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Abstract

Chitosan is a non-toxic, biocompatible, biodegraelafatural cationic polymer known for its
low imunogenicity, antimicrobial, antioxidant eftsand wound-healing activity. To improve
its therapeutic potential, new chitosan-sulfonanddgevatives have been designed to develop
new wound dressing biomaterials. The structuralrpimological and physico-chemical
properties of synthesized chitosan derivatives warealyzed by FT-IR,'H-NMR
spectroscopy, scanning electron microscopy, svegehibility and porosity. Antimicrobiain
vivo testing and biodegradation behavior have beenpdsiormed. The chitosan derivative
membranes showed improved swelling and biodegm@uatate, which are important
characteristics required for the wound healing essc The antimicrobial assay evidenced that
chitosan-based sulfadiazine, sulfadimethoxine améamethoxazole derivatives were the
most active. The MTT assay showed that some ofosait derivatives are nontoxic.
Furthermore, thén vivo study on burn wound model induced in Wistar r&sdnstrated an
improved healing effect and enhanced epitheliabpabf chitosan-sulfonamide derivatives
compared to neat chitosan. The obtained resuttegir recommend the use of some of the

newly developed chitosan derivatives as antimi@olbund dressing biomaterials.

KEYWORDS: chitosan derivative, membrane, biomaterial, headiciiyvity

Chemical compoundstudied in this article:

Chitosan (PubChem CID: 21896651); Sulfadiazine @hém CID: 5215);
Sulfamethoxydiazine (PubChem CID: 5326); Sulfami@ez(PubChem CID: 5325);
Sulfadimethoxine (PubChem CID: 5323); Sulfisoxazol@PubChem CID:5344);

Sulfamethoxazole (PubChem CID:5329); Chloroacetyloide (PubChem CID: 6577);
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Acetic acid (PubChem CID: 176); Sodium hydroxideud€hem CID: 14798); Sodium

tripolyphosphate (PubChem CID: 24455).

Abbreviations used

ANOVA, analysis of variance; CS MMW, chitosan withedium molecular weight; DA,
degree of acetylation; DS, degree of substitutidMfA, dimethylformamide; FT-IR, Fourier
transform infrared spectroscopyt-NMR, Proton Nuclear Magnetic Resonance; MSR,
membrane swelling ratio; PBS, phosphate buffereinesa SEM, scanning electron

microscope; TLC, layer chromatography; TPP, soditijpolyphosphate.

1. Introduction

The wound is a type of injury in which dermis oétskin is damaged by burn, trauma, and
cut. Often a serious wound can cause death anddsbeutreated with specialized wound
dressing materials. Although there is a high demfandvound dressing materials, wound
dressing technology is still far behind, due to itheinsic complexity of the wound healing
process. Ideal wound dressing materials need tce hgood tissue conformity, easy
application, moist environment, low risk of infewt proper removal of exudates and
accelerated tissue healing rate. There are vatypes of wound dressing biomaterials that
are commercially available, generally manufacturedn natural or synthetic polymers or a
combination of both. In recent years, porous memdsaare considered as the best wound
dressing materials since they provide a moist amilsive environment, which significantly
facilitates the wound healing process (Willi & Chkam, 2004). However, the moist
conditions, provided by membranes, are equally sesry for pathogen proliferation and

colonization. The impregnation of the wound dregsimaterial with an antimicrobial agent is
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also highly preferred (Jones, Grey & Harding, 2086¢dheesh Kumar et al., 2012; Mallick et
al., 2012).

Another desirable function of the wound dressmdoi accelerate hemostasis and tissue
regeneration. A cationic dressing is known to futfiis requirement. Chitosan is a naturally
derived cationic polysaccharide consisting of Ntgcglucosamine and D-glucosamine
sugars (Yang et al., 2008; Batista, Pinto, GomesG&mes, 2006). During chitosan
biodegradation, it produces N-acetyl glucosamindjciv is used to accelerate the re-
epithelialization process. Its non-toxicity, vergabiological activities as antimicrobial, low
immunogenicity, wound-healing activity, antioxidgmbperties, and low cost have provided
ample opportunities for further development of bademials for various therapeutic
applications. Due to its polycationic nature th@&adan inhibits the growth of a wide variety
of bacteria and fungi, showing a broad spectrunartdfbacterial activity, high killing rate
against bacteria, and low toxicity toward mammatetis (Xie, Liu & Chen, 2007). Chitosan
and its derivatives received increasing attentioriverse areas such as food preservation
(Aider, 2010), water purification (Kotodgka, 2012; Wang, Chen, Yuan, Sheng & Yu, 2009;
Gupta, Chauhan & Sankararamakrishnan, 2009), pagestry (Dutta, Ravikumar & Dutta,
2002), pharmacy or medicine (Dash et al., 2011laBal et al., 2000; Xie et al., 2007; Ma et
al., 2008; Pillai, Willi & Chandra, 2009; Yang, Qh& Li, 2005; Li et al., 2012; Dias et al.,
2013; Oztiirk, Agalar, Kegeci & Denkbas, 2006; Xihig, Zhengwei & Changyou, 2011).

Chitosan possesses three reactive sites inclulipgmary amine and two primary or
secondary hydroxyl groups per glucosamine unitibgadbjected to chemical modification
(Okamoto et al., 2003; Samal et al., 2012). Thecstiral characteristics of chitosan mimic
glycosaminoglycan components of the extracellulaatrix, while the biocompatibility,
biodegradability, antibacterial (Samal et al., 20%htioxidant activities and mucoadhesive

properties impart versatility. Utilization of chigan in biomedical applications is limited due
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100 to its low solubility at physiological pH of 7.4ltlaoughit is soluble in acidic agueous media.
101  Moreover, the antimicrobial effects of chitosan argroved in acidic conditions due the
102  interactions between protonated amino groups @bsan and anionic components of bacteria
103 (Martins et al.,, 2014). In order to overcome thdisgtations and enhance antimicrobial
104  properties, various chitosan derivatives have lsigned (Yang et al., 2008). Many efforts
105 have been made to introduce hydrophilic groups dyalent attachment to reactive amino
106  groups at the gposition. Various kinds of modification of chitoshave been investigated in
107 recent years using acylation, alkylation, carboxthylation and quaternization (Ma et al.,
108  2008). Recently, the antibacterial and antifungzlviies of chitosan have been followed
109 with great interest. Furthermore incorporation aitilaacterial agents into the chitosan
110  backbone offers excellent antibacterial propert&smal et al., 2014; Ignatova, Manolova &
111 Rashkov, 2013; Sashiwa, Yamamori, Ichinose, Sunai®&dkiba, 2003).

112 On the other hand, sulfonamides and their diffedmrivatives are extensively used in
113  medicine due to their pharmacological propertieshsas antibacterial activity (Kremer et al.,
114  2006; Zahid, 2009). Sulfonamide derivatives werecsasfully employed as effective
115  chemotherapeutic agents for the prevention and @ubacterial infections in humans. These
116  drugs act on the bacteria and either prevent tip@wth (bacteriostatic effect) or act as
117  germicides (bactericides) and have no effect orstheoth muscles, heart, blood pressure or
118 respiration (Gomes & Gomes, 2005). Therefore, issential to have an ideal membrane
119  which can combine all the above mentioned featofeshitosan and sulfonamides into one
120  single design, to address the different aspecésdyinamic wound dressing biomaterial.

121 Herein, we report on the preparation, physico-cleaimcharacterization and biological
122 evaluation of the novel chitosan-sulfonamide ddéives as membranes which have all
123 theoretical premises to be useful in the therapyofinds, focused on burn wounds. New

124  sulfonamide drug-functionalized chitosan membranese proposed to reduce bacterial
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125 infection risks as well as promote re-epithelidima of damaged tissue and thus be effective
126  as wound dressing biomaterials.

127
128 2. Material and methods

129 2.1 Materials

130 Chitosan with medium molecular weight (CS MMW, 4@5a, deacetylation degree of
131  85%), sulfonamides (sulfamethoxydiazine, sulfadiazisulfamerazine, sulfadimethoxine,
132  sulfisoxazole and sulfamethoxazole), chloroacehtbiide, acetic acid, sodium hydroxide,
133  sodium tripolyphosphate (TPP) and organic solvepta.) were purchased from Sigma
134  Aldrich Company. All solvents and reagents weredus&thout further purification. Thin
135 layer chromatography (TLC) plates (aluminum foieced with 0.25 mm thick silica gel 60)

136  from Merck (VWR International) were used.
137  2.2. Chemistry

138  2.2.1. Synthesis of sulfonamide-chitosan derivatives (3a-f)

139 To a stirred solution of chitosan (11 mmol) in 1%etc acid (100 mL), a solution of N-
140  chloroacetylsulfonamide derivatived-f) (13.2 mmol) in dimethylformamide (DMFA) (50
141 mL) was added. The reaction mixture was stirrecafuout 24 h at room temperature and then
142 the pH was adjusted to 9 with 15% NaOH solutiosultng in a precipitate (Batista, Pinto,
143 Gomes & Gomes, 2006; Xie, Liu & Chen, 2007; FengKi&, 2011). The products were
144  washed five times with double-distilled water unthe pH of the filtrate was 7. The final
145  compounds were purified by dialysis against deietiwater for 5 days and then freeze-dried
146 on Alpha 1-2 LD Plus Freeze Dryer.

147  Chitosan-aminoacetyl-sulfamethoxydiazii3a). IR (KBr, cni’); 1640 (C=0 amide I), 1595

148 (NH amide II), 1543, 834 (phenyl), 1258, 1165 ¢(90; *H-NMR (300 MHz, CRCOOD, d):
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2.32 (3H, COCH); 2.32 (3H, OCH); 3.47 (H-2 chitosan); 4.00-4.18 (H-3,4,5,6 chétos
5.15 (H-1 chitosan); 3.15-3.35 (NH), 7.03 (2CH,raatic), 7.79 (2CH, aromatic), 8.09 (2CH,
pyrimidine).

Chitosan-aminoacetyl-sulfadiazir@b). IR (KBr, cm™): 1629 (C=0 amide 1), 1595 (NH
amide 1I), 1546, 839 (phenyl), 1259, 1168 ¢(90; 'H-NMR (300 MHz, CR-COOD, §):
2.18 (3H, COCH); 3.67 (H-2 chitosan); 3.85- 4.53 (H-3,4,5,6 ckén); 5.16 (H-1 chitosan);
3.12 (NH); 6.86-6.88 (2CH, aromatic); 7.01-7.02 kRGromatic); 7.65 (1CH, pyrimidine);
8.42-8.43 (2CH, pyrimidine).

Chitosan-aminoacetyl-sulfadimethoxirigc). IR (KBr, cmi'): 1656 (C=O amide 1), 1592
(NH amide 1), 1545, 896 (phenyl), 1262, 1164 (30; ‘H-NMR (300 MHz, CR-COOD,
d): 2.18 (3H, COCH); 1.24-1.38 (6H, OCEJ; 3.54 (H-2 chitosan); 3.60- 3.87 (H-3,4,5,6
chitosan); 4.79 (H-1 chitosan); 3.14 (NH); 7.70Z.(2CH, aromatic); 7.95-7.98 (2CH,
aromatic); 8.26 (1CH, pyrimidine).

Chitosan-aminoacetyl-sulfamethoxazgBd). IR (KBr, cm®): 1650 (C=0O amide 1), 1594
(NH amide 1), 1548, 897 (phenyl), 1261, 1167 (90; ‘H-NMR (300 MHz, CQ-COOD,
d): 2.68 (3H, COCH); 2.19 (3H, CH); 3.13 (H-2 chitosan); 3.52-3.86 (H-3,4,5,6 chitals
4.75 (H-1 chitosan); 2.82-2.97 (NH); 6.89-6.91 (2Gbmatic); 7.67-7.70 (2CH, aromatic);
6.03 (1CH, izoxazole).

Chitosan-aminoacetyl-sulfamerazif@e). IR (KBr, cm'): 1654 (C=0O amide 1), 1596 (NH
amide II), 1548, 896 (phenyl), 1259, 1165 (S0; H-NMR (300 MHz, CR-COOD, §):
2.63 (3H, COCH); 2.40 (3H, CH); 3.14 (H-2 chitosan); 3.65-3.87 (H-3,4,5,6 okén);
4.88 (H-1 chitosan); 2.82-2.98 (NH); 6.87-6.89 (2Gibmatic); 7.68-7.71 (2CH, aromatic);
7.96 (1CH, pyrimidine); 8.19 (1CH, pyrimidine).

Chitosan-aminoacetyl-sulfisoxazagf). IR (KBr, cm?): 1654 (C=0 amide 1), 1565 (NH

amide 11), 1546, 897 (phenyl), 1261, 1164 ¢(80; 'H-NMR (300 MHz, CR-COOD, ?):
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174  2.50 (3H, COCH); 1.54 (3H, CH); 1.61 (3H, CH); 3.14 (H-2 chitosan); 3.54-3.87 (H-
175  3,4,5,6 chitosan); 4.77 (H-1 chitosan); 2.79-298i); 6.82-6.84 ( 2CH, aromatic); 7.72-7.81

176  (2CH, aromatic).

177  2.3. Preparation of chitosan derivatives membranes

178 Chitosan (CS MMW) and its sulfonamide derivativea-{) (2%, w/v), in 2% acetic acid
179  solutions, were kept at -20 °C overnight and dftet the frozen samples were lyophilized for
180 24 h, crosslinked with a solution of 5% TPP andhtiashed several times with double-
181  distilled water in order to obtain porous chitosaambranes (Feng & Xia, 2011; Anisha et
182  al., 2013; Arpornmaeklong, Pripatnanont & Suwattéro2008; Sionkowska & Panecka,

183  2013). The resulting membranes were stored in Raldoes at 4 °C.
184  2.4. Characterization of Chitosan Derivatives

185  2.4.1. ATR -FTIR Spectroscopy

186 Chloroacetylsulfonamide derivative2a(f) and chitosan derivatives34-f) were
187 characterized by ATR-FTIR measurements using adidfT-IR spectrometer FTS 575C.
188  Spectra were recorded in the range of 4000- 508with 32 scans at a resolution of 4 ¢m
189  Spectral processing was carried out with HorizonTWBFTIR Software and GRAMS 32

190 Software (Galactic Industry Corporation, Salem, N¥@rsion 6.00 (Samal et al, 2014).

191 2.4.2. "H-NMR Spectroscopy

192 'H-NMR spectra of chitosan derivatives were recoritied,O/CD;COOD with a Bruker
193  Avance 300 MHz instrument. The chemical shifts werpressed in ppm downfield of
194 tetramethylsilane (TMS) as an internal standarctl®ar magnetic resonance spectral analysis
195 (*H-NMR) was used to determine the acetylation degreehitosan, and the substitution

196  degrees of various chitosan derivatives.
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Degree of Acetylation (DAJf chitosan it was calculated by using ratio betwte integral of
the peak of the three protons from acetyl group iategral of the characteristic peak of
proton from -CHNH, group of deacetylated monomer, using the folloviorgnula:

DA = ([la]/3)/ [Ib] x 100 (1)
where: la=integral of the peak of the three protofhsacetyl group, Ib = integral of the
characteristic peak of proton from_-&¥H, group.

Degree of Substitution (D®Y chitosan derivatives (3a-f) was calculated bygghe ratio
between the integral of the peak of the four ar@nptotons from sulfonamide part and
integral of the characteristic peak of proton fre@H-NH, group of deacetylated monomer,
using the following formula:

DS = ([la]/4)/ [Ib] x 100 X2
where: la = integral of the peak of the four aramatotons from sulfonamide part, Ib =

integral of the characteristic peak of proton fre®t-NH, group.

2.5. Characterization of chitosan derivatives membranes

2.5.1. Morphology
The morphology of chitosan membrane was examineasbnyg a Fei Quanta 200F (field
emission gun) scanning electron microscope (SEMg. dried samples were coated with gold

before observation in a scanning electron microscop

2.5.2. Porosity test

The porosity of prepared crosslinked chitosan dgiies membranes was determined
using the method of immersing in absolute ethamdil saturation. The samples have been
weighed before and after immersion in alcohol amel porosity degree (P) was calculated
according to the following formula (3):

P= (Wz-Wl)/ pV 1 (3)
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where: W and W, = the weight of membrane before and after immarsicabsolute ethanol,

V1 andp are the volume and density of alcohol.

2.5.3. In vitro biodegradation

The degradation of the membranes was studied imoapghate buffered saline (PBS) (pH
7.4) containing lysozyme at 37°C. Membranes wengakly) weighed and immersed first in
PBS until swelling equilibrium was reached, thee #BS solution was changed to a PBS
medium containing lysozyme (10000 Ul/mL) and indedaat 37°C for 7 days. The
membranes were taken out and weighed after 1, # alays. The percentage biodegradation
(D%) was calculated using the following formula (8a, Tuzlakglu, Mano & Reis, 2012):
D% = (Wo-Wx)/Wy x 100 4)

where: W = wet weight before incubatioWx = wet weight after incubation.

2.5.4. Swelling ratio

The crosslinked chitosan derivative membranes weténto small pieces that had equal
weights (W) and then were immersed in double-distilled watied acetate buffer solution
respectively. The membranes were taken out at fspe:qgieriods of time, the excess of water
was removed by gentle wiping with a filter paped ammediately weighing them (\Y. The
membrane swelling ratio (MSR) was calculated usigfollowing formula (Lin, Tan, Marra,
Jan & Liu, 2009):
MSR (%) = (W~ Wa)/ Wax100 (5)
where: W, W, are the weight of membranes before and after imoreia double-distilled

water.

2.5.5. Surface free energy estimation by contact angle measurement
Surface free energy (SFE) can be calculated by umegscontact angles of various fluids

with different known surface tension characterssti€o obtain the components of the surface

10
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free energy and the total surface free energy wdsdin and chitosan derivative membranes,
the contact angles at equilibrium between the flunface and three pure liquids: double-
distilled water, formamide and diiodomethane wereasured. The contact angle was
determined by the sessile drop method, at room eeatyre and controlled humidity, within
10 s, after placing jiL of pure liquids on the film surface, using a CANI© instrument from
KSV-Finland. Contact angle was measured at leasini€s on different sites of the surface,
the average value being considered. It was cakxuilasing Young-Laplace equation (Rotta et
al., 2009).

SFE and the components were calculated using idebase approach which divides the

total SFE into dispersive Lifshitz—van der Waalgiaction (/:") and polar Lewis acid—base
interactions {2°) according to the equation (6) (ShabalovskayagiSieund, Heurich &
Rettenmayr, 2013). The acid base interactionsalpeivided into electron dongr, (Lewis

base) and electron acceptar (Lewis acid) parts.

(1+co8) 11" = 2y + 2y + Vo) 6)

T

where:0 is the contact angley ™" is the liquid's total surface tensiop, " and y-" are the

apolar Lifshitz—van der Waals components of theitigand the solid, respectively, apdy,”

and y_y; are the Lewis acid—base contributions of eitherglid or the liquid phase.

2.6. Biological evaluation

2.6.1. Antimicrobial assay
Diameter of inhibition area

Antibacterial activity measured as the diametemnbfbition area was evaluated by agar
disc diffusion method (CLSI, 2012) using the foliog bacterial strainsStaphylococcus

aureusATCC 25923,Sarcina luteaATCC 9341, Bacillus cereusATCC 14579,Bacillus

11
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268  subtilis Escherichia colIATCC 25922 ,Pseudomonas aerugino§aP 82118.The antifungal
269 effect was evaluated dbandida albicansATCC 10231 Candida glabrateandCandida sake
270  All antimicrobial strains were obtained from thelf@@te Collection of the Department of
271 Microbiology, Faculty of Pharmacy, “Grigore T. Pd&p#&niversity of Medicine and
272 Pharmacy, lasi, Romania.

273 Sterile stainless steel cylinders (50 mm internaheter; 100 mm height) were applied on the
274  agar surface in Petri dishes and test sampla)( prepared as disc-shaped membranes (2.5
275 mg/disc), were added. The Petri dishes were ineabat 37°C for 24 h (for bacteria) and at
276 24°C for 48 h (for yeasts). After incubation, thardeter of inhibition area was measured.
277  Commercially available discs containing nitrofui@nt (300 pg/disc) and ciprofloxacin (5
278  pg/disc) were used as positive controls.

279  Minimum inhibitory/bactericidal concentrations (Mé@MBCSs)

280 The MICs and MBCs for two of the most common baatestrains Staphylococcus
281 aureusATCC 25923,Escherichia coliATCC 25922) were evaluated according to the the
282  guidelines of EUCAST Def 3.1 (2012). Briefly stosklutions were prepared by dissolving
283 the chitosan derivatives3¢-f) in the concentration of 1% in acetic acid 1%. rigsthese
284  solutions, series of two-fold dilutions were suhsaatly obtained. In a 9 cm diameter Petri
285 dish, one milliliter of each dilution was mixed dmghly with Mueller-Hinton agar (19 mL),
286  sterilized by autoclaving and cooled to'GDAfter this, the concentrations of the chitosan
287  derivatives inside the medium were 5 mg/mL, 2.5mig/1.25 mg/mL, 0.62 mg/mL, 0.31
288  mg/mL, 0.15 mg/mL, 0.07 mg/mL and 0.03 mg/mL respety. A blank plate (control of
289 growth) was also prepared by mixing acetic acid (19nl) with molten agar (19 mL). For
290 each bacterial strain, a 0.5 McFarland suspensesprepared in 0.85% saline solution and
291  after that, the inoculum was standardized in otdeassure 10colony-forming units (CFU)

292 per spot (5 pL). All inoculated plates were inceaohtfor 18 h at 36°C. The MIC was

12
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316

interpreted as the lowest concentration of the mram#that completely inhibits the growth of
bacteria in the spot area and the MBC, as the lbe@scentration of the membrane that

completely kill the bacteria in the spot area. Edetermination was performed in triplicate.

2.6.2. MTT cell proliferation assay

Biocompatibility of the polymeric materials was essed using MTT Cell Proliferation
Assay (ATCC® 30-1010R"). Mouse fibroblasts (L929) were cultured in T-BStie culture
flasks and incubated overnight at 37°C and 95%tivelahumidity in air atmosphere
containing 5% C@ The cell suspension was seeded at a density b ®ells/mL and
incubated for 24 h until a monolayer was formed exgosed to polymeric extracts. In order
to prepare the polymeric extract the samples (25)mfrchitosan derivative and chitosan (as
negative control) were sealed in polyethylene faiigl sterilized by exposure to UV radiation
for 8 h. After that the samples were placed indbkure medium with or without fetal bovine
serum in the closed tubes of 15 mL and incubate874E for 24t2 h. The medium was
filtered and used immediately.

Morphology of cells was assessed using invertedrasgope and quantitative
evaluation of cytotoxicity was done using tetraaolisalt (MTT).

The fibroblasts cultured in the presence of polymsamples were washed with PBS,
fixed in methanol, stained with Hematoxylin and Bo$H1&E) dyes and pictures were taken
using an inverse-phase microscope (Nikon Japan).

After the desired time exposure (24 h, 48 h, 72tlmg, culture medium was replaced
with fresh medium containing 3-(4,5-dimethyl-thi&2eyl)-2,5-diphenyl tetrazolium bromide
(MTT) solution, in a 10:1 (v/v) ratio, and the matwere incubated at 37°C, for 3 h. Then,
500 uL of isopropanol was added to each well to dissdhes formazan crystals by gently

shaking on a platform, for 3 h. The coloured solutivas transferred to a 96-well plate and

13
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the optical density (OD) was read at 570 nm usin§uarise microplate reader (Tecan,
Austria). Cell viability was evaluated using théldwing formula (7):

Cell viability (%) = ODsample/ ODcontrol X 100 (7
where: ORample= Optical density of the sample (chitosan andodaih derivatives), OQfghtrol =
optical density of the cell culture without polyritcematerials).

The test was performed also in the presence oblggr peroxide (0.03%) as positive control.

2.6.3. Wound healing assay

The study related to burn wound protocols was ammtoby the Animal Research
Committee of the “Grigore T. Popa” University of Meine and Pharmacy, lasi, Romania.
Eighteen male Wistar rats of 300 grams were plgeede, under deep inhalation anesthesia
(Isoflurane 2L/min), and the dorsal areas were stiavith electric clippers to ensure even
burn wounding. High-pressure steam at 114°C wa$ieapfor 2 seconds through controlled
electro-valve to inflict intermediate thickness muvound in the rat back. After debridement,
the rats were randomly divided in 3 groups (of 8 each) and the burn surface was covered
with standard gauze dressing (control rats groehgjpsan (chitosan rats group) and chitosan-
sulfadiazine (chitosan-sulfadiazine rats group) fmemes. During the test the membranes
were periodically removed and replaced. It is int@ot to replace the membranes for cleaning
the wound of dead cells, damaged tissue, fibrinexuess of exudates. All these aspects lead
to the necessity of changing dressings'in®B™" and 14' day. During every dressing renewal,
visual scale analysis, photographs and punch epsi the burn surface were performed.
ImageJ software assessed the area of wound suafatdhe level of wound contraction.
Paraffin-embedded Hematoxylin and Eosin (H&E) stmjnwas used to compare wound
healing processes between groups. At day 14, takégounch biopsy, the rats were euthanized

with 1-2 cc KCl via intracardiac injection, whila deep inhalation anesthesia.
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342 2.7. Statigtical analysis

343 All tests were performed in triplicate and the data expressed as means = SD. The
344  statistical software package StatView was used data analysis of biological assays.
345  Experimental results were analyzed by 3 (group3)time sample points) repeated measures
346 ANOVA and Fisher's post hoc test to compare the Burface area between control, chitosan
347 rats group and chitosan-sulfadiazine rats grouppay 8, 11 and 14. The criterion for
348  significance wa$< 0.05.

349
350 3. Results and Discussion

351 3.1  Chemistry

352 In order to obtain functionalized chitosan derivasi, several sulfonamides -
353 sulfamethoxydiazine, sulfadiazine, sulfadimethoxisalfamethoxazole, sulfamerazine and
354  sulfisoxazole 1a-f) were reacted with chloroacetyl chloride in drg@ne in the presence of

355 anhydrous potassium carbonate to obtain N-chlotgbselfonamides (Fig. 1a).
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Fig. 1.Two steps synthesis of chitosan derivatives witfosamide structures.

In the next step by reaction of chitosan with Necbacetyl sulfonamide8é-f) six new

chitosan sulfonamide derivatives were obtained teshwith3a-f (Fig. 1b).

3.2. Characterization of chitosan derivatives

3.2.1. Spectral data

}\IH
|
NH
H
OzS_ N—
3a-f

CHa
o=C
NH
o—
O HC
OH

In the IR spectra of chitosan derivativ@a-f), appear characteristic peaks from chitosan

and sulfonamide moieties (Fig 2). New peaks appeatearound 1540 cfhand 830 cril

attributed to phenyl group and two other peaksibatted to S@N sulfonamide group

appeared at around 1250 ¢and 1160 cfl. Increased intensities of the amide | and Il bands

of the chitosan are evident due to the new amideties arising from the amide-linked

sulfonamide substituents.

16

Page 16 of 36



368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

Transmittance (%)
L J 2
=

T 1 T T 1 1.
4000 3500 3000 2500 2000 1500 1000
Wavenumber (cm )

Fig. 2. IR spectra of chitosan (CS MMW) and its sulfonaenitrivatives 3a-f).

In *H-NMR spectra of chitosan derivative3a(f) appeared the characteristic signals for
both units: chitosan and sulfonamide (Batista, ®iomes & Gomes, 2006), that prove the
substitution took place. Sulfonamide residue apxan the range of 6.82-7.72 ppm and
7.65-7.95 ppm (aromatic protons); 7.65-8.43 ppnrifpigine - 3a, 3b, 3c, 8e) and 6.03 ppm
(isoxazole - 3d).

For physical and spectral characterization Nothloroacetyl-sulfonamides24-f) see

supplementary data (Dragostin et al., 2015).

3.2.2. Degree of acetylation (DA) and degree ofstuiion (DS)

The values of substitution degree of chitosan d¢itres Ba-f) was found to vary between
9.61 % and 34.24 % - Table 1. That means that sduitaderivatives still have between

67.95% and 43.32 % free amino groups.

Table 1

Degree of substitution (DS%) of chitosan derivagi@a-f).

Compound 3a 3b 3c 3d 3e 3f

17
Page 17 of 36



384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399
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403

404

—</N \ _</N_\ \OCH ‘<N/\Z ‘</N \ o
= ="~ N Ny N . T/g*‘
N= )
OCH " N

DS% 15.45 31.64 12.50 9.61 34.24 10.27

3.3. Characterization of Chitosan Derivative Membranes

Chitosan derivative membranes were prepared usidgi® tripolyphosphate(TPP) as a
crosslinking agent. It is known that non crosslohkditosan membranes have poor chemical
stability and will dissolve in an acid environmetd therefore need to be crosslinked. Free
amine groups of chitosan derivatives are protonategtid conditions and consequently are
positively charged. In the presence of TPP, a ndtvi® produced based on electrostatic
interactions between negatively charged crosslmkiagent and positively charged

glucosamine chains (Giri, Thakur, Ajazuddin, Badw&iTripathi, 2012).

3.3.1. Morphology and porosity analysis

The morphology and porosity degree of polymeric memes as wound dressing
materials are important features, because theyanéle the absorption capacity of exudates,
the colonization rate and cellular organization d&ab the process of angiogenesis (Xing, Lie,
Zhengwei & Changyou, 2011). It has been shownttieporosity degree could be influenced
by the concentration of polymeric solution (2%, Ww/ly freezing temperature (—BZI), but
also by the cross-linking method (chemical croskitig) and cross-linking agent (sodium
tripolyphosphate) (Kumirska, Weinhold, Théming &ephowski, 2011; O’Brien, Harley,
Yannas & Gibson, 2005). It was observed that in $iegies of chitosan-sulfonamide
derivatives 8a-f), the membrane porosity was comparable with thegity of the chitosan
membrane (84.42%). The highest porosity degreer@@sded for chitosan-sulfadiazirgby,
for which the value of the porosity degree was 9%4Fig. 3a). These results are supported

also by the SEM images - Fig. 4, for chitosan (8 &) and chitosan-sulfadiazine (3b) (C and
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D) membranes. For SEM images of other chitosaresathide membranes see Fig. 2

(Dragostin et al., 2015).
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Fig. 3. a) porosity degree of chitosan derivativé3a),b): percentage biodegradation of
chitosan derivatives membran&sf), in respect with that of chitosan.

Fig. 4. SEM images of chitosalC SMMW ) (A and B)and chitosan-sulfadiazin8lf) (C and
D) membranes.

3.3.2. In vitro biodegradation

The biodegradation study of chitosan, and the shitesulfonamide derivatives under the
action of lysozyme revealed considerable differermetween them (Fig. 3b). The percentage
biodegradation of the chitosan derivatives was érgthan chitosan, excepting chitosan-
sulfadimethoxine 3c). The highest percentage biodegradation was redofdr chitosan-
sulfisoxazole f), for which, at the end of the experiment ¢ay), the biodegradation was
52.89% while the biodegradation of chitosan wad3%. According to the literature data the
lysozyme biodegradation products of chitosan coulk D-glucosamine and

glycosaminoglycan which are nontoxic for cells @arTuzlakglu, Mano & Reis, 2012).
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3.3.3. Swelling degree

According to Gethin’s study, the pH of intact skéhabout 5, while in the case of
wounds this value increases to 7 or even more, ratpg on the type of wound (Gethin,
2007). In this study, we have performed a comparibetween swelling behavior at
physiological environment of intact skin (pH 5) awdunded environment (pH 7), at 37°C
(Fig. 5). Although there are no significant diffeces between the swelling ratio recorded at
both pH values, it is to be noted that at pH 5d¥velling degree is a little bit higher than at
that of pH 7.

Among the chitosan derivatives the highest sweltaigp was recorded f@&c (chitosan-
sulfadimethoxine) derivative, for which swellingpegity was 2407 % after 60 min, at pH 7
and 2675 % after 30 min, at pH 5. A very good $nglratio in comparison with chitosan at
both pH values was also recorded f@b (chitosan-sulfadiazine),3d (chitosan-
sulfamethoxazole) angf (chitosan-sulfisoxazole) derivatives. For examiplease of3b the
thermodynamic equilibrium was reached after 60 wiith an increased swelling capacity of
2070 % at pH 7 and 2217 % at pH 5 respectively.

In the similar conditions for chitosan (CS MMW) thedynamic equilibrium was
installed after 60 min with an increased uptakeacép of 1823 %, at pH 7 and after 30 min
at pH 5 (2107 %).

These results support that, exceptdaychitosan-sulfamethoxidiazine derivative), all
other chitosan derivatives showed a higher sweltatg in respect with to neat chitosan,
which means they could have a higher absorptiomaagpof exudates in the wound healing

process.
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Fig. 5. Swelling degree profiles of chitosan and chitosanvatives 8a-f) membranes at pH
7 (a) and pH 5 (b).

3.3.4. Surface free energy estimation by contact angle measurement

As concerns the biocompatibility several parametamild be considered, such as surface
free energy (SFE). The SFE is an important prodertgell attachment which determines the
quality of the material surface and its possibtaredical applications (Yang, Huang, Shen &
Yeh, 2010). It has been demonstrated a strong ctionebetween the total surface energy
and the cell attachment: a higher energy surfappa@ts a greater attachment than a lower
energy surface (Hallab, Bundy, O’Connor, Moses &cols, 2001). The chemical
functionalization of chitosan with different sulfmmides does not negatively impact on total
surface free energy -Table 2, which means thabith@mpatibility of chitosan derivatives is

similar to the chitosan one. For data referringthe values of the surface free energy

components see Table 3 (Dragostin et al., 2015).

Table 2
The contact angle and total surface free energyegdior chitosan and chitosan-derivatives

(3a-f) membranes.

Contact angle (degree) o
Samples  water formamide diiodomethane (mN/m)
CS MMW 73.28+1.32 69.86+0.72 65.16+1.16 29.09
3a 47.81+0.89 40.55+0.75 38.45+1.45 23.57
3b 58.45+1.07 60.65+1.71 59.80+0.96 26.49
3c 78.96+1.45 73.25+0.80 68.28+0.79 26.76
3d 71.58+1.05 66.47+0.99 60.88+1.12 28.71
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3e 71.89+1.62 67.43+1.45 61.05+1.03 32.45
3f 78.11+1.33 73.98+1.22 67.98+0.78 33.13

3.4. Biological evaluation

3.4.1. Antimicrobial assay
The antimicrobial activity results of chitosan detives Ba-f), expressed as diameters

of inhibition area, are presented in Table 3.

Table 3

Diameter of inhibition area (mm) of chitosan detives @a-f).

Diameter of inhibition area (mm)

Compound
Sa Sl B.c. Bs E.c. Pa

CSMMW ¢ 0 0 0 0 0
3a 0 15 0 0 0 0
3b 11 26 15 12 1 0
3c 10 32 18 19 17 O
3d 0 0 0 0 0 0
3e 12 26 12 9 12 0
3f

0 0 0 0 0 0

S.a. -Staphloccocus auresuSTCC 25923, S.I. Sarcina luteaATCC 9341, B.c. -
Bacillus cereusATCC 14579, B.s. Bacillus subtilis,E.c. - Escherichia coliATCC 25922,
P.a. -Pseudomonas aerugino§4P 82118.

For all bacterial strains, chitosan (CS MMW) waadtive at a concentration of 2.5
mg/disc. In the same experimental conditioBb, (chitosan-sulfadiazine)3c (chitosan-
sulfadimethoxine) an@e (chitosan-sulfamethoxazole) showed a good antobial activity,
for tested bacterial strains, exceptiRgeudomonas aeruginosalP 82118, to which the
compounds were inactive.

Compared with positive controls (Table 4), the édstompounds showed a higher

activity than ciprofloxacin (5 pg/disc) and similaith that of nitrofurantoin (300 pg/disc).

Table 4
Diameter of inhibition area (mm) of Nitrofurantaamd Ciprofloxacin.
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Diameter of inhibition area (mm)
Sa. SlI. B.c. B.s. E.c. Pa
N 300ug/disc 19 8 12 20 20 -
C 5 pg/disc - - - - - 33
N - nitrofurantoin, C - ciprofloxacirt.a. - Staphloccocus aureshi§CC 25923 S.I. - Sarcina lutea
ATCC 9341 B.c. - Bacillus cereuBTCC 14579 B.s. - Bacillus subtilis, E.c. - Escherichia cAliCC
25922 P.a. - Pseudomonas aerugindske 82118;" - " no effect.

Control

Evaluation ofantifungal activity of chitosan derives @a-f), showed that all the
compounds are inactive at 2.5 mg/discCandida albicansATCC 10231,Candida glabrata
andCandida sake

The values of MICs and MBCs for chitosan-derivadiga-f) evaluated using the broth

micro dilution method are listed in Table 5.

Table 5

The MICs and MBCs values for chitosan and chitadsuvatives.

. — S. aureuATCC 25923 E. coliATCC 25922
Chitosan derivatives /=" 0/~ MBC (mg/mi) MIC (mg/mi) MBC (mg/mT

CS-sulfametoxidiazine3g) 5 >5 0.62 1.25
CS-sulfadiazine3b) 1.25 2.5 0.03 0.15
CS-sulfadimetoxine 3c) 2.5 5 2.5 5
CS-sulfametoxazol3d) 2.5 5 0.15 0.31
CS-sulfamerazine3g) 5 >5 2.5 5
CS-sulfizoxazol 3f) 1.25 2.5 2.5 5
CS MMW 5 >5 2.5 5
Ampicilin(pg/ml) 0.25 0.5 0.5 1

According to the results, all tested compoundsmaoge active than chitosan, but less
active than ampicillin used as positive controlwtis observed that the activity is closely
related to the sulfonamide moiety that substitb&e glucosamine unit of chitosan. The most
active derivative was chitosan-sulfadiazirg@b)( It was active onStaphylococcus aureus
ATCC 25922, with MIC value of 1.25 mg/ml and MBClw&a of 2.5 mg/ml. More than that
this compound was more active Bscherichia colia Gram-negative bacterial straMIC
and MBC values being less (0.03 and 0.15 mg/mleesgely) than values recorded for

Gram-positive bacterial strairStaphylococcus aureus
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502 In conclusion, the antimicrobial effects of chitosderivatives are more intense than
503 chitosan and comparable with other derivatives nteploin the literature. For example, the
504 MIC and MBC of diethyl methyl chitosan (DEMC), agsiEscherichia colwas lower than
505 chitosan (Avadi et al, 2004). The antibacterialeeté of the acyl thiourea derivatives of
506 chitosan were also much better than chitosan, whlee of MIC and MBC against
507 Escherichia colibeing 15.62 pg/mL and 62.49 pg/mL, respectivelyofdy et al, 2008). In
508 our research, MIC value of pure chitosan agalstherichia coliwas found to be 2.5
509 mg/mL, while the most active chitosan derivativesoffadiazine §b) shows an MIC value of
510 30 pg/mL.

511 Considering all obtained results, derivati¥e was selected for further testimg vivo

512  wound healing test.

513  3.4.2. MTT cell proliferation assay

514 It was observed that the cell viability (%) evakatusing MTT assay decreases in
515 presence of chitosan derivatives in comparasioh wftitosan - Table 6. Even if the cell
516 Vviability for these derivatives is less than ch#nssome of these compounds are considered
517 nontoxic because the viability is higher than 7@cording to the literatute data (Lonnroth,

518 2005).

519 Table 6

520 The cell viability value (%) for chitosan derivagiv at 24 h, 48 h and 72 h.
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521

Cell viability (%)

522 Samples 24.h 48 h 72h
523 CS-sulfametoxidiazine3@) 89.58 69.25 62.00
CS-sulfadiazine3b) 80.08 77.65 96.18
524 CS-sulfadimetoxine 3c) 87.33 74.34 98.73
CS-sulfametoxazol3d) 82.67 74.34 62.79
525 CS-sulfamerazine3g) 3.45 2.65 0.64
CS-sulfizoxazol 3f) 80.62 56.86 52.78
526 CS MMW (negative control) 124.60 113.94 114.94
527 H,0, 0.03% (positive control) 1.49 0.66 0.00
Control 100.00 100.00 100.00
528

529 The least toxic are CS-sulfadiazin@bl and CS-sulfadimetoxine3¢), for which the cell
530 viability was higher than 70% at all exposed pa#si§24 h, 48 h and 72 h). After 72 h of
531 incubation the viability of these derivatives wa 18% @Bb) and 98.73% 3c), the values
532  being comparable with those of chitosan (CS MMW4(94%).

533 Microscopic images of the cell culture incubatedhie presence of chitosan derivatives
534 are presented in Fig. 6. In comparison with thetrabnin which the cells have round and
535 polygonal shape, in the cell culture incubatechimppresence of chitosan derivatBe@and3b,
536 the cells are elongated, some of them becominglBpitheir shape being similar to the cells
537 incubated in presence of chitosan (CS MMW).
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Fig. 6. Cell cultures incubated in the presence of chitakanvatives 8a-f) in reference with
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chitosan (CS MMW) and control.
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540  3.4.3. Wound healing assay

541 Burn degree was evaluated by skin wounds punchsbi@gmd Hematoxylin and Eosin
542  staining protocol of the samples harvested at 48sh@ost-infliction. Intermediate burn
543  wounds resulted at 2 seconds exposure to highyreebst steam.

544 The chitosan-sulfadiazine derivativ@b) was evaluated for its wound healing properties
545 vs. chitosan (CS) as a reference. The polymeric in@nes (CS, 3b) were stapled to gauze

546 and fixed on top of the burn wound with tie-ovetusa.

Eschar

a..j!

"

1
A
oy

547  Fig. 7. Burn wounds, histological exam and topical treatin@n acute burn injury inflicted

548 by high-pressure steam at 2 seconds exposure {d&8; dhtense edema of the burn wound
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549  will subside and the eschar will form, C: at 48 I®the histology shows necrosis and
550 detachment of the epidermis and the superior lidheodermis together with skin appendages
551 are necrosed, D: shows CS membrane (D1) and 3b memi{D2) underneath (of equal
552  sizes), stapled on gauze, E: tie-over suture ftkedmembrane on the burn wound, F: shows
553 dehydrated, contracted membrane after 4 days, &ef@nging to the new one.

554

555 The burn wound healing was evaluated at 8, 11 ahdidys after the start of the
556  experiment. The average value and standard dewiafitourn surface area in each group at
557 different days during recovery phase are showraipld 7.

558 The burning surface in all groups at day 0 is nffegent, showing the burn infliction
559 methods consistency. The burning surface in radsimgtreated with chitosan-sulfadiazine
560 (3b) was significantly smaller than rats group te€awith chitosan (CS) (p<0.01) and control
561 group (p<0.01) at day 8, 11 and 14, and the burface in rats group treated with chitosan
562 was also significantly smaller than control gropg@.03) at day 8, 11 and 14. Both CS and
563 3b dressing materials were more effective for wotedling than the control group (with
564 standard gauze dressing), and 3b dressing in plntjdad the best healing effect among all
565 the groups. In addition, wound healing progressid time of all three groups, i.e. the longer
566  recovery duration, smaller the burn wound area X0

567

568 Table 7

569 Burn surface area and standard deviation )riior control, chitosan (CS) and chitosan-

570 sulfadiazine (3b) rats groups at day O (burn itifiit) and at 8, 11 and 14 day.

Group Day Mean + SD (mnf)
Day O 955+16
Control
Day 8 858+10
Day 11 758+19
Day 14 742126
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572

573

574

575

576

577

578

579

580

581

582

CSratsgroup DayO0 945111

Day 8 742+27
Day 11 699120
Day 14 556151
3b rats group Day 0 951+13
Day 8 589452
Day 11 474425
Day 14 37435
P value Group <0.01
Day <0.01

Interaction 0.2

Macroscopic aspect of the burn wounds was docurddjtestandard photographs shown
in Fig. 8. Macroscopic evaluation of control grahpws subsequent biopsies and the surface
of the burn wound after eschar detachment is whipgarly appearance with weak signs of
healing even at day 14. CS rats group shows cofaing over slightly pink appearance as a
sign of improved healing and better local vascaion, yet it retains raw non-epithelialized
dermis in the upper quadrants of the wound (app46%0 of the wound surface). Chitosan-
sulfadiazine (3b) rats group shows no more raw aree, the shiny areas are the new
epithelial cell layers formed due to better wounehling, and fully cover the previous
wounded area at day 14, compared to control anth@yroup, respectively. All burn wound

areas significantly decrease over time.
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rats

group

3b
rats

group

A g AT ),
583  Fig. 8. Macroscopic evaluation of burn wo‘u‘nd area of kbletiml and samples (CS rats group,
584  3b rats group) at various timelines: 8 days, Msdmd 14 days.
EZZ Microscopic evaluation (see Fig. 5, Dragostin e8l15) of the control group, in th&' 8
587 and 11" day of evolution showed that the wounded area wasptetely ulcerated with fibro-
588  vascular tissue in the upper half of the reticdiamis, abundant polymorphous inflammatory
589 infiltrates with no signs of re-epithelization. the 14" day, beneath the necrotic debris
590 (eschar), small, isolated nests of immature squanepithelium were observed, while the
591 upper dermis was replaced by fibro-vascular tissitle mild chronic inflammatory infiltrate
592  and congestion. Microscopic evaluation of the higjizal samples showed intermediate burn
593 at day 8 with immature but continuous epidermaétdapr 3b rats group compared to initial
594 sample, discontinuous re-epithelialization by aergwowth of the epithelial buds from the
595 residual viable pilosebaceous units for CS ratsugroFor CS rats group the re-
596 epithelialization resulted in a thin, immature epidal layer and underneath repairing of the
597 dermis by fibro-vascular tissue showed moderatanminatory infiltrate, with mosaic of non-
598 healed and healed areas. At day 11 and 14 groapettewith 3b exhibited complete re-
599 epithelialization resulting into the mature epidatnayer and underneath repairing of the

600 dermis by fibro-vascular tissue with reduced chromflammatory infiltrate and reduced

601  congestion.

602 4. Conclusions
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627

New chitosan-sulfonamide derivatives were syntlegsand characterized with regard to
structural, physico-chemical properties, swelliagacity, biodegradability, biocompatibility
and tested in respect with antimicrobial and antial activities. It has been found that all six
chitosan-sulfonamide derivatives exhibited bettatimaicrobial activity than the pristine
chitosan, which indicated that the antimicrobialligbof chitosan was strengthened by the
introduction of sulfonamide part to chitosan. ThHatasan derivatives showed improved
swelling and biodegradation rate and are biocorbfgatind most of them are not cytotoxit.
vivo test proved that among the chitosan-sulfonamidevateses, the chitosan-sulfadiazine
showed also improved healing effects. It can cafelthat these new chitosan derivatives
could be useful in application as potential newsdirey materials for wound, especially for

burn wounds.
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HIGHLIGHTS

New sulfoanamide-chitosan derivatives have beethsgired and characterized
Sulfoanamide-chitosan derivatives membranes hage peepared and characterized
Chitosan derivatives membranes have improved swgedind biodegradation rate

Chitosan-sulfadiazine membrane has good antimiatafiect and healing properties
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