundant metal in the Earth's crust and has
been extensively used in modern life [12]. However, Al3+ is neurotoxic
to humans and has been found to induce many health issues, such as
Alzheimer's disease and Parkinson's disease [13]. Thus, the development
of sensors for facile detection of Al3+ is of great importance in envi-
ronmental monitoring and biological applications. Compared with
the detections of other transition-metal ions, limited examples of
Al3+ fluorescence sensors based on small molecules have been reported
through an internal charge-transfer (ICT) mechanism [14,15], and most
of the detections are due to photoinduced electron transfer (PET) process
[2,3,16]. Herein, a new chemosensor 1 with 2,3-diphenylquinoxaline
as fluorophore and 18-crown-6 moiety as chelating unit has been
reported, which exhibits high selectivity for Al3+ ions. The Al3+ de-
tection process gives rise to large changes in the absorption spectra
(from colorless to yellow), which is clearly visible to the naked eye.
Meanwhile, upon the binding of 1 with Al3+, a distinct emission
red shift based on the ICT mechanism with slight emission enhance-
ments could be observed. These results might provide explicit infor-
mation to qualitative and quantitative detection of Al3+ ions in
future application.

The synthetic route of 1was outlined in Scheme 1. Compound 3was
prepared by following the literaturemethod [17]. The reaction of 3with
+86 22 23502458.
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benzil in ethanol under a nitrogen atmosphere gave 1 in the yield of
30%. Compound1was then characterized by 1HNMR, ESI-MS, IR, elemen-
tal analysis and X-ray diffraction analysis.

The metal affinity of 1 toward a variety of cations: K+, Na+,
Ca2+, Mg2+, Al3+, Cu2+, Co2+, Ni2+, Fe2+, Hg2+, Mn2+, Cr3+,
Cd2+, Ag+, Zn2+, La3+, Eu3+, and Td3+ was investigated by absorp-
tion and fluorescence spectroscopy in CH3CN solution. As shown in
Fig. 1, without any metal ion, 1 showed an absorption band centered at
366 nm and at 258 nm. Upon addition of Al3+, the absorption band at
366 and 238 nm diminished, while new bands at 271 and 418 nm were
observed. The presence of well-defined isosbestic points at 398 and
265 nm indicates the formation of stable complex between 1 and Al3+.
The color of the solution changes from colorless to light yellowish-green
upon addition of Al3+ as shown in Fig. 1b, which allows the detection
of Al3+ ions by naked-eyes.

In addition, fluorescence properties of 1 in the presence of the above
mentioned metal ions in CH3CN solution were investigated. As shown
in Fig. 2, the free receptor 1 exhibits a strong emission band around at
400 nm upon excitation at 334 nm. Addition of K+, Na+, Ca2+, Mg2+,
Cu2+, Co2+, Ni2+, Mn2+, Cr3+, Cd2+, Ag+, Zn2+, Fe2+, La3+, Eu3+,
and Td3+ induced almost no changes in the emission profiles. However,
addition of Hg2+ quenched the fluorescence to some extent. Only the ad-
dition of Al3+ ions to the solution of 1 resulted in a prominent red shift of
the fluorescence maximum of about 75 nm from 400 nm to 475 nm.
Meanwhile, the ratio of emission intensities at 475 and 400 nm (I475 nm/
I400 nm) changed from30.36 to 0.04 upon addition of Al3+. The significant
red shift observed suggests that Al3+ likely interacts with the electron
donor 1 through the intramolecular charge transfer (ICT) mechanism
[14,15]. The experimental observations are confirmed quantitatively by
the DFT calculation results. As shown in Fig. S1, the LUMO of complex
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Scheme 1. The structure and synthesis of 1.
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stabilizes more strongly than HOMO after the coordination of Al3+ ion,
resulting in a red shift of fluorescence spectra [18].

The fluorescence titration spectra of Al3+ to 1 (50 μM) are shown
in Fig. 3a. Gradually increasing concentrations of Al3+ caused the de-
crease of the emission band at 400 nm, while a new peak around
Fig. 1. (a) UV–vis spectra of 1 (5 μM) with increasing amounts of Al(ClO4)3 (0–2.5 equiv.).
Inset: absorbance of 1 at 365 (circles) and 417 (squares) nm as a function of Al3+ concentra-
tion. (b) Color changes of 1 in CH3CN solution upon addition of Al3+.
475 nmwith fluorescence enhancement up to 30-fold reached a pla-
teau after 1 equiv. of Al3+ was added. Also, a new isoemissive point at
456 nm appeared, implying the formation of a well-defined complex
between Al3+ and 1. The solution of 1 with 1 equiv. Al3+ converted
the visual emission color from purple to cyan when excited with a
hand-held 365 nm UV-lamp (Fig. 3b). The saturation behavior of
the fluorescence intensity after 1 equiv. of Al3+ reveals that the
Al3+ receptor has a 1:1 stoichiometry (Fig. 4). These results were fur-
ther confirmed by Job's plot, which indicates that a binding stoichiom-
etry of the complex formed between 1 and Al3+ is 1:1. Based on the
above fluorescence titration studies, the association constant (Ks) of 1
for Al3+ ions was found to be 3.28 × 104 (Fig. S2).

To explore practical applicability of 1 as an Al3+ selective receptor,
cross-contamination experiments were conducted in the presence of
Al3+ at a concentration of 50 μMmixed with other metal ions at a con-
centration of 0.5 mM. As shown in Fig. S3, the results clearly suggest
that the selectivity of 1 towards Al3+ was almost unaffected by other
competitive ions (10 equiv.).

On the basis of the above studies of optical measurement and Job's
plot, probable sensing processes for 1 to Al3+ were proposed (Fig. 6).
The bondingmode of 1was confirmed by 1H NMR titrations experiment.
The chemical shifts for the key protons in the crownmoieties (Ha andHb)
of 1 were assigned as 4.36, and 4.00 ppm, respectively (Fig. 5a), based
on the previous report regarding related compounds. After addition of
0.4 equiv. Al3+, the signals shifted downfield from 4.00 to 4.04, and
4.36 to 4.39, respectively. With further addition of Al3+ up to 1 equiv.,
Fig. 2. Fluorescence spectra of 1 (50 μM) after adding metal salts (10 equiv.) of K+, Na+,
Ca2+, Mg2+, Cu2+, Co2+, Ni2+, Mn2+, Cr3+, Cd2+, Ag+, Zn2+, Fe2+, Al3+, La3+, Eu3+, and
Td3+ in CH3CN solution. The excitation wavelength was 334 nm.
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Fig. 5. 1H NMR (400 MHz) spectra of 1 (5 × 10−3 M) in CD3CN/DMSO-d6 (0.1/0.4, v/v)
with addition of Al(ClO4)3.

Fig. 3. (a) Fluorescence (λ ex = 334 nm) titrations of 1 (50 μM) with Al3+ (from 0 to
2 equiv.) in CH3CN. The excitation and emission slit widths were 2.5 nm and 5 nm, respec-
tively. Inset: Fluorescence intensity at 400 and 475 nm as a function of [Al3+]. (b) Fluores-
cence images under 365 nm UV-light.
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the signals of Ha and Hb stop shifting and stabilized at δ = 4.49 and
4.07 ppm, respectively. These results suggest that Al3+ interacts with
the oxygen atom of 1 in the 18-crownmoieties and forms stable complex
Fig. 4. Job's plots for 1 with Al3+ [1] + [Al3+] = 10−4 M.
with1:1 stoichiometry [19]. Significantly, the proposed bondingmode for
1 to Al3+ is consistent with the fluorescence studies. Binding of Al3+ to
the 18-crown moieties (the electron acceptor in the push–pull system)
is in accordance with the red shift (75 nm) in the fluorescence spectra.
The proposed mode of 1 and Al3+ is displayed in Fig. 6.

In conclusion, we have successfully designed and synthesized a new
receptor 1 that shows colorimetric and fluorometric dual-signaling re-
sponses for Al3+ ions. The detection process gives rise to a color change
that is clearly visible to the naked eye (from colorless to yellow). Fur-
thermore, both the colorimetric and fluorometric detection exhibit
high selectivity towards to Al3+ over other tested cations. The bonding
mode has been further confirmed by 1H NMR and Job's plot.
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Appendix A. Supplementary material

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.inoche.2013.03.020.
Fig. 6. The proposed 1–Al3+ binding mode in solution.
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